1
|
Ravi S, Rekha JS, Basu D, Kayal S. Prognostic Significance of T-Cells and Macrophages in the Tumour Microenvironment of Nodal DLBCL. Indian J Hematol Blood Transfus 2024; 40:604-612. [PMID: 39469178 PMCID: PMC11512949 DOI: 10.1007/s12288-024-01770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/05/2024] [Indexed: 10/30/2024] Open
Abstract
Revised International Prognostic (R-IPI) score is used widely for risk stratification of DLBCL cases, yet some patients belonging to same risk category tend to exhibit different outcomes. The role of T-cells and macrophages in prognostication of lymphomas has been a point of interest of late. We aimed to study the association of FOXP3 positive T-regulatory cells, cytotoxic T-cells and macrophages with the immunophenotypic subtypes, clinicopathological characteristics, treatment response and survival in nodal diffuse large B-cell lymphoma (DLBCL) patients. The clinicopathological and treatment data of 83 DLBCL patients diagnosed and treated at our institute from January 2015 to December 2018 were collected and followed up till June 2020. CD8, FOXP3 and CD68 immunostains were performed to highlight the cytotoxic T-cells, T-regulatory cells and macrophages respectively on the lymph node biopsies and the distribution of these cells and their association with clinico-pathological factors, treatment response and survival was analyzed. DLBCL cases with higher percentage of CD3 positive T-cells and CD8 positive cytotoxic T-cells had significant association with attainment of complete response to treatment. In addition, CD8 positive T-cells of more than 6.5% proved to be an independent predictor of treatment outcome (p = 0.022). Multivariate Cox regression survival analysis revealed that cases with 'good' R-IPI prognostic score and 'high CD68 positive macrophages in tumor microenvironment' had a significantly longer overall survival. Increased number of cytotoxic T-cells was significantly associated with complete response to treatment and higher number of macrophages correlated significantly with better overall survival signifying their antitumor effects.
Collapse
Affiliation(s)
- Soundarya Ravi
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Room No: 2024, First Floor, Institute Block, Puducherry, 605006 India
| | - J. Sree Rekha
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Room No: 2024, First Floor, Institute Block, Puducherry, 605006 India
| | - Debdatta Basu
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Room No: 2024, First Floor, Institute Block, Puducherry, 605006 India
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| |
Collapse
|
2
|
Shi Y, Xu Y, Shen H, Jin J, Tong H, Xie W. Advances in biology, diagnosis and treatment of DLBCL. Ann Hematol 2024; 103:3315-3334. [PMID: 39017945 PMCID: PMC11358236 DOI: 10.1007/s00277-024-05880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), with approximately 150,000 new cases worldwide each year, represent nearly 30% of all cases of non-Hodgkin lymphoma (NHL) and are phenotypically and genetically heterogeneous. A gene-expression profile (GEP) has identified at least three major subtypes of DLBCL, each of which has distinct clinical, biological, and genetic features: activated B-cell (ABC)-like DLBCL, germinal-center B-cell (GCB)-like DLBCL, and unclassified. Different origins are associated with different responses to chemotherapy and targeted agents. Despite DLBCL being a highly heterogeneous disease, more than 60% of patients with DLBCL can be cured after using rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) to inhibit the growth of cancer cells while targeting the CD20 receptor. In recent decades, the improvement of diagnostic levels has led to a refinement classification of DLBCL and the development of new therapeutic approaches. The objective of this review was to summarize the latest studies examining genetic lesions and therapies for DLBCL.
