1
|
Li D, Hou T, Du X, Zhao L, Zhang L, Gao F, Xing T. Integrated analysis of miRNA and mRNA expression profiles associated with wooden breast myopathy in broiler chickens. Int J Biol Macromol 2025; 284:137990. [PMID: 39603286 DOI: 10.1016/j.ijbiomac.2024.137990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Wooden breast (WB) myopathy has raised a worldwide concern among broiler industry during the past decade. Despite progress in understanding its etiology from transcriptional regulation, post-transcriptional mechanisms including the regulation of microRNAs (miRNAs) remain largely unknown. In the current study, we described an integrative analysis between mRNA and miRNA expression profiles of pectoralis major muscle from normal and WB myopathic broilers. A total of 1983 differentially expressed mRNAs (DEmRNAs) and 155 DEmiRNAs were identified in WB. We screened crucial biological processes and core DEmRNAs enriched in functional pathways, and established the protein-protein interaction network. DEmiRNAs and negatively correlated DEmRNAs regulatory networks were constructed, including 44 exist DEmiRNAs and 478 DEmRNAs, forming 772 miRNA-mRNA pairs. Upregulated DEmiRNAs including gga-miR-21-3p, gga-miR-460a-5p and gga-miR-6631-5p, as well as downregulated DEmiRNAs including gga-miR-182-5p, gga-miR-183 and gga-miR-96-5p were identified as hub miRNAs. Meanwhile, functional enrichment analysis indicated that upregulated DEmRNAs in the network were enriched in biological processes of response to stimulus, inflammatory response, extracellular matrix organization, whereas downregulated DEmRNAs were enriched in carbohydrate, amino acid and nucleotide metabolic processes. Collectively, our integrative miRNA and mRNA analysis highlighted candidate miRNAs and mRNAs, as well as potential miRNA-mRNA regulatory mechanisms involved in WB myopathy in broiler chicken.
Collapse
Affiliation(s)
- Duanduan Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Taijiang Hou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Du
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Feng L, Li B, Yong SS, Wu X, Tian Z. Exercise and nutrition benefit skeletal muscle: From influence factor and intervention strategy to molecular mechanism. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:302-314. [PMID: 39309454 PMCID: PMC11411340 DOI: 10.1016/j.smhs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 09/25/2024] Open
Abstract
Sarcopenia is a progressive systemic skeletal muscle disease induced by various physiological and pathological factors, including aging, malnutrition, denervation, and cardiovascular diseases, manifesting as the decline of skeletal muscle mass and function. Both exercise and nutrition produce beneficial effects on skeletal muscle growth and are viewed as feasible strategies to prevent sarcopenia. Mechanisms involve regulating blood flow, oxidative stress, inflammation, apoptosis, protein synthesis and degradation, and satellite cell activation through exerkines and gut microbiomes. In this review, we summarized and discussed the latest progress and future development of the above mechanisms for providing a theoretical basis and ideas for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Lili Feng
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Bowen Li
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Su Sean Yong
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Wu
- The Information and Communication College, National University of Defense Technology, Xi'an, 710106, China
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
3
|
Castañón-Cortés LG, Bravo-Vázquez LA, Santoyo-Valencia G, Medina-Feria S, Sahare P, Duttaroy AK, Paul S. Current advances in the development of microRNA-integrated tissue engineering strategies: a cornerstone of regenerative medicine. Front Bioeng Biotechnol 2024; 12:1484151. [PMID: 39479296 PMCID: PMC11521876 DOI: 10.3389/fbioe.2024.1484151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Regenerative medicine is an innovative scientific field focused on repairing, replacing, or regenerating damaged tissues and organs to restore their normal functions. A central aspect of this research arena relies on the use of tissue-engineered scaffolds, which serve as structural supports that mimic the extracellular matrix, providing an environment that orchestrates cell growth and tissue formation. Remarkably, the therapeutic efficacy of these scaffolds can be improved by harnessing the properties of other molecules or compounds that have crucial roles in healing and regeneration pathways, such as phytochemicals, enzymes, transcription factors, and non-coding RNAs (ncRNAs). In particular, microRNAs (miRNAs) are a class of tiny (20-24 nt), highly conserved ncRNAs that play a critical role in the regulation of gene expression at the post-transcriptional level. Accordingly, miRNAs are involved in a myriad of biological processes, including cell differentiation, proliferation, and apoptosis, as well as tissue regeneration, angiogenesis, and osteogenesis. On this basis, over the past years, a number of research studies have demonstrated that miRNAs can be integrated into tissue-engineered scaffolds to create advanced therapeutic platforms that precisely modulate cellular behavior and offer a controlled and targeted release of miRNAs to optimize tissue repair and regeneration. Therefore, in this current review, we discuss the most recent advances in the development of miRNA-loaded tissue-engineered scaffolds and provide an overview of the future outlooks that should be aborded in this area of study in order to lay the groundwork for the clinical translation of these tissue engineering approaches.
