1
|
Hoover A, Turcotte LM, Phelan R, Barbus C, Rayannavar A, Miller BS, Reardon EE, Theis-Mahon N, MacMillan ML. Longitudinal clinical manifestations of Fanconi anemia: A systematized review. Blood Rev 2024:101225. [PMID: 39107201 DOI: 10.1016/j.blre.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Fanconi anemia (FA) is a rare and complex inherited genetic disorder characterized by impaired DNA repair mechanisms leading to genomic instability. Individuals with FA have increased susceptibility to congenital anomalies, progressive bone marrow failure, leukemia and malignant tumors, endocrinopathies and other medical issues. In recent decades, steadily improved approaches to hematopoietic cell transplantation (HCT), the only proven curative therapy for the hematologic manifestations of FA, have significantly increased the life expectancy of affected individuals, illuminating the need to understand the long-term consequences and multi-organ ramifications. Utilizing a systematized review approach with narrative synthesis of each primary issue and organ system, we shed light on the challenges and opportunities for optimizing the care and quality of life for individuals with FA and identify knowledge gaps informing future research directions.
Collapse
Affiliation(s)
- Alex Hoover
- Division of Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Lucie M Turcotte
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Phelan
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Crystal Barbus
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Arpana Rayannavar
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Bradley S Miller
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Erin E Reardon
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, USA
| | | | - Margaret L MacMillan
- Division of Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Hu L, Huang W, Liu B, Eklund EA. In Fanconi anemia, impaired accumulation of bone marrow neutrophils during emergency granulopoiesis induces hematopoietic stem cell stress. J Biol Chem 2024; 300:107548. [PMID: 38992437 PMCID: PMC11342097 DOI: 10.1016/j.jbc.2024.107548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Fanconi anemia (FA) is an inherited disorder of DNA repair due to mutation in one of 20+ interrelated genes that repair intrastrand DNA crosslinks and rescue collapsed or stalled replication forks. The most common hematologic abnormality in FA is anemia, but progression to bone marrow failure (BMF), clonal hematopoiesis, or acute myeloid leukemia may also occur. In prior studies, we found that Fanconi DNA repair is required for successful emergency granulopoiesis; the process for rapid neutrophil production during the innate immune response. Specifically, Fancc-/- mice did not develop neutrophilia in response to emergency granulopoiesis stimuli, but instead exhibited apoptosis of bone marrow hematopoietic stem cells and differentiating neutrophils. Repeated emergency granulopoiesis challenges induced BMF in most Fancc-/- mice, with acute myeloid leukemia in survivors. In contrast, we found equivalent neutrophilia during emergency granulopoiesis in Fancc-/-Tp53+/- mice and WT mice, without BMF. Since termination of emergency granulopoiesis is triggered by accumulation of bone marrow neutrophils, we hypothesize neutrophilia protects Fancc-/-Tp53+/- bone marrow from the stress of a sustained inflammation that is experienced by Fancc-/- mice. In the current work, we found that blocking neutrophil accumulation during emergency granulopoiesis led to BMF in Fancc-/-Tp53+/- mice, consistent with this hypothesis. Blocking neutrophilia during emergency granulopoiesis in Fancc-/-Tp53+/- mice (but not WT) impaired cell cycle checkpoint activity, also found in Fancc-/- mice. Mechanisms for loss of cell cycle checkpoints during infectious disease challenges may define molecular markers of FA progression, or suggest therapeutic targets for bone marrow protection in this disorder.
Collapse
Affiliation(s)
- Liping Hu
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Weiqi Huang
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Bin Liu
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Elizabeth A Eklund
- Division of Hematology-Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
3
|
Borges MLRDR, Souza JLC, Rodrigues LH, Cornélio MTMN, Anjos ACD, Santos N, Salles TDJM. Clinical and cytogenetic profile of Fanconi anemia diagnosed after implementation of mitomycin C cytogenetic test in the state of Pernambuco, Brazil. Hematol Transfus Cell Ther 2024; 46:113-118. [PMID: 36759292 DOI: 10.1016/j.htct.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Fanconi anemia (FA) is a rare autosomal recessive disease characterized by chromosomal instability and increased predisposition to malignancy. The diagnosis of FA requires clinical evaluation, confirmation of chromosomal fragility and/or analysis of genetic mutations. Therefore, this study aims to identify the clinical profile of patients with FA in the state of Pernambuco, Brazil. METHOD We analyzed 100 individuals referred from the major hematology and bone marrow (BM) transplant centers in the state of Pernambuco, Brazil, between the years 2018 and 2022. The diagnosis of FA was performed using the mitomycin C chromosomal fragility test, clinical data and classical and molecular cytogenetic analyses. RESULTS We enrolled a total of 16 patients with FA to comprise this study. Most of these individuals (87.5%) came from the Agreste and Sertão regions of Pernambuco. We observed a slight female prevalence of FA (1.3:1). The primary clinical and laboratory findings were café au lait spots (62.5%) and bone abnormalities (53%, mainly thumb deformities [40%]). We performed BM cytogenetic analysis for eight patients - seven showed no chromosomal abnormalities and one presented the karyotype 47,XY,+21 [15]. CONCLUSIONS Our results are important to promote public health measures for the early diagnosis of FA, as well as to foster the engagement of a multidisciplinary group in the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Neide Santos
- Universidade Federal de Pernambuco (UFP), Recife, PE, Brazil
| | | |
Collapse
|
4
|
Trottier AM, Feurstein S, Godley LA. Germline predisposition to myeloid neoplasms: Characteristics and management of high versus variable penetrance disorders. Best Pract Res Clin Haematol 2024; 37:101537. [PMID: 38490765 DOI: 10.1016/j.beha.2024.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Myeloid neoplasms with germline predisposition have been recognized increasingly over the past decade with numerous newly described disorders. Penetrance, age of onset, phenotypic heterogeneity, and somatic driver events differ widely among these conditions and sometimes even within family members with the same variant, making risk assessment and counseling of these individuals inherently difficult. In this review, we will shed light on high malignant penetrance (e.g., CEBPA, GATA2, SAMD9/SAMD9L, and TP53) versus variable malignant penetrance syndromes (e.g., ANKRD26, DDX41, ETV6, RUNX1, and various bone marrow failure syndromes) and their clinical features, such as variant type and location, course of disease, and prognostic markers. We further discuss the recommended management of these syndromes based on penetrance with an emphasis on somatic aberrations consistent with disease progression/transformation and suggested timing of allogeneic hematopoietic stem cell transplant. This review will thereby provide important data that can help to individualize and improve the management for these patients.
Collapse
Affiliation(s)
- Amy M Trottier
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Elghetany MT, Patnaik MM, Khoury JD. Myelodysplastic neoplasms evolving from inherited bone marrow failure syndromes / germline predisposition syndromes: Back under the microscope. Leuk Res 2024; 137:107441. [PMID: 38301422 DOI: 10.1016/j.leukres.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Inherited bone marrow failure syndromes and germline predisposition syndromes (IBMFS/GPS) are associated with increased risk for hematologic malignancies, particularly myeloid neoplasms, such as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). The diagnosis of MDS in these syndromes poses difficulty due to frequent bone marrow hypocellularity and the presence of some degree of dysplastic features related to the underlying germline defect causing abnormal maturation of one or more cell lines. Yet, the diagnosis of MDS is usually associated with a worse outcome in several IBMFS/GPS. Criteria for the diagnosis of MDS in IBMFS/GPS have not been standardized with some authors suggesting a mixture of morphologic, cytogenetic, and genetic criteria. This review highlights these challenges and suggests a more standardized approach to nomenclature and diagnostic criteria.
Collapse
Affiliation(s)
- M Tarek Elghetany
- Department of Pathology & Immunology and Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph D Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
6
|
Schratz KE. Clonal evolution in inherited marrow failure syndromes predicts disease progression. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:125-134. [PMID: 38066914 PMCID: PMC10727088 DOI: 10.1182/hematology.2023000469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Progression to myelodysplastic syndromes (MDS) and acute myeloid leukemia is one of the most serious complications of the inherited bone marrow failure and MDS-predisposition syndromes. Given the lack of predictive markers, this risk can also be a source of great uncertainty and anxiety to patients and their providers alike. Recent data show that some acquired mutations may provide a window into this risk. While maladaptive mechanisms, such as monosomy 7, are associated with a high risk of leukemogenesis, mutations that offset the inherited defect (known as somatic genetic rescue) may attenuate this risk. Somatic mutations that are shared with age-acquired clonal hematopoiesis mutations also show syndrome-specific patterns that may provide additional data as to disease risk. This review focuses on recent progress in this area with an emphasis on the biological underpinnings and interpretation of these patterns for patient care decisions.
Collapse
Affiliation(s)
- Kristen E. Schratz
- Department of Oncology
- Telomere Center at Johns Hopkins, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Li J, Bledsoe JR. Inherited bone marrow failure syndromes and germline predisposition to myeloid neoplasia: A practical approach for the pathologist. Semin Diagn Pathol 2023; 40:429-442. [PMID: 37507252 DOI: 10.1053/j.semdp.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The diagnostic work up and surveillance of germline disorders of bone marrow failure and predisposition to myeloid malignancy is complex and involves correlation between clinical findings, laboratory and genetic studies, and bone marrow histopathology. The rarity of these disorders and the overlap of clinical and pathologic features between primary and secondary causes of bone marrow failure, acquired aplastic anemia, and myelodysplastic syndrome may result in diagnostic uncertainty. With an emphasis on the pathologist's perspective, we review diagnostically useful features of germline disorders including Fanconi anemia, Shwachman-Diamond syndrome, telomere biology disorders, severe congenital neutropenia, GATA2 deficiency, SAMD9/SAMD9L diseases, Diamond-Blackfan anemia, and acquired aplastic anemia. We discuss the distinction between baseline morphologic and genetic findings of these disorders and features that raise concern for the development of myelodysplastic syndrome.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States.
| |
Collapse
|
8
|
Lux S, Milsom MD. EVI1-mediated Programming of Normal and Malignant Hematopoiesis. Hemasphere 2023; 7:e959. [PMID: 37810550 PMCID: PMC10553128 DOI: 10.1097/hs9.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1), encoded at the MECOM locus, is an oncogenic zinc finger transcription factor with diverse roles in normal and malignant cells, most extensively studied in the context of hematopoiesis. EVI1 interacts with other transcription factors in a context-dependent manner and regulates transcription and chromatin remodeling, thereby influencing the proliferation, differentiation, and survival of cells. Interestingly, it can act both as a transcriptional activator as well as a transcriptional repressor. EVI1 is expressed, and fulfills important functions, during the development of different tissues, including the nervous system and hematopoiesis, demonstrating a rigid spatial and temporal expression pattern. However, EVI1 is regularly overexpressed in a variety of cancer entities, including epithelial cancers such as ovarian and pancreatic cancer, as well as in hematologic malignancies like myeloid leukemias. Importantly, EVI1 overexpression is generally associated with a very poor clinical outcome and therapy-resistance. Thus, EVI1 is an interesting candidate to study to improve the prognosis and treatment of high-risk patients with "EVI1high" hematopoietic malignancies.