Collapse
Affiliation(s)
- Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yi Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- International Health Care Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
3
|
Xia Y, Wang X, Lin J, Li Y, Dong L, Liang X, Wang HY, Ding X, Wang Q. Gastric cancer fibroblasts affect the effect of immunotherapy and patient prognosis by inducing micro-vascular production. Front Immunol 2024; 15:1375013. [PMID: 39040110 PMCID: PMC11260615 DOI: 10.3389/fimmu.2024.1375013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Immunotherapy is critical for treating many cancers, and its therapeutic success is linked to the tumor microenvironment. Although anti-angiogenic drugs are used to treat gastric cancer (GC), their efficacy remains limited. Cancer-associated fibroblast (CAF)-targeted therapies complement immunotherapy; however, the lack of CAF-specific markers poses a challenge. Therefore, we developed a CAF angiogenesis prognostic score (CAPS) system to evaluate prognosis and immunotherapy response in patients with GC, aiming to improve patient stratification and treatment efficacy. Methods We assessed patient-derived GC CAFs for promoting angiogenesis using EdU, cell cycle, apoptosis, wound healing, and angiogenesis analysis. Results We then identified CAF-angiogenesis-associated differentially-expressed genes, leading to the development of CAPS, which included THBS1, SPARC, EDNRA, and VCAN. We used RT-qPCR to conduct gene-level validation, and eight GEO datasets and the HPA database to validate the CAPS system at the gene and protein levels. Six independent GEO datasets were utilized for validation. Overall survival time was shorter in the high- than the low-CAPS group. Immune microenvironment and immunotherapy response analysis showed that the high-CAPS group had a greater tendency toward immune escape and reduced immunotherapy efficacy than the low-CAPS group. Discussion CAPS is closely associated with GC prognosis and immunotherapy outcomes. It is therefore an independent predictor of GC prognosis and immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Xia
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolu Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lidan Dong
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Liang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huai-Yu Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Koumpis E, Papoudou-Bai A, Papathanasiou K, Kolettas E, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Diffuse Large B-Cell Lymphoma: Prognostic and Potential Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7048-7064. [PMID: 39057061 PMCID: PMC11276293 DOI: 10.3390/cimb46070420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a multifaceted condition characterized by significant diversity in its molecular and pathological subtypes and clinical manifestation. Despite the progress made in the treatment of DLBCL through the development of novel drugs, an estimated one-third of patients encounter relapse or acquire refractory disease. The tumor microenvironment (TME) of DLBCL, a complex network consisting of cellular and noncellular components that engage in interactions with the tumor, is a parameter that is gaining increasing attention. The TME comprises both the immune and nonimmune microenvironments. The immune microenvironment comprises natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, myeloid-derived suppressor cells (MDSCs), and T and B lymphocytes. The nonimmune microenvironment consists of the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells, and other molecules that are secreted. Despite ongoing research, the exact impact of these components and their interaction on the progression of the disease remains elusive. A comprehensive review of significant discoveries concerning the cellular and noncellular constituents, molecular characteristics, and treatment response and prognosis of the TME in DLBCL, as well as the potential targeting of the TME with novel therapeutic approaches, is provided in this article.
Collapse
Affiliation(s)
- Epameinondas Koumpis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece;
| | - Konstantina Papathanasiou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Evangelos Kolettas
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
- Biomedical Research Institute, Foundation for Research and Technology, 45 110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| |
Collapse
|
5
|
Pickard K, Stephenson E, Mitchell A, Jardine L, Bacon CM. Location, location, location: mapping the lymphoma tumor microenvironment using spatial transcriptomics. Front Oncol 2023; 13:1258245. [PMID: 37869076 PMCID: PMC10586500 DOI: 10.3389/fonc.2023.1258245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Lymphomas are a heterogenous group of lymphoid neoplasms with a wide variety of clinical presentations. Response to treatment and prognosis differs both between and within lymphoma subtypes. Improved molecular and genetic profiling has increased our understanding of the factors which drive these clinical dynamics. Immune and non-immune cells within the lymphoma tumor microenvironment (TME) can both play a key role in antitumor immune responses and conversely also support lymphoma growth and survival. A deeper understanding of the lymphoma TME would identify key lymphoma and immune cell interactions which could be disrupted for therapeutic benefit. Single cell RNA sequencing studies have provided a more comprehensive description of the TME, however these studies are limited in that they lack spatial context. Spatial transcriptomics provides a comprehensive analysis of gene expression within tissue and is an attractive technique in lymphoma to both disentangle the complex interactions between lymphoma and TME cells and improve understanding of how lymphoma cells evade the host immune response. This article summarizes current spatial transcriptomic technologies and their use in lymphoma research to date. The resulting data has already enriched our knowledge of the mechanisms and clinical impact of an immunosuppressive TME in lymphoma and the accrual of further studies will provide a fundamental step in the march towards personalized medicine.