Collapse
Affiliation(s)
| | | | | | - Sara Medina-Feria
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Padmavati Sahare
- School of Engineering and Sciences, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| |
Collapse
|
4
|
Wang L, Zhang S. Investigating the Causal Effects of Exercise-Induced Genes on Sarcopenia. Int J Mol Sci 2024; 25:10773. [PMID: 39409102 PMCID: PMC11476887 DOI: 10.3390/ijms251910773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Exercise is increasingly recognized as an effective strategy to counteract skeletal muscle aging and conditions such as sarcopenia. However, the specific exercise-induced genes responsible for these protective effects remain unclear. To address this, we conducted an eight-week aerobic exercise regimen on late-middle-aged mice and developed an integrated approach that combines mouse exercise-induced genes with human GWAS datasets to identify causal genes for sarcopenia. This approach led to significant improvements in the skeletal muscle phenotype of the mice and the identification of exercise-induced genes and miRNAs. By constructing a miRNA regulatory network enriched with transcription factors and GWAS signals related to muscle function and traits, we focused on 896 exercise-induced genes. Using human skeletal muscle cis-eQTLs as instrumental variables, 250 of these exercise-induced genes underwent two-sample Mendelian randomization analysis, identifying 40, 68, and 62 causal genes associated with sarcopenia and its clinical indicators-appendicular lean mass (ALM) and hand grip strength (HGS), respectively. Sensitivity analyses and cross-phenotype validation confirmed the robustness of our findings. Consistently across the three outcomes, RXRA, MDM1, RBL2, KCNJ2, and ADHFE1 were identified as risk factors, while NMB, TECPR2, MGAT3, ECHDC2, and GINM1 were identified as protective factors, all with potential as biomarkers for sarcopenia progression. Biological activity and disease association analyses suggested that exercise exerts its anti-sarcopenia effects primarily through the regulation of fatty acid oxidation. Based on available drug-gene interaction data, 21 of the causal genes are druggable, offering potential therapeutic targets. Our findings highlight key genes and molecular pathways potentially responsible for the anti-sarcopenia benefits of exercise, offering insights into future therapeutic strategies that could mimic the safe and mild protective effects of exercise on age-related skeletal muscle degeneration.
Collapse
Affiliation(s)
- Li Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
5
|
Oguri G, Ikegami R, Ugawa H, Katoh M, Obi S, Sakuma M, Takeda N, Kano Y, Toyoda S, Nakajima T. Muscle Atrophy and mRNA-miRNA Network Analysis of Vascular Endothelial Growth Factor (VEGF) in a Mouse Model of Denervation-Induced Disuse. Cureus 2024; 16:e68974. [PMID: 39385898 PMCID: PMC11462388 DOI: 10.7759/cureus.68974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Skeletal muscle atrophy is frequently caused by the disuse of muscles. It impacts quality of life, especially in aging populations and those with chronic diseases. Understanding the molecular mechanisms underlying muscle atrophy is crucial for developing effective therapies. OBJECTIVE To investigate the roles of vascular endothelial growth factor (VEGF) and various microRNAs (miRNAs) in muscle atrophy using a mouse model of denervation (DEN)-induced disuse, and to elucidate their interactions and regulatory functions through comprehensive network analysis. METHODS The right sciatic nerve of C57BL/6J mice (n=6) was excised to simulate DEN, with the left serving as a sham surgery control (Sham). Following a two-week period, wet muscle weight was measured. Total RNA was extracted from the tibialis anterior muscle for microarray analysis. Significant expression changes were analyzed via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and miRNet for miRNAs. RESULTS Denervated limbs showed a significant reduction in muscle weight. Over 1,000 genes displayed increased expression, while 527 showed reductions to less than half of control levels. VEGF, along with specific miRNAs such as miR-106a-5p, miR-mir20a-5p, mir93-5p and mir17-5p, occupied central regulatory nodes within the gene network. Functional analysis revealed that these molecules are involved in key biological processes including regulation of cell migration, vasculature development, and regulation of endothelial cell proliferation. The increased miRNAs were subjected to further network analysis that revealed significant regulatory interactions with target mRNAs. CONCLUSION VEGF and miRNAs play crucial roles in the progression of skeletal muscle atrophy, offering potential targets for therapeutic interventions aimed at reducing atrophy and enhancing muscle regeneration.
Collapse
Affiliation(s)
- Gaku Oguri
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Ryo Ikegami
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, JPN
| | - Haruka Ugawa
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, JPN
| | - Manami Katoh
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Syotaro Obi
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Yutaka Kano
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
- Department of Medical KAATSU Training, Dokkyo Medical University Hospital, Mibu, JPN
| |
Collapse
|
6
|
Jung W, Juang U, Gwon S, Nguyen H, Huang Q, Lee S, Lee B, Kim SH, Ryu S, Park J, Park J. Identifying the potential therapeutic effects of miR‑6516 on muscle disuse atrophy. Mol Med Rep 2024; 30:119. [PMID: 38757344 PMCID: PMC11129540 DOI: 10.3892/mmr.2024.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
Muscle atrophy is a debilitating condition with various causes; while aging is one of these causes, reduced engagement in routine muscle‑strengthening activities also markedly contributes to muscle loss. Although extensive research has been conducted on microRNAs (miRNAs/miRs) and their associations with muscle atrophy, the roles played by miRNA precursors remain underexplored. The present study detected the upregulation of the miR‑206 precursor in cell‑free (cf)RNA from the plasma of patients at risk of sarcopenia, and in cfRNAs from the muscles of mice subjected to muscle atrophy. Additionally, a decline in the levels of the miR‑6516 precursor was observed in mice with muscle atrophy. The administration of mimic‑miR‑6516 to mice immobilized due to injury inhibited muscle atrophy by targeting and inhibiting cyclin‑dependent kinase inhibitor 1b (Cdkn1b). Based on these results, the miR‑206 precursor appears to be a potential biomarker of muscle atrophy, whereas miR‑6516 shows promise as a therapeutic target to alleviate muscle deterioration in patients with muscle disuse and atrophy.