Collapse
Affiliation(s)
- Susanne Lux
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D. Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
9
|
Cuccuini W, Collonge-Rame MA, Auger N, Douet-Guilbert N, Coster L, Lafage-Pochitaloff M. Cytogenetics in the management of bone marrow failure syndromes: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103423. [PMID: 38016422 DOI: 10.1016/j.retram.2023.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Bone marrow failure syndromes are rare disorders characterized by bone marrow hypocellularity and resultant peripheral cytopenias. The most frequent form is acquired, so-called aplastic anemia or idiopathic aplastic anemia, an auto-immune disorder frequently associated with paroxysmal nocturnal hemoglobinuria, whereas inherited bone marrow failure syndromes are related to pathogenic germline variants. Among newly identified germline variants, GATA2 deficiency and SAMD9/9L syndromes have a special significance. Other germline variants impacting biological processes, such as DNA repair, telomere biology, and ribosome biogenesis, may cause major syndromes including Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome. Bone marrow failure syndromes are at risk of secondary progression towards myeloid neoplasms in the form of myelodysplastic neoplasms or acute myeloid leukemia. Acquired clonal cytogenetic abnormalities may be present before or at the onset of progression; some have prognostic value and/or represent somatic rescue mechanisms in inherited syndromes. On the other hand, the differential diagnosis between aplastic anemia and hypoplastic myelodysplastic neoplasm remains challenging. Here we discuss the value of cytogenetic abnormalities in bone marrow failure syndromes and propose recommendations for cytogenetic diagnosis and follow-up.
Collapse
Affiliation(s)
- Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 75475, Paris Cedex 10, France.
| | - Marie-Agnes Collonge-Rame
- Oncobiologie Génétique Bioinformatique UF Cytogénétique et Génétique Moléculaire, CHU de Besançon, Hôpital Minjoz, 25030, Besançon, France
| | - Nathalie Auger
- Laboratoire de Cytogénétique/Génétique des Tumeurs, Gustave Roussy, 94805, Villejuif, France
| | - Nathalie Douet-Guilbert
- Laboratoire de Génétique Chromosomique, CHU Brest, Hôpital Morvan, 29609, Brest Cedex, France
| | - Lucie Coster
- Laboratoire d'Hématologie, Secteur de Cytogénétique, Institut Universitaire de Cancérologie de Toulouse, CHU de Toulouse, 31059, Toulouse Cedex 9, France
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, CHU Timone, Assistance Publique Hôpitaux de Marseille (APHM), Aix Marseille Université, 13005, Marseille, France
| |
Collapse
|
10
|
Marion W, Koppe T, Chen CC, Wang D, Frenis K, Fierstein S, Sensharma P, Aumais O, Peters M, Ruiz-Torres S, Chihanga T, Boettcher S, Shimamura A, Bauer DE, Schlaeger T, Wells SI, Ebert BL, Starczynowski D, da Rocha EL, Rowe RG. RUNX1 mutations mitigate quiescence to promote transformation of hematopoietic progenitors in Fanconi anemia. Leukemia 2023; 37:1698-1708. [PMID: 37391485 PMCID: PMC11009868 DOI: 10.1038/s41375-023-01945-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Many inherited bone marrow failure syndromes (IBMFSs) present a high risk of transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). During transformation of IBMFSs, hematopoietic stem and progenitor cells (HSPCs) with poor fitness gain ectopic, dysregulated self-renewal secondary to somatic mutations via undefined mechanisms. Here, in the context of the prototypical IBMFS Fanconi anemia (FA), we performed multiplexed gene editing of mutational hotspots in MDS-associated genes in human induced pluripotent stem cells (iPSCs) followed by hematopoietic differentiation. We observed aberrant self-renewal and impaired differentiation of HSPCs with enrichment of RUNX1 insertions and deletions (indels), generating a model of IBMFS-associated MDS. We observed that compared to the failure state, FA MDS cells show mutant RUNX1-mediated blunting of the G1/S cell cycle checkpoint that is normally activated in FA in response to DNA damage. RUNX1 indels also lead to activation of innate immune signaling, which stabilizes the homologous recombination (HR) effector BRCA1, and this pathway can be targeted to abrogate viability and restore sensitivity to genotoxins in FA MDS. Together, these studies develop a paradigm for modeling clonal evolution in IBMFSs, provide basic understanding of the pathogenesis of MDS, and uncover a therapeutic target in FA-associated MDS.
Collapse
Affiliation(s)
- William Marion
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Tiago Koppe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dahai Wang
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sara Fierstein
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Prerana Sensharma
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Olivia Aumais
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Michael Peters
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Steffen Boettcher
- Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Akiko Shimamura
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Susanne I Wells
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin L Ebert
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Daniel Starczynowski
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | | | - R Grant Rowe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA.
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Liu YC, Geyer JT. Pediatric Hematopathology in the Era of Advanced Molecular Diagnostics: What We Know and How We Can Apply the Updated Classifications. Pathobiology 2023; 91:30-44. [PMID: 37311434 PMCID: PMC10857803 DOI: 10.1159/000531480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Pediatric hematologic malignancies often show genetic features distinct from their adult counterparts, which reflect the differences in their pathogenesis. Advances in the molecular diagnostics including the widespread use of next-generation sequencing technology have revolutionized the diagnostic workup for hematologic disorders and led to the identification of new disease subgroups as well as prognostic information that impacts the clinical treatment. The increasing recognition of the importance of germline predisposition in various hematologic malignancies also shapes the disease models and management. Although germline predisposition variants can occur in patients with myelodysplastic syndrome/neoplasm (MDS) of all ages, the frequency is highest in the pediatric patient population. Therefore, evaluation for germline predisposition in the pediatric group can have significant clinical impact. This review discusses the recent advances in juvenile myelomonocytic leukemia, pediatric acute myeloid leukemia, B-lymphoblastic leukemia/lymphoma, and pediatric MDS. This review also includes a brief discussion of the updated classifications from the International Consensus Classification (ICC) and the 5th edition World Health Organization (WHO) classification regarding these disease entities.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Sebert M, Gachet S, Leblanc T, Rousseau A, Bluteau O, Kim R, Ben Abdelali R, Sicre de Fontbrune F, Maillard L, Fedronie C, Murigneux V, Bellenger L, Naouar N, Quentin S, Hernandez L, Vasquez N, Da Costa M, Prata PH, Larcher L, de Tersant M, Duchmann M, Raimbault A, Trimoreau F, Fenneteau O, Cuccuini W, Gachard N, Auger N, Tueur G, Blanluet M, Gazin C, Souyri M, Langa Vives F, Mendez-Bermudez A, Lapillonne H, Lengline E, Raffoux E, Fenaux P, Adès L, Forcade E, Jubert C, Domenech C, Strullu M, Bruno B, Buchbinder N, Thomas C, Petit A, Leverger G, Michel G, Cavazzana M, Gluckman E, Bertrand Y, Boissel N, Baruchel A, Dalle JH, Clappier E, Gilson E, Deriano L, Chevret S, Sigaux F, Socié G, Stoppa-Lyonnet D, de Thé H, Antoniewski C, Bluteau D, Peffault de Latour R, Soulier J. Clonal hematopoiesis driven by chromosome 1q/MDM4 trisomy defines a canonical route toward leukemia in Fanconi anemia. Cell Stem Cell 2023; 30:153-170.e9. [PMID: 36736290 DOI: 10.1016/j.stem.2023.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Fanconi anemia (FA) patients experience chromosome instability, yielding hematopoietic stem/progenitor cell (HSPC) exhaustion and predisposition to poor-prognosis myeloid leukemia. Based on a longitudinal cohort of 335 patients, we performed clinical, genomic, and functional studies in 62 patients with clonal evolution. We found a unique pattern of somatic structural variants and mutations that shares features of BRCA-related cancers, the FA-hallmark being unbalanced, microhomology-mediated translocations driving copy-number alterations. Half the patients developed chromosome 1q gain, driving clonal hematopoiesis through MDM4 trisomy downmodulating p53 signaling later followed by secondary acute myeloid lukemia genomic alterations. Functionally, MDM4 triplication conferred greater fitness to murine and human primary FA HSPCs, rescued inflammation-mediated bone marrow failure, and drove clonal dominance in FA mouse models, while targeting MDM4 impaired leukemia cells in vitro and in vivo. Our results identify a linear route toward secondary leukemogenesis whereby early MDM4-driven downregulation of basal p53 activation plays a pivotal role, opening monitoring and therapeutic prospects.