Collapse
Affiliation(s)
- Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Mitchell
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Chris M. Bacon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Lin M, Ma S, Sun L, Qin Z. The prognostic value of tumor-associated macrophages detected by immunostaining in diffuse large B cell lymphoma: A meta-analysis. Front Oncol 2023; 12:1094400. [PMID: 36741724 PMCID: PMC9895774 DOI: 10.3389/fonc.2022.1094400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
Background The prognostic implication of tumor-associated macrophages (TAMs) in the microenvironment of diffuse large B cell lymphoma (DLBCL) remains controversial. Methods A systematic and comprehensive search of relevant studies was performed in PubMed, Embase and Web of Science databases. The quality of the included studies was estimated using Newcastle-Ottawa Scale (NOS). Results Twenty-three studies containing a total of 2992 DLBCL patients were involved in this study. They were all high-quality studies scoring ≥ 6 points. High density of M2 TAMs in tumor microenvironment significantly associated with both advanced disease stage (OR= 1.937, 95% CI: 1.256-2.988, P = 0.003) and unfavorable overall survival (OS) (HR = 1.750, 95% CI: 1.188-2.579, P = 0.005) but not associated with poor progression free survival (PFS) (HR = 1.672, 95% CI: 0.864-3.237, P = 0.127) and international prognostic index (IPI) (OR= 1.705, 95% CI: 0.843-3.449, P = 0.138) in DLBCL patients. No significant correlation was observed between the density of CD68+ TAMs and disease stage (OR= 1.433, 95% CI: 0.656-3.130, P = 0.366), IPI (OR= 1.391, 95% CI: 0.573-3.379, P = 0.466), OS (HR=0.929, 95% CI: 0.607-1.422, P = 0.734) or PFS (HR= 0.756, 95% CI: 0.415-1.379, P = 0.362) in DLBCL patients. Conclusion This meta-analysis demonstrated that high density of M2 TAMs in the tumor microenvironment was a robust predictor of adverse outcome for DLBCL patients. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42022343045.
Collapse
Affiliation(s)
- Mei Lin
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shupei Ma
- Department of Hematology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Lingling Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhiqiang Qin
- Department of Pathology, People Hospital of Changzhi, Changzhi, Shanxi, China
| |
Collapse
|
7
|
Miyawaki K, Sugio T. Lymphoma Microenvironment in DLBCL and PTCL-NOS: the key to uncovering heterogeneity and the potential for stratification. J Clin Exp Hematop 2022; 62:127-135. [PMID: 36171096 DOI: 10.3960/jslrt.22027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) are the most common subtypes of mature B cell neoplasm and T/NK cell lymphoma, respectively. They share a commonality in that they are, by definition, highly heterogeneous populations. Recent studies are revealing more about the heterogeneity of these diseases, and at the same time, there is an active debate on how to stratify these heterogeneous diseases and make them useful in clinical practice. The various immune cells and non-cellular components surrounding lymphoma cells, i.e., the lymphoma microenvironment, have been the subject of intense research since the late 2000s, and much knowledge has been accumulated over the past decade. As a result, it has become clear that the lymphoma microenvironment, despite its paucity in tissues, significantly impacts the lymphoma pathogenesis and clinical behavior, such as its prognosis and response to therapy. In this article, we review the role of the lymphoma microenvironment in DLBCL and PTCL-NOS, with particular attention given to its impact on the prognosis and stratification.