Collapse
Affiliation(s)
- Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hounggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Qingzhi Huang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sunyoung Ryu
- Mitos Biomedical Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| | - Jisoo Park
- Mitos Biomedical Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Mitos Biomedical Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
8
|
Liu CF, Chien LW. Associations between DEET, Organophosphorus Insecticides, and Handgrip Strength in Diabetes: An NHANES Analysis. Biomedicines 2024; 12:1461. [PMID: 39062034 PMCID: PMC11274853 DOI: 10.3390/biomedicines12071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Sarcopenia and diabetes mellitus (DM) have been shown to be related. It has been demonstrated that pesticides/insecticides are linked to various health issues, including DM. This study investigated the relationships between exposure to pesticides/insecticides and muscle strength among community-dwelling DM patients in a national sample of the United States (US). METHODS Data from the 2011-2012 and 2013-2014 U.S. National Health and Nutrition Examination Survey (NHANES) on people aged 20 years with diabetes were retrieved. A digital dynamometer was used to quantify handgrip strength, and urine pesticide concentrations were determined through laboratory testing. Regression models were used to investigate the relationship between pesticide/insecticide exposure and handgrip strength. RESULTS After weighting, the data from 412 NHANES participants represented 6,696,865 U.S. inhabitants. The mean age of the participants was 58.8 years. High para-nitrophenol levels (tertile 3 vs. tertile 1) were shown to be associated with lower handgrip strength in both males (aBeta = -7.25, 95% CI: -11.25, -3.25) and females (aBeta = -3.73, 95% CI: -6.89, -0.56). Further, females with elevated 2-isopropyl-4-methyl-pyrimidinol had decreased handgrip strength. Desethyl hydroxy N, N-diethyl-m-toluamide (DEET) was inversely related to handgrip strength in men aged ≥60 years. DEET acid and para-nitrophenol were inversely correlated to handgrip strength in women over 60 years. CONCLUSIONS This study has linked certain pesticides/insecticides to decreased muscle strength in people with diabetes. Para-nitrophenol, in particular, is negatively related to muscular strength in both males and females, and 2-isopropyl-4-methyl-pyrimidinol is inversely related to muscle strength in females.
Collapse
Affiliation(s)
- Chi-Feng Liu
- School of Nursing, National Taipei University of Nursing and Health Science, Taipei 112, Taiwan
| | - Li-Wei Chien
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 110, Taiwan
| |
Collapse
|
9
|
Pigoń-Zając D, Mazurek M, Maziarz M, Ochieng’ Otieno M, Martinez-Useros J, Małecka-Massalska T, Powrózek T. Characterization of Undiscovered miRNA Involved in Tumor Necrosis Factor Alpha-Induced Atrophy in Mouse Skeletal Muscle Cell Line. Int J Mol Sci 2024; 25:6064. [PMID: 38892252 PMCID: PMC11172509 DOI: 10.3390/ijms25116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Muscular atrophy is a complex catabolic condition that develops due to several inflammatory-related disorders, resulting in muscle loss. Tumor necrosis factor alpha (TNF-α) is believed to be one of the leading factors that drive inflammatory response and its progression. Until now, the link between inflammation and muscle wasting has been thoroughly investigated, and the non-coding RNA machinery is a potential connection between the candidates. This study aimed to identify specific miRNAs for muscular atrophy induced by TNF-α in the C2C12 murine myotube model. The difference in expression of fourteen known miRNAs and two newly identified miRNAs was recorded by next-generation sequencing between normal muscle cells and treated myotubes. After validation, we confirmed the difference in the expression of one novel murine miRNA (nov-mmu-miRNA-1) under different TNF-α-inducing conditions. Functional bioinformatic analyses of nov-mmu-miRNA-1 revealed the potential association with inflammation and muscle atrophy. Our results suggest that nov-mmu-miRNA-1 may trigger inflammation and muscle wasting by the downregulation of LIN28A/B, an anti-inflammatory factor in the let-7 family. Therefore, TNF-α is involved in muscle atrophy through the modulation of the miRNA cellular machinery. Here, we describe for the first time and propose a mechanism for the newly discovered miRNA, nov-mmu-miRNA-1, which may regulate inflammation and promote muscle atrophy.
Collapse
Affiliation(s)
- Dominika Pigoń-Zając
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| | - Marcin Mazurek
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| | - Mirosław Maziarz
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| | - Michael Ochieng’ Otieno
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, 28040 Madrid, Spain; (M.O.O.); (J.M.-U.)
| | - Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, 28040 Madrid, Spain; (M.O.O.); (J.M.-U.)