Collapse
Affiliation(s)
- Marie Sebert
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Stéphanie Gachet
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Thierry Leblanc
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Alix Rousseau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France
| | - Olivier Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Raouf Ben Abdelali
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Flore Sicre de Fontbrune
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Loïc Maillard
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Carèle Fedronie
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Naira Naouar
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Samuel Quentin
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Lucie Hernandez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Nadia Vasquez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Mélanie Da Costa
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Pedro H Prata
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lise Larcher
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Marie de Tersant
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Matthieu Duchmann
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Anna Raimbault
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Franck Trimoreau
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | | | - Wendy Cuccuini
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Nathalie Gachard
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | - Nathalie Auger
- Département de Biologie et Pathologie Médicales, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Giulia Tueur
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Maud Blanluet
- Department of Genetics, Institut Curie, Université de Paris, INSERM U830, Paris, France
| | - Claude Gazin
- INSERM U944/CNRS UMR7212, Paris, France; Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Michèle Souyri
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM UMR S1131, Hôpital Saint Louis, Paris, France
| | | | - Aaron Mendez-Bermudez
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | | | - Etienne Lengline
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Emmanuel Raffoux
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Pierre Fenaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lionel Adès
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Edouard Forcade
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Charlotte Jubert
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Carine Domenech
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Marion Strullu
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France
| | | | - Nimrod Buchbinder
- Centre Pédiatrique de Transplantation de Cellules Souches Hématopoïétiques, CHU de Rouen, Rouen, France
| | - Caroline Thomas
- Service d'Oncologie-Hématologie et Immunologie Pédiatrique, CHU de Nantes, Nantes, France
| | - Arnaud Petit
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Guy Leverger
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Gérard Michel
- Timone Enfants Hospital, Department of Pediatric Hematology and Oncology, Aix-Marseille University, EA 3279, Marseille, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, APHP Centre, Biotherapy Clinical Investigation Center, Inserm U1416, University of Paris, Imagine Institute, Paris, France
| | - Eliane Gluckman
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Eurocord, Department of Hematology, Saint-Louis Hospital, Paris, France
| | - Yves Bertrand
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Nicolas Boissel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France
| | - André Baruchel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean-Hugues Dalle
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Sylvie Chevret
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Division of Biostatistics, Saint-Louis Hospital, APHP, Paris, France
| | - François Sigaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Gérard Socié
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM UMR-976, Saint-Louis Hospital, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | | | - Hugues de Thé
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Collège de France, Paris, France
| | - Christophe Antoniewski
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Dominique Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; EPHE, PSL University, Paris, France.
| | - Régis Peffault de Latour
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean Soulier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France.
| |
Collapse
|
14
|
Chang L, Zhang L, An W, Wan Y, Cai Y, Lan Y, Zhang A, Liu L, Ruan M, Liu X, Guo Y, Yang W, Chen X, Chen Y, Wang S, Zou Y, Yuan W, Zhu X. Phenotypic and genotypic correlation evaluation of 148 pediatric patients with Fanconi anemia in a Chinese rare disease cohort. Clin Chim Acta 2023; 539:41-49. [PMID: 36463940 DOI: 10.1016/j.cca.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Fanconi anemia (FA) is a rare autosomal recessive, X-linked or autosomal dominant disease. Few large-scale FA investigations of rare disease cohorts have been conducted in China. METHODS We enrolled 148 patients diagnosed with FA according to evidence from the clinical phenotype, family history, and a set of laboratory tests. Next, the clinical manifestations and correlation between the genotype and phenotype of FA pediatric cases were investigated. RESULTS The most common FA subtype in our cohort was FA-A (51.4 %), followed by FA-D2 and FA-P. Finger (26 %) and skin (25 %) deformities were the most common malformations. Based on family history, blood system diseases (51 %) had the highest incidence rate, followed by digestive system tumours. A set of new or prognosis-related mutation sites was identified. For example, c.2941 T > G was a new most common missense mutation site for FANCA. FANCP gene mutation sites were mainly concentrated in exons 12/14/15. The mutations of FANCI/FANCD2 were mainly located at the α helix and β corners of the protein complex. FA-A/D1 patients with splicing or deletion mutations showed more severe disease than those with missense mutations. Chromosome 1/3/7/8 abnormalities were closely linked to the progression of FA to leukemia. CONCLUSION Our study investigated the clinical features and genotype/phenotype correlation of 148 Chinese pediatric FA patients, providing new insight into FA.
Collapse
Affiliation(s)
- Lixian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenbin An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuli Cai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aoli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lipeng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Ruan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuchun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
15
|
Baranwal A, Hahn CN, Shah MV, Hiwase DK. Role of Germline Predisposition to Therapy-Related Myeloid Neoplasms. Curr Hematol Malig Rep 2022; 17:254-265. [PMID: 35986863 DOI: 10.1007/s11899-022-00676-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Therapy-related myeloid neoplasms (t-MNs) are aggressive leukemias that develop following exposure to DNA-damaging agents. A subset of patients developing t-MN may have an inherited susceptibility to develop myeloid neoplasia. Herein, we review studies reporting t-MN and their association with a germline or inherited predisposition. RECENT FINDINGS Emerging evidence suggests that development of t-MN is the result of complex interactions including generation of somatic variants in hematopoietic stem cells and/or clonal selection pressure exerted by the DNA-damaging agents, and immune evasion on top of any inherited genetic susceptibility. Conventionally, alkylating agents, topoisomerase inhibitors, and radiation have been associated with t-MN. Recently, newer modalities including poly (ADP-ribose) polymerase inhibitors (PARPi) and peptide receptor radionucleotide therapy (PRRT) are associated with t-MN. At the same time, the role of pathogenic germline variants (PGVs) in genes such as BRCA1/2, BARD1, or TP53 on the risk of t-MN is being explored. Moreover, studies have shown that while cytotoxic therapy increases the risk of developing myeloid neoplasia, it may be exposing the vulnerability of an underlying germline predisposition. t-MN remains a disease with poor prognosis. Studies are needed to better define an individual's inherited neoplastic susceptibility which will help predict the risk of myeloid neoplasia in the future. Understanding the genes driving the inherited neoplastic susceptibility will lead to better patient- and cancer-specific management including choice of therapeutic regimen to prevent, or at least delay, development of myeloid neoplasia after treatment of a prior malignancy.
Collapse
Affiliation(s)
- Anmol Baranwal
- Division of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55906, USA
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Mithun Vinod Shah
- Division of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55906, USA.
| | - Devendra K Hiwase
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
16
|
Cytogenetics in Fanconi Anemia: The Importance of Follow-Up and the Search for New Biomarkers of Genomic Instability. Int J Mol Sci 2022; 23:ijms232214119. [PMID: 36430597 PMCID: PMC9699043 DOI: 10.3390/ijms232214119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fanconi Anemia (FA) is a disease characterized by genomic instability, increased sensitivity to DNA cross-linking agents, and the presence of clonal chromosomal abnormalities. This genomic instability can compromise the bone marrow (BM) and confer a high cancer risk to the patients, particularly in the development of Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). The diagnosis of FA patients is complex and cannot be based only on clinical features at presentation. The gold standard diagnostic assay for these patients is cytogenetic analysis, revealing chromosomal breaks induced by DNA cross-linking agents. Clonal chromosome abnormalities, such as the ones involving chromosomes 1q, 3q, and 7, are also common features in FA patients and are associated with progressive BM failure and/or a pre-leukemia condition. In this review, we discuss the cytogenetic methods and their application in diagnosis, stratification of the patients into distinct prognostic groups, and the clinical follow-up of FA patients. These methods have been invaluable for the understanding of FA pathogenesis and identifying novel disease biomarkers. Additional evidence is required to determine the association of these biomarkers with prognosis and cancer risk, and their potential as druggable targets for FA therapy.
Collapse
|
17
|
Polyclonal evolution of Fanconi anemia to MDS and AML revealed at single cell resolution. Exp Hematol Oncol 2022; 11:64. [PMID: 36167633 PMCID: PMC9513989 DOI: 10.1186/s40164-022-00319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background Fanconi anemia (FA) is a rare disease of bone marrow failure. FA patients are prone to develop myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, the molecular clonal evolution of the progression from FA to MDS/AML remains elusive. Methods Herein, we performed a comprehensive genomic analysis using an FA patient (P1001) sample that transformed to MDS and subsequently AML, together with other three FA patient samples at the MDS stage. Results Our finding showed the existence of polyclonal pattern in these cases at MDS stage. The clonal evolution analysis of FA case (P1001) showed the mutations of UBASH3A, SF3B1, RUNX1 and ASXL1 gradually appeared at the later stage of MDS, while the IDH2 alteration become the dominant clone at the leukemia stage. Moreover, single-cell sequencing analyses further demonstrated a polyclonal pattern was present at either MDS or AML stages, whereas IDH2 mutated cell clones appeared only at the leukemia stage. Conclusions We thus propose a clonal evolution model from FA to MDS and AML for this patient. The results of our study on the clonal evolution and mutated genes of the progression of FA to AML are conducive to understanding the progression of the disease that still perplexes us. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00319-5.
Collapse
|
18
|
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022; 36:1703-1719. [PMID: 35732831 PMCID: PMC9252913 DOI: 10.1038/s41375-022-01613-1] [Citation(s) in RCA: 1472] [Impact Index Per Article: 736.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022]
Abstract
The upcoming 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid Tumours is part of an effort to hierarchically catalogue human cancers arising in various organ systems within a single relational database. This paper summarizes the new WHO classification scheme for myeloid and histiocytic/dendritic neoplasms and provides an overview of the principles and rationale underpinning changes from the prior edition. The definition and diagnosis of disease types continues to be based on multiple clinicopathologic parameters, but with refinement of diagnostic criteria and emphasis on therapeutically and/or prognostically actionable biomarkers. While a genetic basis for defining diseases is sought where possible, the classification strives to keep practical worldwide applicability in perspective. The result is an enhanced, contemporary, evidence-based classification of myeloid and histiocytic/dendritic neoplasms, rooted in molecular biology and an organizational structure that permits future scalability as new discoveries continue to inexorably inform future editions.
Collapse
|
19
|
Hasan S, Hu L, Williams O, Eklund EA. Ruxolitinib ameliorates progressive anemia and improves survival during episodes of emergency granulopoiesis in Fanconi C−/− mice. Exp Hematol 2022; 109:55-67.e2. [PMID: 35278531 PMCID: PMC9064927 DOI: 10.1016/j.exphem.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022]
Abstract
Fanconi anemia (FA) is an inherited disorder of DNA repair with hematologic manifestations that range from anemia to bone marrow failure to acute myeloid leukemia. In a murine model of FA (Fancc-/- mice), we found bone marrow failure was accelerated by repeated attempts to induce emergency (stress) granulopoiesis, the process for granulocyte production during the innate immune response. Fancc-/- mice exhibited an impaired granulocytosis response and died with profound anemia during repeated challenge. In the current study, we found erythropoiesis and serum erythropoietin decreased in Fancc-/- and wild-type (Wt) mice as emergency granulopoiesis peaked. Serum erythropoietin returned to baseline during steady-state resumption, and compensatory proliferation of erythroid progenitors was associated with DNA damage and apoptosis in Fancc-/- mice, but not Wt mice. The erythropoietin receptor activates Janus kinase 2 (Jak2), and we found treatment of Fancc-/- mice with ruxolitinib (Jak1/2-inhibitor) decreased anemia, enhanced granulocytosis, delayed clonal progression and prolonged survival during repeated emergency granulopoiesis episodes. This was associated with a decrease in DNA damage and apoptosis in Fancc-/- erythroid progenitors during this process. Transcriptome analysis of these cells identified enhanced activity of pathways for metabolism of reactive oxygen species, and decreased apoptosis- and autophagy-related pathways, as major ruxolitinib-effects in Fancc-/- mice. In contrast, ruxolitinib influenced primarily pathways involved in proliferation and differentiation in Wt mice. Ruxolitinib is approved for treatment of myeloproliferative disorders and graft-versus-host disease, suggesting the possibility of translational use as a bone marrow protectant in FA.