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | - Teresa Małecka-Massalska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| | - Tomasz Powrózek
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| |
Collapse
|
10
|
Faraldi M, Sansoni V, Vitale J, Perego S, Gomarasca M, Verdelli C, Messina C, Sconfienza LM, Banfi G, Corbetta S, Lombardi G. Plasma microRNA signature associated with skeletal muscle wasting in post-menopausal osteoporotic women. J Cachexia Sarcopenia Muscle 2024; 15:690-701. [PMID: 38272849 PMCID: PMC10995257 DOI: 10.1002/jcsm.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/07/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Skeletal muscle mass wasting almost invariably accompanies bone loss in elderly, and the coexistence of these two conditions depends on the tight endocrine crosstalk existing between the two organs, other than the biomechanical coupling. Since the current diagnostics limitation in this field, and given the progressive population aging, more effective tools are needed. The aim of this study was to identify circulating microRNAs (miRNAs) as potential biomarkers for muscle mass wasting in post-menopausal osteoporotic women. METHODS One hundred seventy-nine miRNAs were assayed by quantitative real-time polymerase chain reaction in plasma samples from 28 otherwise healthy post-menopausal osteoporotic women (73.4 ± 6.6 years old). The cohort was divided in tertiles based on appendicular skeletal muscle mass index (ASMMI) to better highlight the differences on skeletal muscle mass (first tertile: n = 9, ASMMI = 4.88 ± 0.40 kg·m-2; second tertile: n = 10, ASMMI = 5.73 ± 0.23 kg·m-2; third tertile: n = 9, ASMMI = 6.40 ± 0.22 kg·m-2). Receiver operating characteristic (ROC) curves were calculated to estimate the diagnostic potential of miRNAs. miRNAs displaying a statistically significant fold change ≥ ±1.5 and area under the curve (AUC) > 0.800 (P < 0.05) between the first and third tertiles were considered. A linear regression model was applied to estimate the association between miRNA expression and ASMMI in the whole population, adjusting for body mass index, age, total fat (measured by total-body dual-energy X-ray absorptiometry [DXA]) and bone mineral density (measured by femur DXA). Circulating levels of adipo-myokines were evaluated by bead-based immunofluorescent assays and enzyme-linked immunosorbent assays. RESULTS Five miRNAs (hsa-miR-221-3p, hsa-miR-374b-5p, hsa-miR-146a-5p, hsa-miR-126-5p and hsa-miR-425-5p) resulted down-regulated and two miRNAs (hsa-miR-145-5p and hsa-miR-25-3p) were up-regulated in the first tertile (relative-low ASMMI) compared with the third tertile (relative-high ASMMI) (fold change ≥ ±1.5; P-value < 0.05). All the corresponding ROC curves had AUC > 0.8 (P < 0.05). Two signatures hsa-miR-126-5p, hsa-miR-146a-5p and hsa-miR-425-5p; and hsa-miR-126-5p, hsa-miR-146a-5p, hsa-miR-145-5p and hsa-miR-25-3p showed the highest AUC, 0.914 (sensitivity = 77.78%; specificity = 100.00%) and 0.901 (sensitivity = 88.89%; specificity = 100.00%), respectively. CONCLUSIONS In this study, we identified, for the first time, two miRNA signatures, hsa-miR-126-5p, hsa-miR-146a-5p and hsa-miR-425-5p; and hsa-miR-126-5p, hsa-miR-146a-5p, hsa-miR-145-5p and hsa-miR-25-3p, specifically associated with muscle mass wasting in post-menopausal osteoporotic women.
Collapse
Affiliation(s)
- Martina Faraldi
- Laboratory of Experimental Biochemistry and Molecular BiologyIRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular BiologyIRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Jacopo Vitale
- Laboratory of Movement and Sport ScienceIRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular BiologyIRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular BiologyIRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Chiara Verdelli
- Laboratory of Experimental EndocrinologyIRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Carmelo Messina
- OU Diagnostic and Interventional RadiologyIRCCS Istituto Ortopedico GaleazziMilanItaly
- Department of Biomedical Science for HealthUniversity of MilanMilanItaly
| | - Luca M. Sconfienza
- OU Diagnostic and Interventional RadiologyIRCCS Istituto Ortopedico GaleazziMilanItaly
- Department of Biomedical Science for HealthUniversity of MilanMilanItaly
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular BiologyIRCCS Istituto Ortopedico GaleazziMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Sabrina Corbetta
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
- Endocrinology and Diabetology ServiceIRCCS Istituto Ortopedico GaleazziMilanItaly
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular BiologyIRCCS Istituto Ortopedico GaleazziMilanItaly
- Department of Athletics, Strength and ConditioningPoznań University of Physical EducationPoznańPoland
| |
Collapse
|
11
|
Wang A. Age and low intensity resistance exercise on exosome-like vesicle and skeletal muscle microRNA profiles. J Physiol 2023; 601:4831-4833. [PMID: 37086197 DOI: 10.1113/jp284547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 04/23/2023] Open
Affiliation(s)
- Aaron Wang
- Meakins-Christie Laboratories, Department of Medicine and Division of Experimental Medicine, McGill University, Québec, Canada
| |
Collapse
|
12
|
Hu X, Yang L, Du Y, Meng X, Shi Y, Zeng J. Astragalus polysaccharide promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells by facilitating ANKFY1 expression through miR-760 inhibition. Bone Joint Res 2023; 12:476-485. [PMID: 37532241 PMCID: PMC10396440 DOI: 10.1302/2046-3758.128.bjr-2022-0248.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Aims Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Methods Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay. Results The expression of miR-760 was upregulated in OP tissues, whereas ANKFY1 expression was downregulated. APS stimulated the differentiation and proliferation of hBMSCs by: increasing their viability; upregulating the expression levels of cyclin D1, ALP, OCN, and RUNX2; and inducing osteoblast mineralization. Moreover, APS downregulated the expression of miR-760. Overexpression of miR-760 was found to inhibit the promotive effect of APS on hBMSC differentiation and proliferation, while knockdown of miR-760 had the opposite effect. ANKFY1 was found to be the direct target of miR-760. Additionally, ANKFY1 participated in the APS-mediated regulation of miR-760 function in hBMSCs. Conclusion APS promotes the osteogenic differentiation and proliferation of hBMSCs. Moreover, APS alleviates the effects of OP by downregulating miR-760 and upregulating ANKFY1 expression.
Collapse
Affiliation(s)
- Xianfeng Hu
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Liu Yang
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Yanhua Du
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Xiangping Meng
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Yuanyuan Shi
- Department of General Practice, Wuhan Fourth Hospital, Wuhan, China
| | - Juan Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Lippi L, Folli A, Curci C, D’Abrosca F, Moalli S, Mezian K, de Sire A, Invernizzi M. Osteosarcopenia in Patients with Chronic Obstructive Pulmonary Diseases: Which Pathophysiologic Implications for Rehabilitation? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114314. [PMID: 36361194 PMCID: PMC9657186 DOI: 10.3390/ijerph192114314] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 05/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a burdensome condition affecting a growing number of people worldwide, frequently related to major comorbidities and functional impairment. In these patients, several factors might have a role in promoting both bone and muscle loss, including systemic inflammation, corticosteroid therapies, sedentary behaviours, deconditioning, malnutrition, smoking habits, and alcohol consumption. On the other hand, bone and muscle tissues share several linkages from functional, embryological, and biochemical points of view. Osteosarcopenia has been recently defined by the coexistence of osteoporosis and sarcopenia, but the precise mechanisms underpinning osteosarcopenia in patients with COPD are still unknown. In this scenario, a deeper understanding of the molecular basis of osteosarcopenia might guide clinicians in a personalized approach integrating skeletal muscle health with the pulmonary rehabilitation framework in COPD. Taken together, our results summarized the currently available evidence about the multilevel interactions between osteosarcopenia and COPD to pave the way for a comprehensive approach targeting the most common risk factors of these pathological conditions. Further studies are needed to clarify the role of modern clinical strategies and telemedicine solutions to optimize healthcare delivery in patients with COPD, including osteopenia, osteoporosis, and sarcopenia screening in these subjects.
Collapse
Affiliation(s)
- Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
- Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Translational Medicine, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Arianna Folli
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy
| | - Francesco D’Abrosca
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Stefano Moalli
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Kamal Mezian
- Department of Rehabilitation Medicine, First Faculty of Medicine, Charles University and General University Hospital, 12800 Prague, Czech Republic
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
- Department of Rehabilitation and Sports Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, 15006 Prague, Czech Republic
- Correspondence: ; Tel.: +390961369768
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
- Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Translational Medicine, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
14
|
Schanda JE, Heher P, Weigl M, Drechsler S, Schädl B, Prueller J, Kocijan R, Heuberer PR, Hackl M, Muschitz C, Grillari J, Redl H, Feichtinger X, Fialka C, Mittermayr R. Muscle-Specific Micro-Ribonucleic Acids miR-1-3p, miR-133a-3p, and miR-133b Reflect Muscle Regeneration After Single-Dose Zoledronic Acid Following Rotator Cuff Repair in a Rodent Chronic Defect Model. Am J Sports Med 2022; 50:3355-3367. [PMID: 36053026 DOI: 10.1177/03635465221119507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Zoledronic acid improves bone microarchitecture and biomechanical properties after chronic rotator cuff repair (RCR) in rats. Besides the positive effects of zoledronic acid on bone mineral density and bone microarchitecture, bisphosphonates have positive effects on skeletal muscle function. PURPOSES/HYPOTHESIS The purposes of this study were to (1) longitudinally evaluate circulating bone- and muscle-specific serum micro-ribonucleic acids (miRNAs) and (2) investigate supraspinatus muscle tissue after tenotomy and delayed RCR in a rat model. It was hypothesized that zoledronic acid would improve muscle regeneration after chronic RCR in rats. STUDY DESIGN Controlled laboratory study. METHODS A total of 34 male Sprague-Dawley rats underwent unilateral (left) supraspinatus tenotomy (time point 1) with delayed transosseous RCR after 3 weeks (time point 2). All rats were sacrificed 8 weeks after RCR (time point 3). Animals were randomly assigned to 2 groups. One day after RCR, the control group was given 1 mL of subcutaneous saline solution, and the intervention group was treated with a subcutaneous single-dose of 100 µg/kg body weight of zoledronic acid. All 34 study animals underwent miRNA analysis at all 3 time points. In 4 animals of each group, histological analyses as well as gene expression analyses were conducted. RESULTS Circulating miRNAs showed significantly different expressions between both study groups. In the control group, a significant downregulation was observed for muscle-specific miR-1-3p (P = .004), miR-133a-3p (P < .001), and miR-133b (P < .001). Histological analyses showed significantly higher rates of regenerating myofibers on the operated side (left) of both study groups compared with the nonoperated side (right; P = .002). On the nonoperated side, significantly higher rates of regenerating myofibers were observed in the intervention group compared with the control group (P = .031). The myofiber cross-sectional area revealed significantly smaller myofibers on both sides within the intervention group compared with both sides of the control group (P < .001). Within the intervention group, significantly higher expression levels of muscle development/regeneration marker genes embryonal Myosin heavy chain (P = .017) and neonatal Myosin heavy chain (P = .016) were observed on the nonoperated side compared with the operated side. CONCLUSION An adjuvant single-dose of zoledronic acid after RCR in a chronic defect model in rats led to significant differences in bone- and muscle-specific miRNA levels. Therefore, miR-1-3p, miR-133a-3p, and miR-133b might be used as biomarkers for muscle regeneration after RCR. CLINICAL RELEVANCE Adjuvant treatment with zoledronic acid may improve muscle regeneration after chronic RCR in humans, thus counteracting fatty muscle infiltration and atrophy.