Collapse
Affiliation(s)
- Shirin Hasan
- Department of Medicine, Northwestern University, Chicago, IL
| | - Liping Hu
- Department of Medicine, Northwestern University, Chicago, IL
| | | | - Elizabeth A Eklund
- Department of Medicine, Northwestern University, Chicago, IL; Jesse Brown VA Medical Center, Chicago, IL.
| |
Collapse
|
20
|
Kiumarsi A, Mousavi SA, Kasaeian A, Rostami T, Rad S, Ghavamzadeh A, Mousavi SA. Radiation-free Reduced-intensity Hematopoietic Stem Cell Transplantation with In-Vivo T-cell Depletion from Matched Related and Unrelated Donors for Fanconi Anemia: Prognostic Factor Analysis. Exp Hematol 2022; 109:27-34. [DOI: 10.1016/j.exphem.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
|
21
|
Avagyan S, Shimamura A. Lessons From Pediatric MDS: Approaches to Germline Predisposition to Hematologic Malignancies. Front Oncol 2022; 12:813149. [PMID: 35356204 PMCID: PMC8959480 DOI: 10.3389/fonc.2022.813149] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric myelodysplastic syndromes (MDS) often raise concern for an underlying germline predisposition to hematologic malignancies, referred to as germline predisposition herein. With the availability of genetic testing, it is now clear that syndromic features may be lacking in patients with germline predisposition. Many genetic lesions underlying germline predisposition may also be mutated somatically in de novo MDS and leukemias, making it critical to distinguish their germline origin. The verification of a suspected germline predisposition informs therapeutic considerations, guides monitoring pre- and post-treatment, and allows for family counseling. Presentation of MDS due to germline predisposition is not limited to children and spans a wide age range. In fact, the risk of MDS may increase with age in many germline predisposition conditions and can present in adults who lack classical stigmata in their childhood. Furthermore, germline predisposition associated with DDX41 mutations presents with older adult-onset MDS. Although a higher proportion of pediatric patients with MDS will have a germline predisposition, the greater number of MDS diagnoses in adult patients may result in a larger overall number of those with an underlying germline predisposition. In this review, we present a framework for the evaluation of germline predisposition to MDS across all ages. We discuss characteristics of personal and family history, clinical exam and laboratory findings, and integration of genetic sequencing results to assist in the diagnostic evaluation. We address the implications of a diagnosis of germline predisposition for the individual, for their care after MDS therapy, and for family members. Studies on MDS with germline predisposition have provided unique insights into the pathogenesis of hematologic malignancies and mechanisms of somatic genetic rescue vs. disease progression. Increasing recognition in adult patients will inform medical management and may provide potential opportunities for the prevention or interception of malignancy.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Choijilsuren HB, Park Y, Jung M. Mechanisms of somatic transformation in inherited bone marrow failure syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:390-398. [PMID: 34889377 PMCID: PMC8791168 DOI: 10.1182/hematology.2021000271] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inherited bone marrow failure syndromes (IBMFS) cause hematopoietic stem progenitor cell (HSPC) failure due to germline mutations. Germline mutations influence the number and fitness of HSPC by various mechanisms, for example, abnormal ribosome biogenesis in Shwachman-Diamond syndrome and Diamond-Blackfan anemia, unresolved DNA cross-links in Fanconi anemia, neutrophil maturation arrest in severe congenital neutropenia, and telomere shortening in short telomere syndrome. To compensate for HSPC attrition, HSPCs are under increased replication stress to meet the need for mature blood cells. Somatic alterations that provide full or partial recovery of functional deficit implicated in IBMFS can confer a growth advantage. This review discusses results of recent genomic studies and illustrates our new understanding of mechanisms of clonal evolution in IBMFS.
Collapse
Affiliation(s)
- Haruna Batzorig Choijilsuren
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Molecular and Cellular Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Yeji Park
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Moonjung Jung
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
23
|
Safavi M, Vasei M. der(1)t(1;1)(p36;q10) as a Rare Variant of 1q Gain in Fanconi Anemia-Associated Myelodysplastic Syndrome. Ann Lab Med 2021; 41:240-242. [PMID: 33063687 PMCID: PMC7591286 DOI: 10.3343/alm.2021.41.2.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/16/2020] [Accepted: 09/19/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Moeinadin Safavi
- Molecular Pathology and Cytogenetics Section, Pathology Department, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vasei
- Molecular Pathology and Cytogenetics Section, Pathology Department, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Thomas ME, Abdelhamed S, Hiltenbrand R, Schwartz JR, Sakurada SM, Walsh M, Song G, Ma J, Pruett-Miller SM, Klco JM. Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells. Leukemia 2021; 35:3232-3244. [PMID: 33731850 PMCID: PMC8446103 DOI: 10.1038/s41375-021-01212-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Pediatric myelodysplastic syndromes (MDS) are a heterogeneous disease group associated with impaired hematopoiesis, bone marrow hypocellularity, and frequently have deletions involving chromosome 7 (monosomy 7). We and others recently identified heterozygous germline mutations in SAMD9 and SAMD9L in children with monosomy 7 and MDS. We previously demonstrated an antiproliferative effect of these gene products in non-hematopoietic cells, which was exacerbated by their patient-associated mutations. Here, we used a lentiviral overexpression approach to assess the functional impact and underlying cellular processes of wild-type and mutant SAMD9 or SAMD9L in primary mouse or human hematopoietic stem and progenitor cells (HSPC). Using a combination of protein interactome analyses, transcriptional profiling, and functional validation, we show that SAMD9 and SAMD9L are multifunctional proteins that cause profound alterations in cell cycle, cell proliferation, and protein translation in HSPCs. Importantly, our molecular and functional studies also demonstrated that expression of these genes and their mutations leads to a cellular environment that promotes DNA damage repair defects and ultimately apoptosis in hematopoietic cells. This study provides novel functional insights into SAMD9 and SAMD9L and how their mutations can potentially alter hematopoietic function and lead to bone marrow hypocellularity, a hallmark of pediatric MDS.
Collapse
Affiliation(s)
- Melvin E Thomas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason R Schwartz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sadie Miki Sakurada
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
Hashemi E, Bjorgaard S, Wang D, Uyemura B, Riese M, Thakar MS, Malarkannan S. NK Cell Development and Function in Patients with Fanconi Anemia. Crit Rev Immunol 2021; 41:35-44. [PMID: 34348001 PMCID: PMC11536512 DOI: 10.1615/critrevimmunol.2021037644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fanconi anemia (FA) is an inherited disorder characterized by diverse congenital malformations, progressive pancytopenia, and predisposition to hematological malignancies and solid tumors. The role of the Fanconi anemia pathway in DNA repair mechanisms and genome instability is well studied. However, the consequences of inherited mutations in genes encoding the FA proteins and the acquired mutations due to impaired DNA repair complex in immune cells are far from understood. Patients with FA show bone marrow failure (BMF) and have a higher risk of developing myelodysplasia (MDS) or acute myeloid leukemia (AML) which are directly related to having chromosomal instability in hematopoietic stem cells and their subsequent progeny. However, immune dysregulation can also be seen in FA. As mature descendants of the common lymphoid progenitor line, NK cells taken from FA patients are dysfunctional in both NK cell-mediated cytotoxicity and cytokine production. The molecular bases for these defects are yet to be determined. However, recent studies have provided directions to define the cause and effect of inherited and acquired mutations in FA patients. Here, we summarize the recent studies in the hematopoietic dysfunction, focusing on the impairment in the development and functions of NK cells in FA patients, and discuss the possible mechanisms and future directions.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Stacey Bjorgaard
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bradley Uyemura
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Matthew Riese
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Monica S. Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
26
|
García-de-Teresa B, Rodríguez A, Frias S. Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences. Genes (Basel) 2020; 11:E1528. [PMID: 33371494 PMCID: PMC7767525 DOI: 10.3390/genes11121528] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Fanconi anemia (FA), a chromosomal instability syndrome, is caused by inherited pathogenic variants in any of 22 FANC genes, which cooperate in the FA/BRCA pathway. This pathway regulates the repair of DNA interstrand crosslinks (ICLs) through homologous recombination. In FA proper repair of ICLs is impaired and accumulation of toxic DNA double strand breaks occurs. To repair this type of DNA damage, FA cells activate alternative error-prone DNA repair pathways, which may lead to the formation of gross structural chromosome aberrations of which radial figures are the hallmark of FA, and their segregation during cell division are the origin of subsequent aberrations such as translocations, dicentrics and acentric fragments. The deficiency in DNA repair has pleiotropic consequences in the phenotype of patients with FA, including developmental alterations, bone marrow failure and an extreme risk to develop cancer. The mechanisms leading to the physical abnormalities during embryonic development have not been clearly elucidated, however FA has features of premature aging with chronic inflammation mediated by pro-inflammatory cytokines, which results in tissue attrition, selection of malignant clones and cancer onset. Moreover, chromosomal instability and cell death are not exclusive of the somatic compartment, they also affect germinal cells, as evidenced by the infertility observed in patients with FA.
Collapse
Affiliation(s)
- Benilde García-de-Teresa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alfredo Rodríguez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
27
|
Lutzmann M, Bernex F, da Costa de Jesus C, Hodroj D, Marty C, Plo I, Vainchenker W, Tosolini M, Forichon L, Bret C, Queille S, Marchive C, Hoffmann JS, Méchali M. MCM8- and MCM9 Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. Cell Rep 2020; 28:2851-2865.e4. [PMID: 31509747 DOI: 10.1016/j.celrep.2019.07.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/26/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoiesis is particularly sensitive to DNA damage. Myeloid tumor incidence increases in patients with DNA repair defects and after chemotherapy. It is not known why hematopoietic cells are highly vulnerable to DNA damage. Addressing this question is complicated by the paucity of mouse models of hematopoietic malignancies due to defective DNA repair. We show that DNA repair-deficient Mcm8- and Mcm9-knockout mice develop myeloid tumors, phenocopying prevalent myelodysplastic syndromes. We demonstrate that these tumors are preceded by a lifelong DNA damage burden in bone marrow and that they acquire proliferative capacity by suppressing signaling of the tumor suppressor and cell cycle controller RB, as often seen in patients. Finally, we found that absence of MCM9 and the tumor suppressor Tp53 switches tumorigenesis to lymphoid tumors without precedent myeloid malignancy. Our results demonstrate that MCM8/9 deficiency drives myeloid tumor development and establishes a DNA damage burdened mouse model for hematopoietic malignancies.