Collapse
Affiliation(s)
- Jakob E Schanda
- AUVA Trauma Center Vienna-Meidling, Department for Trauma Surgery, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Philipp Heher
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; King's College London, Randall Centre for Cell and Molecular Biophysics, London, United Kingdom
| | - Moritz Weigl
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; TAmiRNA GmbH, Vienna, Austria
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Medical University of Vienna, University Clinic of Dentistry, Vienna, Austria
| | - Johanna Prueller
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, United Kingdom
| | - Roland Kocijan
- Hanusch Hospital Vienna, Medical Department I, Vienna, Austria; Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Vienna-Meidling, Vienna, Austria; Sigmund Freud University Vienna, Faculty for Medicine, Metabolic Bone Diseases Unit, Vienna, Austria
| | | | | | - Christian Muschitz
- St. Vincent Hospital Vienna, Medical Department II, VINFORCE, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; University of Natural Resources and Life Science [BOKU], Institute of Molecular Biotechnology, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Xaver Feichtinger
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christian Fialka
- AUVA Trauma Center Vienna-Meidling, Department for Trauma Surgery, Vienna, Austria; Sigmund Freud University Vienna, Faculty for Medicine, Department for Traumatology, Vienna, Austria
| | - Rainer Mittermayr
- AUVA Trauma Center Vienna-Meidling, Department for Trauma Surgery, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Investigation performed at the Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria
| |
Collapse
|
15
|
Abstract
AIMS We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism. METHODS Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell's concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature. RESULTS We identified three PMOP-related subtypes and four core modules. The muscle system process, muscle contraction, and actin filament-based movement were more active in the hub genes. We obtained five feature genes related to PMOP. Our analysis verified that the gene signature had good predictive power and applicability. The outcomes of the GSE56815 cohort were found to be consistent with the results of the earlier studies. qRT-PCR results showed that RAB2A and FYCO1 were amplified in clinical samples. CONCLUSION The PMOP-related gene signature we developed and verified can accurately predict the risk of PMOP in patients. These results can elucidate the molecular mechanism of RAB2A and FYCO1 underlying PMOP, and yield new and improved treatment strategies, ultimately helping PMOP monitoring.Cite this article: Bone Joint Res 2022;11(8):548-560.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Maowei Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
17
|
Li MCM, Chow SKH, Wong RMY, Chen B, Cheng JCY, Qin L, Cheung WH. Osteocyte-specific dentin matrix protein 1 : the role of mineralization regulation in low-magnitude high-frequency vibration enhanced osteoporotic fracture healing. Bone Joint Res 2022; 11:465-476. [PMID: 35787000 PMCID: PMC9350691 DOI: 10.1302/2046-3758.117.bjr-2021-0476.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. Conclusion The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465–476.
Collapse
Affiliation(s)
- Meng C M Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K-H Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald M Y Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jack C Y Cheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Affiliation(s)
- Shao-Ting J. Tsang
- Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Nando Ferreira
- Division Orthopaedic Surgery Department of Surgical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
| | | |
Collapse
|
19
|
Li X, Du L, Liu Q, Lu Z. MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Exp Ther Med 2022; 24:446. [PMID: 35720622 PMCID: PMC9199081 DOI: 10.3892/etm.2022.11373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cachexia denotes a complex metabolic syndrome featuring severe loss of weight, fatigue and anorexia. In total, 50-80% of patients suffering from advanced cancer are diagnosed with cancer cachexia, which contributes to 40% of cancer-associated mortalities. MicroRNAs (miRNAs) are non-coding RNAs capable of regulating gene expression. Dysregulated miRNA expression has been observed in muscle tissue, adipose tissue and blood samples from patients with cancer cachexia compared with that of samples from patients with cancer without cachexia or healthy controls. In addition, miRNAs promote and maintain the malignant state of systemic inflammation, while inflammation contributes to cancer cachexia. The present review discusses the role of miRNAs in the progression of cancer cachexia, and assess their diagnostic value and potential therapeutic value.
Collapse
Affiliation(s)
- Xin Li
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Lidong Du
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Qiang Liu
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
20
|
Luobu Z, Wang L, Jiang D, Liao T, Luobu C, Qunpei L. CircSCAPER contributes to IL-1β-induced osteoarthritis in vitro via miR-140-3p/EZH2 axis. Bone Joint Res 2022; 11:61-72. [PMID: 35103493 PMCID: PMC8882325 DOI: 10.1302/2046-3758.112.bjr-2020-0482.r2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aims Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study. Methods In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and flow cytometry assays. Targeted relationships were predicted by bioinformatic analysis and verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The levels of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein were detected using Western blot assays. Results CircSCAPER was highly expressed in OA cartilage tissues and IL-1β-induced chondrocytes. Knockdown of circSCAPER reduced IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes. Mechanistically, circSCAPER directly bound to miR-140-3p, and miR-140-3p inhibition reversed the effects of circSCAPER knockdown on IL-1β-induced chondrocytes. miR-140-3p was verified to target EZH2, and overexpression of miR-140-3p protected chondrocytes against IL-1β-induced dysfunction via targeting EZH2. Additionally, we confirmed that circSCAPER could regulate EZH2 through sponging miR-140-3p, and the circSCAPER/miR-140-3p/EZH2 axis could activate the PI3K/AKT pathway. Conclusion CircSCAPER promoted IL-1β-evoked ECM degradation, proliferation arrest, and apoptosis enhancement in chondrocytes via regulating miR-140-3p/EZH2 axis, which gained a new insight into the pathogenesis of OA. Cite this article: Bone Joint Res 2022;11(2):61–72.
Collapse
Affiliation(s)
- Zhaxi Luobu
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| | - Lei Wang
- Department of Orthopedics, Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Dahai Jiang
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| | - Tao Liao
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| | - Ciren Luobu
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| | - Luosong Qunpei
- Department of Orthopedics, Lhasa People's Hospital, Lhasa City, Tibet, China
| |
Collapse
|
21
|
Hsu WB, Lin SJ, Hung JS, Chen MH, Lin CY, Hsu WH, Hsu WWR. Effect of resistance training on satellite cells in old mice - a transcriptome study : implications for sarcopenia. Bone Joint Res 2022; 11:121-133. [PMID: 35188421 PMCID: PMC8882320 DOI: 10.1302/2046-3758.112.bjr-2021-0079.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aims The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model. Methods We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics. Results After the bioinformatic analysis, the PI3K-Akt signalling pathway and the regulation of actin cytoskeleton in particular were highlighted among the top ten pathways with the most differentially expressed genes involved in the young/MID and MID+ T/MID groups. The expression of Gng5, Atf2, and Rtor in the PI3K-Akt signalling pathway was higher in the young and MID+ T groups compared with the MID group. Similarly, Limk1, Arhgef12, and Araf in the regulation of the actin cytoskeleton pathway had a similar bias. Moreover, the protein expression profiles of Atf2, Rptor, and Ccnd3 in each group were paralleled with the results of NGS. Conclusion Our results revealed that age-induced muscle loss might result from age-influenced genes that contribute to muscle development in SCs. After resistance training, age-impaired genes were reactivated, and age-induced genes were depressed. The change fold in these genes in the young/MID mice resembled those in the MID + T/MID group, suggesting that resistance training can rejuvenate the self-renewing ability of SCs by recovering age-influenced genes to prevent sarcopenia. Cite this article: Bone Joint Res 2022;11(2):121–133.
Collapse
Affiliation(s)
- Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan
| | - Shih-Jie Lin
- Department of Orthopaedic Surgery, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ji-Shiuan Hung
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Mei-Hsin Chen
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology Academia Sinica, Taipei, Taiwan
| | - Wei-Hsiu Hsu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| | - Wen-Wei Robert Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan.,Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Chakraborty S, Woldemariam NT, Visnovska T, Rise ML, Boyce D, Santander J, Andreassen R. Characterization of miRNAs in Embryonic, Larval, and Adult Lumpfish Provides a Reference miRNAome for Cyclopterus lumpus. BIOLOGY 2022; 11:biology11010130. [PMID: 35053128 PMCID: PMC8773022 DOI: 10.3390/biology11010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Lumpfish (Cyclopterus lumpus) is an emergent aquaculture species, and its miRNA repertoire is still unknown. miRNAs are critical post-transcriptional modulators of teleost gene expression. Therefore, a lumpfish reference miRNAome was characterized by small RNA sequencing and miRDeep analysis of samples from different organs and developmental stages. The resulting miRNAome, an essential reference for future expression analyses, consists of 443 unique mature miRNAs from 391 conserved and eight novel miRNA genes. Enrichment of specific miRNAs in particular organs and developmental stages indicates that some conserved lumpfish miRNAs regulate organ and developmental stage-specific functions reported in other teleosts. Abstract MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway;
| | - Matthew L. Rise
- Department of Ocean Sciences, Faculty of Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
- Correspondence: (J.S.); (R.A.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
- Correspondence: (J.S.); (R.A.)
| |
Collapse
|
23
|
Yedigaryan L, Sampaolesi M. Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells 2021; 10:cells10113035. [PMID: 34831256 PMCID: PMC8616481 DOI: 10.3390/cells10113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that are mainly involved in translational repression by binding to specific messenger RNAs. Recently, miRNAs have emerged as biomarkers, relevant for a multitude of pathophysiological conditions, and cells can selectively sort miRNAs into extracellular vesicles for paracrine and endocrine effects. In the overall context of muscle-wasting conditions, a multitude of miRNAs has been implied as being responsible for the typical dysregulation of anabolic and catabolic pathways. In general, chronic muscle disorders are associated with the main characteristic of a substantial loss in muscle mass. Muscular dystrophies (MDs) are a group of genetic diseases that cause muscle weakness and degeneration. Typically, MDs are caused by mutations in those genes responsible for upholding the integrity of muscle structure and function. Recently, the dysregulation of miRNA levels in such pathological conditions has been reported. This revelation is imperative for both MDs and other muscle-wasting conditions, such as sarcopenia and cancer cachexia. The expression levels of miRNAs have immense potential for use as potential diagnostic, prognostic and therapeutic biomarkers. Understanding the role of miRNAs in muscle-wasting conditions may lead to the development of novel strategies for the improvement of patient management.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
24
|
Circulating MicroRNAs Highly Correlate to Expression of Cartilage Genes Potentially Reflecting OA Susceptibility-Towards Identification of Applicable Early OA Biomarkers. Biomolecules 2021; 11:biom11091356. [PMID: 34572569 PMCID: PMC8468331 DOI: 10.3390/biom11091356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Objective: To identify and validate circulating micro RNAs (miRNAs) that mark gene expression changes in articular cartilage early in osteoarthritis (OA) pathophysiology process. Methods: Within the ongoing RAAK study, human preserved OA cartilage and plasma (N = 22 paired samples) was collected for RNA sequencing (respectively mRNA and miRNA). Spearman correlation was determined for 114 cartilage genes consistently and significantly differentially expressed early in osteoarthritis and 384 plasma miRNAs. Subsequently, the minimal number of circulating miRNAs serving to discriminate between progressors and non-progressors was assessed by regression analysis and area under receiver operating curves (AUC) was calculated with progression data and plasma miRNA sequencing from the GARP study (N = 71). Results: We identified strong correlations (ρ ≥ |0.7|) among expression levels of 34 unique plasma miRNAs and 21 genes, including 4 genes that correlated with multiple miRNAs. The strongest correlation was between let-7d-5p and EGFLAM (ρ = −0.75, P = 6.9 × 10−5). Regression analysis of the 34 miRNAs resulted in a set of 7 miRNAs that, when applied to the GARP study, demonstrated clinically relevant predictive value with AUC > 0.8 for OA progression over 2 years and near-clinical value for progression over 5 years- (AUC = 0.8). Conclusions: We show that plasma miRNAs levels reflect gene expression levels in cartilage and can be exploited to represent ongoing pathophysiological processes in articular cartilage. We advocate that identified signature of 7 plasma miRNAs can contribute to direct further studies toward early biomarkers predictive for progression of osteoarthritis over 2 and 5 years.