Collapse
Affiliation(s)
- Malik Lutzmann
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France; Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France.
| | - Florence Bernex
- Histological Facility RHEM, IRCM, 208 Rue des Apothicaires, 34396 Montpellier, France
| | | | - Dana Hodroj
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Caroline Marty
- Histological Facility RHEM, IRCM, 208 Rue des Apothicaires, 34396 Montpellier, France
| | - Isabelle Plo
- Institut Gustave Roussy, INSERM, UMR 1170, Institut Gustave Roussy, Villejuif, France
| | - William Vainchenker
- Institut Gustave Roussy, INSERM, UMR 1170, Institut Gustave Roussy, Villejuif, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Luc Forichon
- Animal House Facility, BioCampus Montpellier, UMS3426 CNRS-US009 INSERM-UM, 141 Rue de la Cardonille, 34396 Montpellier, France
| | - Caroline Bret
- Department of Hematology, University Hospital St Eloi, 80 Ave Augustin Fliche, Montpellier, France
| | - Sophie Queille
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Candice Marchive
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France
| | | | - Marcel Méchali
- Institute of Human Genetics, CNRS, DNA Replication and Genome Dynamics, 141, Rue de la Cardonille, 34396 Montpellier, France; Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
28
|
Giardino S, Latour RP, Aljurf M, Eikema D, Bosman P, Bertrand Y, Tbakhi A, Holter W, Bornhäuser M, Rössig C, Burkhardt B, Zecca M, Afanasyev B, Michel G, Ganser A, Alseraihy A, Ayas M, Uckan‐Cetinkaya D, Bruno B, Patrick K, Bader P, Itälä‐Remes M, Rocha V, Jubert C, Diaz MA, Shaw PJ, Junior LGD, Locatelli F, Kröger N, Faraci M, Pierri F, Lanino E, Miano M, Risitano A, Robin M, Dufour C. Outcome of patients with Fanconi anemia developing myelodysplasia and acute leukemia who received allogeneic hematopoietic stem cell transplantation: A retrospective analysis on behalf of EBMT group. Am J Hematol 2020; 95:809-816. [PMID: 32267023 DOI: 10.1002/ajh.25810] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is curative for bone marrow failure in patients with Fanconi anemia (FA), but the presence of a malignant transformation is associated with a poor prognosis and the management of these patients is still challenging. We analyzed outcome of 74 FA patients with a diagnosis of myelodysplastic syndrome (n = 35), acute leukemia (n = 35) or with cytogenetic abnormalities (n = 4), who underwent allo-HSCT from 1999 to 2016 in EBMT network. Type of diagnosis, pre-HSCT cytoreductive therapies and related toxicities, disease status pre-HSCT, donor type, and conditioning regimen were considered as main variables potentially influencing outcome. The 5-year OS and EFS were 42% (30-53%) and 39% (27-51%), respectively. Patients transplanted in CR showed better OS compared with those transplanted in presence of an active malignant disease (OS:71%[48-95] vs 37% [24-50],P = .04), while none of the other variables considered had an impact. Twenty-two patients received pre-HSCT cytoreduction and 9/22 showed a grade 3-4 toxicity, without any lethal event or negative influence on survival after HSCT(OS:toxicity pre-HSCT 48% [20-75%] vs no-toxicity 51% [25-78%],P = .98). The cumulative incidence of day-100 grade II-IV a-GvHD and of 5-year c-GvHD were 38% (26-50%) and 40% (28-52%). Non-relapse-related mortality and incidence of relapse at 5-years were 40% (29-52%) and 21% (11-30%) respectively, without any significant impact of the tested variables. Causes of death were transplant-related events in most patients (34 out of the 42 deaths, 81%). This analysis confirms the poor outcome of transformed FA patients and identifies the importance of achieving CR pre-HSCT, suggesting that, in a newly diagnosed transformed FA patient, a cytoreductive approach pre-HSCT should be considered if a donor have been secured.
Collapse
Affiliation(s)
- Stefano Giardino
- Hematopoietic stem cell transplantation UnitIstituto Giannina Gaslini Genoa Italy
| | - Regis P. Latour
- French reference center for aplastic anemia and PNH;Saint‐Louis HospitalUniversité de Paris Paris France
| | - Mahmoud Aljurf
- King Faisal Hospital and Research Centre Riyadh Saudi Arabia
| | | | | | | | | | | | | | - Claudia Rössig
- Pediatric Hematology and OncologyUniversity Children´s Hospital Muenster Muenster Germany
| | - Birgit Burkhardt
- Pediatric Hematology and OncologyUniversity Children´s Hospital Muenster Muenster Germany
| | - Marco Zecca
- Fondazione IRCSS Policlinico San Matteo Pavia Italy
| | | | | | | | - Amal Alseraihy
- King Faisal Hospital and Research Centre Riyadh Saudi Arabia
| | - Mouhab Ayas
- King Faisal Hospital and Research Centre Riyadh Saudi Arabia
| | | | | | | | - Peter Bader
- Immunologie und IntensivmedizinKlinikum der Johann‐Wolfgang Goethe Universität, Klinik für Kinder‐und Jugendmedizin, Schwerpunkt Stammzelltransplantation Frankfurt am Main Germany
| | | | | | | | - Miguel A. Diaz
- Hospital Infantil Universitario "Niño Jesus" Madrid Spain
| | - Peter J. Shaw
- The Children's Hospital at Westmead Sydney Australia
| | | | - Franco Locatelli
- IRCSS OspedalePediatrico Bambino Gesù, SapienzaUniversity of Rome Rome Italy
| | | | - Maura Faraci
- Hematopoietic stem cell transplantation UnitIstituto Giannina Gaslini Genoa Italy
| | - Filomena Pierri
- Hematopoietic stem cell transplantation UnitIstituto Giannina Gaslini Genoa Italy
| | - Edoardo Lanino
- Hematopoietic stem cell transplantation UnitIstituto Giannina Gaslini Genoa Italy
| | | | | | - Marie Robin
- French reference center for aplastic anemia and PNH;Saint‐Louis HospitalUniversité de Paris Paris France
| | - Carlo Dufour
- UOC EmatologiaIstituto Giannina Gaslini Genoa Italy
| | | |
Collapse
|
29
|
Laberko A, Aksenova M, Shipitsina I, Khamin I, Shcherbina A, Balashov D, Maschan A. Serious Hemorrhagic Complications After Successful Treatment of Hematopoietic Stem Cell Transplantation-Associated Thrombotic Microangiopathy With Defibrotide in Pediatric Patient With Myelodysplastic Syndrome. Front Pediatr 2020; 8:155. [PMID: 32432059 PMCID: PMC7214790 DOI: 10.3389/fped.2020.00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Transplant-associated thrombotic microangiopathy (TAM) is a life-threatening complication of hematopoietic stem cell transplantation (HSCT). There is some evidence of endothelial injury playing a significant role in TAM development. The efficacy of defibrotide was demonstrated for prophylaxis and treatment of another HSCT-associated endothelial damage syndrome-liver veno-occlusive disease. The data for defibrotide usage in TAM are limited. Case Description: A 9-year old boy underwent HSCT from a matched unrelated donor for monosomy seven-associated myelodysplastic syndrome treatment. A myeloablative preparative regimen and post-transplant immunosuppression with cyclophosphamide on days +3 and +4 and a combination of tacrolimus with mycophenolate mofetil from day +5 were used. From day +61, sustained fever with progressive neurologic impairment and no evidence of infection was observed. On day +68, the patient developed severe TAM with acute kidney injury requiring renal replacement therapy (RRT). Defibrotide therapy 25 mg/kg/day was administered for 7 days with resolution of TAM symptoms. It was followed by multiple hemorrhagic episodes-epistaxis, hemorrhagic cystitis, and renal hemorrhage, which are presumed to be the complications of defibrotide therapy. Conclusion: Defibrotide could be an effective therapy for TAM, but adequate doses, duration of therapy, and drug safety profile both for pediatric and adult patients need to be evaluated by randomized prospective studies.
Collapse
Affiliation(s)
- Alexandra Laberko
- Immunology, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Marina Aksenova
- Nephrology, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Nephrology, Y. Veltischev Research and Clinical Institute for Pediatrics at N. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Irina Shipitsina
- Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Igor Khamin
- Intensive Care, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Immunology, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Balashov
- Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexei Maschan
- Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
30
|
Schratz KE, DeZern AE. Genetic Predisposition to Myelodysplastic Syndrome in Clinical Practice. Hematol Oncol Clin North Am 2020; 34:333-356. [PMID: 32089214 PMCID: PMC7875473 DOI: 10.1016/j.hoc.2019.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of marrow failure disorders that primarily affect older persons but also occur at a lower frequency in children and young adults. There is increasing recognition of an inherited predisposition to MDS as well as other myeloid malignancies for patients of all ages. Germline predisposition to MDS can occur as part of a syndrome or sporadic disease. The timely diagnosis of an underlying genetic predisposition in the setting of MDS is important. This article delineates germline genetic causes of MDS and provides a scaffold for the diagnosis and management of patients in this context.
Collapse
Affiliation(s)
- Kristen E Schratz
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Bloomberg 11379, 1800 Orleans Street, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21287, USA
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21287, USA; Division of Hematologic Malignancies, Johns Hopkins University School of Medicine, CRBI Room 3M87, 1650 Orleans Street, Baltimore, MD 21287-0013, USA.
| |
Collapse
|
31
|
Heidemann S, Bursic B, Zandi S, Li H, Abelson S, Klaassen RJ, Abish S, Rayar M, Breakey VR, Moshiri H, Dhanraj S, de Borja R, Shlien A, Dick JE, Dror Y. Cellular and molecular architecture of hematopoietic stem cells and progenitors in genetic models of bone marrow failure. JCI Insight 2020; 5:131018. [PMID: 31990679 DOI: 10.1172/jci.insight.131018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Inherited bone marrow failure syndromes, such as Fanconi anemia (FA) and Shwachman-Diamond syndrome (SDS), feature progressive cytopenia and a risk of acute myeloid leukemia (AML). Using deep phenotypic analysis of early progenitors in FA/SDS bone marrow samples, we revealed selective survival of progenitors that phenotypically resembled granulocyte-monocyte progenitors (GMP). Whole-exome and targeted sequencing of GMP-like cells in leukemia-free patients revealed a higher mutation load than in healthy controls and molecular changes that are characteristic of AML: increased G>A/C>T variants, decreased A>G/T>C variants, increased trinucleotide mutations at Xp(C>T)pT, and decreased mutation rates at Xp(C>T)pG sites compared with other Xp(C>T)pX sites and enrichment for Cancer Signature 1 (X indicates any nucleotide). Potential preleukemic targets in the GMP-like cells from patients with FA/SDS included SYNE1, DST, HUWE1, LRP2, NOTCH2, and TP53. Serial analysis of GMPs from an SDS patient who progressed to leukemia revealed a gradual increase in mutational burden, enrichment of G>A/C>T signature, and emergence of new clones. Interestingly, the molecular signature of marrow cells from 2 FA/SDS patients with leukemia was similar to that of FA/SDS patients without transformation. The predicted founding clones in SDS-derived AML harbored mutations in several genes, including TP53, while in FA-derived AML the mutated genes included ARID1B and SFPQ. We describe an architectural change in the hematopoietic hierarchy of FA/SDS with remarkable preservation of GMP-like populations harboring unique mutation signatures. GMP-like cells might represent a cellular reservoir for clonal evolution.