Collapse
|
25
|
Qiu Z, Ma X, Xie J, Liu Z, Zhang Y, Xia C. miR-1307-5p regulates proliferation and apoptosis of chondrocytes in osteoarthritis by specifically inhibiting transforming growth factor beta-induced gene. Am J Transl Res 2021; 13:7756-7766. [PMID: 34377252 PMCID: PMC8340226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/08/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the effect of miR-1307-5p which specifically inhibits transforming growth factor beta-induced gene (TGFBI) on the biologic behavior of osteoarthritis (OA) chondrocytes. METHODS We detected miR-1307-5p and TGFBI expression in the cartilage tissue specimens of OA patients and mice, respectively. RNA22 was applied to predict the target gene of miR-1307-5p, and we further verified the relationship by performing a dual luciferase reporter experiment. Enzyme-linked immunosorbent assay was used to measure the expression of matrix metalloproteinase inhibitor-1 (TIMP-1), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the culture medium of mouse chondrocytes. Quantitative reverse transcription-polymerase chain reaction and western blot were used to measure the expression of Bax and Bcl-2. MTT method was applied to detect the proliferation activity of chondrocytes, while flow cytometry was implemented to detect the apoptosis of chondrocytes. RESULTS The expression of miR-1307-5p in cartilage tissue specimens of OA patients was up-regulated, while TGFBI expression was down-regulated. Compared with normal mice cartilage tissue specimens, the expression of miR-1307-5p in cartilage tissue specimens of OA mouse was increased, while TGFBI expression was decreased (both P<0.05). The results of the dual luciferase reporter experiment showed that TGFBI was a target gene of miR-1307-5p. In cell experiments, compared with the normal group, TIMP-1 and Bcl-2 expression, and cell proliferation activities in all model groups were decreased. IL-1β, IL-6, TNF-α, Bax expression, and cell apoptosis rates were increased (all P<0.05). Compared with the blank group, TIMP-1 and Bcl-2 expression, and cell proliferation activities in the miR-1307-5p inhibitor group and the TGFBI group were increased, while IL-1β, IL-6, TNF-α, and Bax expression, and cell apoptosis rates were decreased (all P<0.05). The changes in all indicators in the miR-1307-5p mimic group were opposite to those of the miR-1307-5p inhibitor group (all P<0.05). There were no significant differences concerning all indicators between the blank group and the NC group, and between the blank group and the miR-1307-5p mimic + TGFBI group (all P>0.05). CONCLUSION The suppression of miR-1307-5p expression can increase TGFBI expression, promoting the proliferation of chondrocytes in OA mice, while inhibiting their apoptosis.
Collapse
Affiliation(s)
- Zhiyang Qiu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| | - Xiaowei Ma
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| | - Jian Xie
- Department of Basic Medical Teaching and Research, Liaoning Vocational College of MedicineShenyang, Liaoning Province, China
| | - Zhaofa Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| | - Yu Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| | - Chongjun Xia
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian UniversityDalian, Liaoning Province, China
| |
Collapse
|
26
|
Ju G, Zhu Y, Du T, Cao W, Lin J, Li C, Xu D, Wang Z. MiR-197 Inhibitor Loaded AbCD133@MSNs@GNR Affects the Development of Prostate Cancer Through Targeting ITGAV. Front Cell Dev Biol 2021; 9:646884. [PMID: 34195187 PMCID: PMC8238009 DOI: 10.3389/fcell.2021.646884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is one of the most severe male malignant tumors, which ranks second in mortality rate among all tumors. Traditional methods of treatment for prostate cancer produce obvious side effects and a high recurrence rate. Cancer stem cells are considered to be a group of cells that determine the proliferation, metastasis, and drug resistance of tumor. Prostate cancer therapy based on microRNAs and prostate cancer stem cells (PCSCs) has been a research hot spot in this field. Previous studies have reported that miR-197 plays an important role in the occurrence and development of prostate cancer, but the molecular mechanism of miR-197 on the development of prostate cancer has not been reported yet. In this study, we verified that miR-197 is significantly overexpressed in prostate cancer tissues and prostate cancer cells. Then, we verified that miR-197 expression affects the proliferation, invasion, and metastasis of prostate cancer cells by regulating integrin subunit alpha V (ITGAV) expression through STAT5 pathway, and the results indicated that the miR-197 inhibitor can be a prostate cancer suppressor. Then we synthesized the AbCD133@GNR@MSNs@miR-197 inhibitor drug carrier, in which 35.42 μg of the miR-197 inhibitor could be loaded in 1 mg of AbCD133@GNR@MSNs. The AbCD133@GNR@MSNs@miR-197 inhibitor demonstrated good photothermal properties and photothermal controlled-release properties. The modified CD133 antibodies on the surface of the nano drug carrier helped more drug carriers to enter the PCSCs. The pharmacodynamic effects of the AbCD133@GNR@MSNs@miR-197 inhibitor on PCSCs in vivo and in vitro were studied under near-infrared radiation. The results showed that the AbCD133@GNR@MSNs@miR-197 inhibitor prepared in this study could not only significantly suppress the development of PCSCs through ITGAV/STAT5 pathway but also significantly suppress the growth of PCSC solid tumors. In short, our study verified that miR-197 regulates the development of PCSCs through STAT5 pathway by targeting ITGAV, and the AbCD133@MSNs@GNR@miR-197 inhibitor could be a potential suppressor used in prostate cancer treatment. In short, our study found that miR-197 affected the development of prostate cancer by regulating ITGAV. The AbCD133@GNR@MSNs@miR-197 inhibitor prepared in this study could suppress the development and growth of PCSCs in vitro and in solid tumors not only by targeting the ITGAV but also through photothermal therapy. Our study not only provides a theoretical basis for the clinical treatment of prostate cancer but also provides a research scheme of drug loading and microRNA-based photothermal controlled therapy for prostate cancer.
Collapse
Affiliation(s)
- Guanqun Ju
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yingjian Zhu
- Department of Urology, Shanghai Jiangqiao Hospital, Shanghai General Hospital Jiading Branch, Shanghai, China
| | - Tao Du
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wanli Cao
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianhai Lin
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chun Li
- Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, China
| | - Dongliang Xu
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijun Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
27
|
Affiliation(s)
- Annett Eitner
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|