Collapse
Affiliation(s)
- Stephanie Heidemann
- Genetics & Genome Biology Program and.,Marrow Failure and Myelodysplasia (Pre-leukemia) Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Sasan Zandi
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Sagi Abelson
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Robert J Klaassen
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Sharon Abish
- Hematology-Oncology, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Meera Rayar
- Division of Hematology, Oncology & Bone Marrow Transplant, University of British Columbia and British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Vicky R Breakey
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Santhosh Dhanraj
- Genetics & Genome Biology Program and.,Institute of Medical Science and
| | | | | | - John E Dick
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yigal Dror
- Genetics & Genome Biology Program and.,Marrow Failure and Myelodysplasia (Pre-leukemia) Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science and
| |
Collapse
|
32
|
Shahid M, Firasat S, Satti HS, Satti TM, Ghafoor T, Sharif I, Afshan K. Screening of the FANCA gene mutational hotspots in the Pakistani fanconi anemia patients revealed 19 sequence variations. Congenit Anom (Kyoto) 2020; 60:32-39. [PMID: 30809872 DOI: 10.1111/cga.12331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Fanconi anemia (FA) is a recessive disorder that predispose to bone marrow failure and multiple congenital anomalies in affected individuals worldwide. To date, 22 FA genes are known to harbor sequence variations in disease phenotype. Among these, mutations in the FANCA gene are associated with 60% to 70% of FA cases. The aim of the present study was to screen FA cases belonging to consanguineous Pakistani families for selected exons of FANCA gene which are known mutational hotspots for Asian populations. Blood samples were collected from 20 FA cases and 20 controls. RNA was extracted and cDNA was synthesized from blood samples of cases. DNA was extracted from blood samples of cases and ethnically matched healthy controls. Sanger's sequencing of the nine selected exons of FANCA gene in FA cases revealed 19 genetic alterations of which 15 were single nucleotide variants, three were insertions and one was microdeletion. Of the total 19 sequence changes, 13 were novel and six were previously reported. All identified variants were evaluated by computational programs including SIFT, PolyPhen-2 and Mutation taster. Seven out of 20 analyzed patients were carrying homozygous novel sequence variations, predicted to be associated with FA. These disease associated novel variants were not detected in ethnically matched controls and depict genetic heterogeneity of disease.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sabika Firasat
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Humayoon Shafique Satti
- Armed Forces Bone Marrow Transplant Centre (AFBMTC), CMH Medical Complex, Rawalpindi, Pakistan
| | - Tariq Mahmood Satti
- Armed Forces Bone Marrow Transplant Centre (AFBMTC), CMH Medical Complex, Rawalpindi, Pakistan
| | - Tariq Ghafoor
- Armed Forces Bone Marrow Transplant Centre (AFBMTC), CMH Medical Complex, Rawalpindi, Pakistan
| | - Imtenan Sharif
- Department of Community Medicine, Army Medical College (AMC), National University of Medical Sciences, Rawalpindi, Pakistan
| | - Kiran Afshan
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
33
|
Davies SM. Monitoring and treatment of MDS in genetically susceptible persons. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:105-109. [PMID: 31808891 PMCID: PMC6913506 DOI: 10.1182/hematology.2019000020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genetic susceptibility to myelodysplastic syndrome (MDS) occurs in children with inherited bone marrow failure syndromes, including Fanconi anemia, Shwachman Diamond syndrome, and dyskeratosis congenita. Available evidence (although not perfect) supports annual surveillance of the blood count and bone marrow in affected persons. Optimal treatment of MDS in these persons is most commonly transplantation. Careful consideration must be given to host susceptibility to DNA damage when selecting a transplant strategy, because significant dose reductions and avoidance of radiation are necessary. Transplantation before evolution to acute myeloid leukemia (AML) is optimal, because outcomes of AML are extremely poor. Children and adults can present with germline mutations in GATA2 and RUNX1, both of which are associated with a 30% to 40% chance of evolution to MDS. GATA2 deficiency may be associated with a clinically important degree of immune suppression, which can cause severe infections that can complicate transplant strategies. GATA2 and RUNX1 deficiency is not associated with host susceptibility to DNA damage, and therefore, conventional treatment strategies for MDS and AML can be used. RUNX1 deficiency has a highly variable phenotype, and MDS can occur in childhood and later in adulthood within the same families, making annual surveillance with marrow examination burdensome; however, such strategies should be discussed with affected persons, allowing an informed choice.
Collapse
Affiliation(s)
- Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
34
|
Clonal Hematopoiesis and risk of Acute Myeloid Leukemia. Best Pract Res Clin Haematol 2019; 32:177-185. [PMID: 31203999 DOI: 10.1016/j.beha.2019.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Acute Myeloid Leukemia, the most common form of acute leukemia in adults, is an aggressive hematopoietic stem cell malignancy that is associated with significant morbidity and mortality. Though AML generally presents de novo, risk factors include exposure to chemotherapy and/or radiation, as well as both familial and acquired bone marrow failure syndromes. Clonal Hematopoiesis (CH) refers to an expansion of blood or marrow cells resulting from somatic mutations in leukemia-associated genes detected in individuals without cytopenias or hematological malignancies. While CH is considered part of normal ageing, CH is also significantly associated with cardiovascular disease, solid tumors, and hematological malignancies. In this review, we will discuss evidence linking CH with the development of AML, as well as describe challenges in and strategies for monitoring patients with high risk CH mutations.
Collapse
|
35
|
Savage SA, Walsh MF. Myelodysplastic Syndrome, Acute Myeloid Leukemia, and Cancer Surveillance in Fanconi Anemia. Hematol Oncol Clin North Am 2019; 32:657-668. [PMID: 30047418 DOI: 10.1016/j.hoc.2018.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fanconi anemia (FA) is a DNA repair disorder associated with a high risk of cancer and bone marrow failure. Patients with FA may present with certain dysmorphic features, such as radial ray abnormalities, short stature, typical facies, bone marrow failure, or certain solid malignancies. Some patients may be recognized due to exquisite sensitivity after exposure to cancer therapy. FA is diagnosed by increased chromosomal breakage after exposure to clastogenic agents. It follows autosomal recessive and X-linked inheritance depending on the underlying genomic alterations. Recognizing patients with FA is important for therapeutic decisions, genetic counseling, and optimal clinical management.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Room 6E456, MSC 9772, Bethesda, MD 20892-9772, USA
| | - Michael F Walsh
- Department of Medicine, Division of Solid Tumor, Memorial Sloan Kettering Cancer Center, 222 70th Street Room 412, New York, NY 10021, USA; Department of Medicine, Division of Clinical Cancer Genetics, Memorial Sloan Kettering Cancer Center, 222 70th Street Room 412, New York, NY 10021, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 222 70th Street Room 412, New York, NY 10021, USA.
| |
Collapse
|
36
|
Genetic predisposition to MDS: clinical features and clonal evolution. Blood 2019; 133:1071-1085. [PMID: 30670445 DOI: 10.1182/blood-2018-10-844662] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndrome (MDS) typically presents in older adults with the acquisition of age-related somatic mutations, whereas MDS presenting in children and younger adults is more frequently associated with germline genetic predisposition. Germline predisposition is increasingly recognized in MDS presenting at older ages as well. Although each individual genetic disorder is rare, as a group, the genetic MDS disorders account for a significant subset of MDS in children and young adults. Because many patients lack overt syndromic features, genetic testing plays an important role in the diagnostic evaluation. This review provides an overview of syndromes associated with genetic predisposition to MDS, discusses implications for clinical evaluation and management, and explores scientific insights gleaned from the study of MDS predisposition syndromes. The effects of germline genetic context on the selective pressures driving somatic clonal evolution are explored. Elucidation of the molecular and genetic pathways driving clonal evolution may inform surveillance and risk stratification, and may lead to the development of novel therapeutic strategies.
Collapse
|
37
|
Associations of complementation group, ALDH2 genotype, and clonal abnormalities with hematological outcome in Japanese patients with Fanconi anemia. Ann Hematol 2018; 98:271-280. [PMID: 30368588 DOI: 10.1007/s00277-018-3517-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Fanconi anemia (FA) is a genetically and clinically heterogeneous disorder that predisposes patients to bone marrow failure (BMF), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). To study which genetic and phenotypic factors predict clinical outcomes for Japanese FA patients, we examined the FA genes, bone marrow karyotype, and aldehyde dehydrogenase-2 (ALDH2) genotype; variants of which are associated with accelerated progression of BMF in FA. In 88 patients, we found morphologic MDS/AML in 33 patients, including refractory cytopenia in 16, refractory anemia with excess blasts (RAEB) in 7, and AML in 10. The major mutated FA genes observed in this study were FANCA (n = 52) and FANCG (n = 23). The distribution of the ALDH2 variant alleles did not differ significantly between patients with mutations in FANCA and FANCG. However, patients with FANCG mutations had inferior BMF-free survival and received hematopoietic stem cell transplantation (HSCT) at a younger age than those with FANCA mutations. In FANCA, patients with the c.2546delC mutation (n = 24) related to poorer MDS/AML-free survival and a younger age at HSCT than those without this mutation. All patients with RAEB/AML had an abnormal karyotype and poorer prognosis after HSCT; specifically, the presence of a structurally complex karyotype with a monosomy (n = 6) was associated with dismal prognosis. In conclusion, the best practice for a clinician may be to integrate the morphological, cytogenetic, and genetic data to optimize HSCT timing in Japanese FA patients.
Collapse
|
38
|
Wlodarski MW, Sahoo SS, Niemeyer CM. Monosomy 7 in Pediatric Myelodysplastic Syndromes. Hematol Oncol Clin North Am 2018; 32:729-743. [DOI: 10.1016/j.hoc.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Schaefer EJ, Lindsley RC. Significance of Clonal Mutations in Bone Marrow Failure and Inherited Myelodysplastic Syndrome/Acute Myeloid Leukemia Predisposition Syndromes. Hematol Oncol Clin North Am 2018; 32:643-655. [PMID: 30047417 PMCID: PMC6065266 DOI: 10.1016/j.hoc.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clonal hematopoiesis as a hallmark of myelodysplastic syndrome (MDS) is mediated by the selective advantage of clonal hematopoietic stem cells in a context-specific manner. Although primary MDS emerges without known predisposing cause and is associated with advanced age, secondary MDS may develop in younger patients with bone marrow failure syndromes or after exposure to chemotherapy, respectively. This article discusses recent advances in the understanding of context-dependent clonal hematopoiesis in MDS with focus on clonal evolution in inherited and acquired bone marrow failure syndromes.
Collapse
MESH Headings
- Anemia, Aplastic/genetics
- Anemia, Aplastic/immunology
- Anemia, Aplastic/pathology
- Anemia, Aplastic/therapy
- Bone Marrow Diseases/genetics
- Bone Marrow Diseases/immunology
- Bone Marrow Diseases/pathology
- Bone Marrow Diseases/therapy
- Bone Marrow Failure Disorders
- Clonal Evolution/genetics
- Clonal Evolution/immunology
- Genetic Predisposition to Disease
- Hemoglobinuria, Paroxysmal/genetics
- Hemoglobinuria, Paroxysmal/immunology
- Hemoglobinuria, Paroxysmal/pathology
- Hemoglobinuria, Paroxysmal/therapy
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/immunology
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/therapy
Collapse
Affiliation(s)
- Eva J Schaefer
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
40
|
Abstract
Bone marrow failure (BMF) is a rare but life-threatening disorder that usually manifests as (pan)cytopenia. BMF can be caused by a variety of diseases, but inherited BMF (IBMF) syndromes are a clinically important cause, especially in children. IBMF syndromes are a heterogeneous group of genetic disorders characterized by BMF, physical abnormalities, and predisposition to malignancy. An accurate diagnosis is critical, as disease-specific management, surveillance, and genetic counselling are required for each patient. The major differential diagnoses of IBMF syndromes are acquired aplastic anemia (AA) and refractory cytopenia of childhood (RCC). These diseases have overlapping features, such as BM hypocellularity and/or dysplastic changes, which make the differential diagnosis challenging. RCC has been defined as a histomorphologically distinct entity. Therefore, understanding the BM histopathology of these diseases is essential for the differential diagnosis. However, the BM histopathological features have not been characterized in detail, as descriptions of BM histopathology are very limited due to the rarity of the diseases. This review provides a detailed description of the BM histopathology in cases of RCC, AA, and the four most common IBMF syndromes: Fanconi anemia (FA), dysketatosis congenita (DC), Diamond-Blackfan anemia (DBA), and Shwachman-Diamond syndrome (SDS). An overview, including the clinical features and diagnosis, is also provided.
Collapse
|
41
|
Lovatel VL, de Souza DC, Alvarenga TF, Capela de Matos RR, Diniz C, Schramm MT, Llerena Júnior JC, Silva MLM, Abdelhay E, de Souza Fernandez T. An uncommon t(9;11)(p24;q22) with monoallelic loss of ATM and KMT2A genes in a child with myelodysplastic syndrome/acute myeloid leukemia who evolved from Fanconi anemia. Mol Cytogenet 2018; 11:40. [PMID: 30008805 PMCID: PMC6042331 DOI: 10.1186/s13039-018-0389-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is rare in the pediatric age group and it may be associated with inheritable bone marrow failure (BMF) such as Fanconi anemia (FA). FA is a rare multi-system genetic disorder, characterized by congenital malformations and progressive BMF. Patients with FA usually present chromosomal aberrations when evolving to MDS or acute myeloid leukemia (AML). Thus, the cytogenetic studies in the bone marrow (BM) of these patients have an important role in the therapeutic decision, mainly in the indication for hematopoietic stem cell transplantation (HSCT). The most frequent chromosomal alterations in the BM of FA patients are gains of the chromosomal regions 1q and 3q, and partial or complete loss of chromosome 7. However, the significance and the predictive value of such clonal alterations, with respect to malignant progress, are not fully understood and data from molecular cytogenetic studies are very limited. CASE PRESENTATION A five-year-old boy presented recurrent infections and persistent anemia. The BM biopsy revealed hypocellularity. G-banding was performed on BM cells and showed a normal karyotype. The physical examination showed to be characteristic of FA, being the diagnosis confirmed by DEB test. Five years later, even with supportive treatment, the patient presented severe hypocellularity and BM evolution revealing megakaryocyte dysplasia, intense dyserythropoiesis, and 11% myeloblasts. G-banded analysis showed an abnormal karyotype involving a der(9)t(9;11)(p24;q?22). The FISH analysis showed the monoallelic loss of ATM and KMT2A genes. At this moment the diagnosis was MDS, refractory anemia with excess of blasts (RAEB). Allogeneic HSCT was indicated early in the diagnosis, but no donor was found. Decitabine treatment was initiated and well tolerated, although progression to AML occurred 3 months later. Chemotherapy induction was initiated, but there was no response. The patient died due to disease progression and infection complications. CONCLUSIONS Molecular cytogenetic analysis showed a yet unreported der(9)t(9;11)(p24;q?22),der(11)t(9;11)(p24;q?22) during the evolution from FA to MDS/AML. The FISH technique was important allowing the identification at the molecular level of the monoallelic deletion involving the KMT2A and ATM genes. Our results suggest that this chromosomal alteration conferred a poor prognosis, being associated with a rapid leukemic transformation and a poor treatment response.
Collapse
Affiliation(s)
- Viviane Lamim Lovatel
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Daiane Corrêa de Souza
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Tatiana Fonseca Alvarenga
- Pathology Department of National Cancer Institute (INCA) and Post-Graduation Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Roberto R. Capela de Matos
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Claudia Diniz
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Juan Clinton Llerena Júnior
- Medical Genetic Departament, Fernandes Figueira National Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ Brazil
| | - Maria Luiza Macedo Silva
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| | - Teresa de Souza Fernandez
- Bone Marrow Transplatation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Post-Graduate Program in Oncology, National Cancer Institute José de Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Wang Y, Zhou W, Alter BP, Wang T, Spellman SR, Haagenson M, Yeager M, Lee SJ, Chanock SJ, Savage SA, Gadalla SM. Chromosomal Aberrations and Survival after Unrelated Donor Hematopoietic Stem Cell Transplant in Patients with Fanconi Anemia. Biol Blood Marrow Transplant 2018; 24:2003-2008. [PMID: 29879518 DOI: 10.1016/j.bbmt.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Studies of chromosomal aberrations in blood or bone marrow of patients with Fanconi anemia (FA) have focused on their associations with leukemic transformation. The role of such abnormalities on outcomes after hematopoietic cell transplantation (HCT) is unclear. We used genome-wide single nucleotide polymorphism arrays to identify chromosomal aberrations in pre-HCT blood samples from 73 patients with FA who received unrelated donor HCT for severe aplastic anemia between 1991 and 2007. Outcome data and blood samples were available through the Center for International Blood and Marrow Transplant Research. For survival analyses, we used the Kaplan-Meier estimator to calculate the survival probabilities and the exact log-rank test to compare the survival differences across groups. Chromosomal aberrations were detected in 16 (22%) patients; most frequent were clonal copy loss in chromosome 7 (9.6%), clonal copy gains in the long arm (q) of chromosome 1 (chr1q+) (8.2%), and clonal or complete copy gains in the q arm of chromosome 3 (chr3q+) (8.2%). Seven (9.6%) patients had alterations in 3 or more chromosomes. Poor post-HCT overall survival (OS) was noted in patients with chr3q+ (P = .04), or those with abnormalities in ≥3 chromosomes (P = .03). The 1-year OS was 0% versus 45% in patients with either alteration versus its absence. No statistically significant differences in OS were noted in patients carrying deletions in chr7 (1-year OS = 29% versus 42%; log-rank P = .74). The study is limited by the small sample size. A larger, prospective study is warranted to validate our findings in light of recent improvement in transplant modalities and outcomes.
Collapse
Affiliation(s)
- Youjin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Blanche P Alter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
43
|
Tawana K, Drazer MW, Churpek JE. Universal genetic testing for inherited susceptibility in children and adults with myelodysplastic syndrome and acute myeloid leukemia: are we there yet? Leukemia 2018; 32:1482-1492. [PMID: 29483711 DOI: 10.1038/s41375-018-0051-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/06/2018] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
Abstract
Comprehensive genomic profiling of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cases have enabled the detection and differentiation of driver and subclonal mutations, informed risk prognostication, and defined targeted therapies. These insights into disease biology, and management have made multigene-acquired mutation testing a critical part of the diagnostic assessment of patients with sporadic MDS and AML. More recently, our understanding of the role of an increasing number of inherited genetic factors on MDS/AML risk and management has rapidly progressed. In recognition of the growing impact of this field, clinical guidelines and disease classification systems for both MDS and AML have recently incorporated familial MDS/AML predisposition syndromes into their diagnostic algorithms. In this perspective piece, we contemplate the advantages, disadvantages, and barriers that would need to be overcome to incorporate inherited MDS/AML genetic testing into the upfront molecular diagnostic work-up of every MDS/AML patient. For centers already performing panel-based tumor-only testing, including genes associated with familial forms of MDS/AML (e.g., RUNX1, CEBPA, GATA2, TP53), we advocate optimizing these tests to detect all types of germline variants in these genes and moving toward upfront paired tumor/germline testing to maximize detection and streamline patient care.
Collapse
Affiliation(s)
- Kiran Tawana
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Michael W Drazer
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Jane E Churpek
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA. .,Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
44
|
How I treat myelodysplastic syndromes of childhood. Blood 2018; 131:1406-1414. [PMID: 29438960 DOI: 10.1182/blood-2017-09-765214] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pediatric myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal disorders with an annual incidence of 1 to 4 cases per million, accounting for less than 5% of childhood hematologic malignancies. MDSs in children often occur in the context of inherited bone marrow failure syndromes, which represent a peculiarity of myelodysplasia diagnosed in pediatric patients. Moreover, germ line syndromes predisposing individuals to develop MDS or acute myeloid leukemia have recently been identified, such as those caused by mutations in GATA2, ETV6, SRP72, and SAMD9/SAMD9-L Refractory cytopenia of childhood (RCC) is the most frequent pediatric MDS variant, and it has specific histopathologic features. Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many children with MDSs and is routinely offered to all patients with MDS with excess of blasts, to those with MDS secondary to previously administered chemoradiotherapy, and to those with RCC associated with monosomy 7, complex karyotype, severe neutropenia, or transfusion dependence. Immune-suppressive therapy may be a treatment option for RCC patients with hypocellular bone marrow and the absence of monosomy 7 or a complex karyotype, although the response rate is lower than that observed in severe aplastic anemia, and a relevant proportion of these patients will subsequently need HSCT for either nonresponse or relapse.
Collapse
|
45
|
Hu L, Huang W, Bei L, Broglie L, Eklund EA. TP53 Haploinsufficiency Rescues Emergency Granulopoiesis in FANCC-/- Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:2129-2139. [PMID: 29427417 DOI: 10.4049/jimmunol.1700931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/14/2018] [Indexed: 01/09/2023]
Abstract
Emergency (stress) granulopoiesis is an episodic process for the production of granulocytes in response to infectious challenge. We previously determined that Fanconi C, a component of the Fanconi DNA-repair pathway, is necessary for successful emergency granulopoiesis. Fanconi anemia results from mutation of any gene in this pathway and is characterized by bone marrow failure (BMF) in childhood and clonal progression in adolescence. Although murine Fanconi anemia models exhibit relatively normal steady-state hematopoiesis, FANCC-/- mice are unable to mount an emergency granulopoiesis response. Instead, these mice develop BMF and die during repeated unsuccessful emergency granulopoiesis attempts. In FANCC-/- mice, BMF is associated with extensive apoptosis of hematopoietic stem and progenitor cells through an undefined mechanism. In this study, we find that TP53 haploinsufficiency completely rescues emergency granulopoiesis in FANCC-/- mice and protects them from BMF during repeated emergency granulopoiesis episodes. Instead, such recurrent challenges accelerated clonal progression in FANCC-/-TP53+/- mice. In FANCC-/- mice, BMF during multiple emergency granulopoiesis attempts was associated with increased ataxia telangiectasia and Rad3-related protein (Atr) and p53 activation with each attempt. In contrast, we found progressive attenuation of expression and activity of Atr, and consequent p53 activation and apoptosis, in the bone marrow of FANCC-/-TP53+/- mice during this process. Therefore, activation of Atr-with consequent Fanconi-mediated DNA repair or p53-dependent apoptosis-is an essential component of emergency granulopoiesis and it protects the bone marrow from genotoxic stress during this process.
Collapse
Affiliation(s)
- Liping Hu
- Northwestern University, Chicago, IL 60611
| | - Weiqi Huang
- Northwestern University, Chicago, IL 60611.,Jesse Brown VA Medical Center, Chicago, IL 60612; and
| | - Ling Bei
- Northwestern University, Chicago, IL 60611.,Jesse Brown VA Medical Center, Chicago, IL 60612; and
| | | | - Elizabeth A Eklund
- Northwestern University, Chicago, IL 60611; .,Jesse Brown VA Medical Center, Chicago, IL 60612; and
| |
Collapse
|
46
|
Shah CA, Broglie L, Hu L, Bei L, Huang W, Dressler DB, Eklund EA. Stat3 and CCAAT enhancer-binding protein β (C/ebpβ) activate Fanconi C gene transcription during emergency granulopoiesis. J Biol Chem 2018; 293:3937-3948. [PMID: 29382715 PMCID: PMC5857980 DOI: 10.1074/jbc.ra117.000528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Interferon consensus sequence–binding protein (Icsbp) is required for terminating emergency granulopoiesis, an episodic event responsible for granulocyte production in response to infections and a key component of the innate immune response. Icsbp inhibits the expression of Stat3 and C/ebpβ, transcription factors essential for initiating and sustaining granulopoiesis, and activates transcription of Fanconi C (FANCC), a DNA repair protein. In prior studies, we noted accelerated bone marrow failure in Fancc−/− mice undergoing multiple episodes of emergency granulopoiesis, associated with apoptosis of bone marrow cells with unrepaired DNA damage. Additionally, we found increased expression of Fanconi C and F proteins during emergency granulopoiesis. These findings suggest that Icsbp protects the bone marrow from DNA damage by increasing activity of the Fanconi DNA repair pathway, but the mechanisms for FANCC activation during initiation of emergency granulopoiesis are unclear. In this study, we observed that Stat3 and C/ebpβ activate FANCC transcription and contribute to DNA repair. Our findings indicate that FancC expression is increased during Stat3- and C/ebpβ-induced initiation of emergency granulopoiesis by these transcription factors and is maintained through termination by Icsbp. Our work reveals that Stat3- and C/ebpβ-mediated FancC expression is a critical component for initiating and sustaining key innate immune responses.
Collapse
Affiliation(s)
- Chirag A Shah
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605.,the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| | - Larisa Broglie
- the Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin 53213
| | - Liping Hu
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605
| | - Ling Bei
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605.,the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| | - Weiqi Huang
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605.,the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| | - Danielle B Dressler
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605
| | - Elizabeth A Eklund
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605, .,the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| |
Collapse
|
47
|
West AH, Churpek JE. Old and new tools in the clinical diagnosis of inherited bone marrow failure syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:79-87. [PMID: 29222240 PMCID: PMC6142587 DOI: 10.1182/asheducation-2017.1.79] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Patients with inherited bone marrow failure syndromes (IBMFSs) classically present with specific patterns of cytopenias along with congenital anomalies and/or other physical features that are often recognizable early in life. However, increasing application of genomic sequencing and clinical awareness of subtle disease presentations have led to the recognition of IBMFS in pediatric and adult populations more frequently than previously realized, such as those with early onset myelodysplastic syndrome (MDS). Given the well-defined differences in clinical management needs and outcomes for aplastic anemia, acute myeloid leukemia, and MDS in patients with an IBMFS vs those occurring sporadically, as well as nonhematologic comorbidities in patients with IBMFSs, it is critical for hematologists to understand how to approach screening for the currently known IBMFSs. This review presents a practical approach for the clinical hematologist that outlines when to suspect an IBMFS and how to use various diagnostic tools, from physical examination to screening laboratory tests and genomics, for the diagnosis of the most frequent IBMFSs: Fanconi anemia, telomere biology disorders, Diamond-Blackfan anemia, GATA2 deficiency syndrome, Shwachman-Diamond syndrome, and severe congenital neutropenia.
Collapse
Affiliation(s)
- Allison H. West
- Section of Hematology/Oncology, The University of Chicago Comprehensive Cancer Center, Chicago, IL; and
| | - Jane E. Churpek
- Section of Hematology/Oncology, The University of Chicago Comprehensive Cancer Center, Chicago, IL; and
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
48
|
Ebens CL, DeFor TE, Tryon R, Wagner JE, MacMillan ML. Comparable Outcomes after HLA-Matched Sibling and Alternative Donor Hematopoietic Cell Transplantation for Children with Fanconi Anemia and Severe Aplastic Anemia. Biol Blood Marrow Transplant 2017; 24:765-771. [PMID: 29203412 DOI: 10.1016/j.bbmt.2017.11.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Fanconi anemia (FA)-associated severe aplastic anemia (SAA) requires allogeneic hematopoietic cell transplantation (HCT) for cure. With the evolution of conditioning regimens over time, outcomes of alternative donor HCT (AD-HCT) have improved dramatically. We compared outcomes of HLA-matched sibling donor HCT (MSD-HCT; n = 17) and AD-HCT (n = 57) performed for FA-associated SAA at a single institution between 2001 and 2016. Overall survival at 5 years was 94% for MSD-HCT versus 86% for AD-HCT, neutrophil engraftment was 100% versus 95%, platelet recovery was 100% versus 89%, grade II-IV acute graft-versus-host disease (GVHD) was 6% versus 12%, grade III-IV acute GVHD was 6% versus 4%, and chronic GVHD was 0 versus 7%, with no statistically significant differences by type of transplant. The use of UCB was associated with decreased rates of neutrophil recovery in AD-HCT and platelet recovery in both MSD-HCT and AD-HCT. A trend toward a higher serious infection density before day +100 post-HCT was observed in AD-HCT compared with MSD-HCT (P = .02). These data demonstrate that AD-HCT should be considered at the same time as MSD-HCT for patients with FA-associated SAA.
Collapse
Affiliation(s)
- Christen L Ebens
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
| | - Todd E DeFor
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Rebecca Tryon
- University of Minnesota Health, Minneapolis, Minnesota
| | - John E Wagner
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Margaret L MacMillan
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
49
|
Valka J, Vesela J, Votavova H, Dostalova-Merkerova M, Horakova Z, Campr V, Brezinova J, Zemanova Z, Jonasova A, Cermak J, Belickova M. Differential expression of homologous recombination DNA repair genes in the early and advanced stages of myelodysplastic syndrome. Eur J Haematol 2017; 99:323-331. [PMID: 28681469 DOI: 10.1111/ejh.12920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The high incidence of mutations and cytogenetic abnormalities in patients with myelodysplastic syndrome (MDS) suggests that defects in DNA repair mechanisms. We monitored DNA repair pathways in MDS and their alterations during disease progression. METHODS Expression profiling of DNA repair genes was performed on CD34+ cells, and paired samples were used for monitoring of RAD51 and XRCC2 gene expression during disease progression. Immunohistochemical staining for RAD51 was done on histology samples. RESULTS RAD51 and XRCC2 showed differential expression between low-risk and high-risk MDS (P<.0001), whereas RPA3 was generally decreased among the entire cohort (FC=-2.65, P<.0001). We demonstrated that RAD51 and XRCC2 expression gradually decreased during the progression of MDS. Down-regulation of XRCC2 and RAD51 expression was connected with abnormalities on chromosome 7 (P=.0858, P=.0457). Immunohistochemical staining revealed the presence of RAD51 only in the cytoplasm in low-risk MDS, while in both the cytoplasm and nucleus in high-risk MDS. The multivariate analysis identified RAD51 expression level (HR 0.49; P=.01) as significant prognostic factor for overall survival of patients with MDS. CONCLUSIONS Our study demonstrates that the expression of DNA repair factors, primarily RAD51 and XRCC2, is deregulated in patients with MDS and presents a specific pattern with respect to prognostic categories.
Collapse
Affiliation(s)
- Jan Valka
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Zuzana Horakova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vit Campr
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jana Brezinova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenetics, General University Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Anna Jonasova
- First Internal Clinic-Clinic of Hematology, General University Hospital, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
50
|
Li Q, Luo C, Luo C, Wang J, Li B, Ding L, Chen J. Disease-specific hematopoietic stem cell transplantation in children with inherited bone marrow failure syndromes. Ann Hematol 2017. [PMID: 28623394 DOI: 10.1007/s00277-017-3041-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|