Collapse
Affiliation(s)
- Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
8
|
Nian Q, Li J, Han Z, Liang Q, Liu M, Yang C, Rodrigues-Lima F, Jiang T, Zhao L, Zeng J, Liu C, Shi J. SPARC in hematologic malignancies and novel technique for hematological disease with its abnormal expression. Biomed Pharmacother 2022; 153:113519. [DOI: 10.1016/j.biopha.2022.113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022] Open
|
9
|
Molecular Diagnostic Review of Diffuse Large B-Cell Lymphoma and Its Tumor Microenvironment. Diagnostics (Basel) 2022; 12:diagnostics12051087. [PMID: 35626243 PMCID: PMC9139291 DOI: 10.3390/diagnostics12051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. It is a clinically and morphologically heterogeneous entity that has continued to resist complete subtyping. Molecular subtyping efforts emerged in earnest with the advent of gene expression profiling (GEP). This molecular subtyping approach has continued to evolve simultaneously with others including immunohistochemistry and more modern genomic approaches. Recently, the veritable explosion of genomic data availability and evolving computational methodologies have provided additional avenues, by which further understanding and subclassification of DBLCLs is possible. The goal of this review is to provide a historical overview of the major classification timepoints in the molecular subtyping of DLBCL, from gene expression profiling to present day understanding.
Collapse
|
10
|
de Groot FA, de Groen RAL, van den Berg A, Jansen PM, Lam KH, Mutsaers PGNJ, van Noesel CJM, Chamuleau MED, Stevens WBC, Plaça JR, Mous R, Kersten MJ, van der Poel MMW, Tousseyn T, Woei-a-Jin FJSH, Diepstra A, Nijland M, Vermaat JSP. Biological and Clinical Implications of Gene-Expression Profiling in Diffuse Large B-Cell Lymphoma: A Proposal for a Targeted BLYM-777 Consortium Panel as Part of a Multilayered Analytical Approach. Cancers (Basel) 2022; 14:cancers14081857. [PMID: 35454765 PMCID: PMC9028345 DOI: 10.3390/cancers14081857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Gene-expression profiling (GEP) is used to study the molecular biology of lymphomas. Here, advancing insights from GEP studies in diffuse large B-cell lymphoma (DLBCL) lymphomagenesis are discussed. GEP studies elucidated subtypes based on cell-of-origin principles and profoundly changed the biological understanding of DLBCL with clinical relevance. Studies integrating GEP and next-generation DNA sequencing defined different molecular subtypes of DLBCL entities originating at specific anatomical localizations. With the emergence of high-throughput technologies, the tumor microenvironment (TME) has been recognized as a critical component in DLBCL pathogenesis. TME studies have characterized so-called "lymphoma microenvironments" and "ecotypes". Despite gained insights, unexplained chemo-refractoriness in DLBCL remains. To further elucidate the complex biology of DLBCL, we propose a novel targeted GEP consortium panel, called BLYM-777. This knowledge-based biology-driven panel includes probes for 777 genes, covering many aspects regarding B-cell lymphomagenesis (f.e., MYC signature, TME, immune surveillance and resistance to CAR T-cell therapy). Regarding lymphomagenesis, upcoming DLBCL studies need to incorporate genomic and transcriptomic approaches with proteomic methods and correlate these multi-omics data with patient characteristics of well-defined and homogeneous cohorts. This multilayered methodology potentially enhances diagnostic classification of DLBCL subtypes, prognostication, and the development of novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Fleur A. de Groot
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.d.G.); (R.A.L.d.G.)
| | - Ruben A. L. de Groen
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.d.G.); (R.A.L.d.G.)
| | - Anke van den Berg
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (J.R.P.); (A.D.)
| | - Patty M. Jansen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - King H. Lam
- Department of Pathology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Pim G. N. J. Mutsaers
- Department of Hematology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Carel J. M. van Noesel
- Department of Pathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Martine E. D. Chamuleau
- Cancer Center Amsterdam and LYMMCARE, Department of Hematology, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (M.E.D.C.); (M.J.K.)
| | - Wendy B. C. Stevens
- Department of Hematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jessica R. Plaça
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (J.R.P.); (A.D.)
| | - Rogier Mous
- Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Marie José Kersten
- Cancer Center Amsterdam and LYMMCARE, Department of Hematology, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (M.E.D.C.); (M.J.K.)
| | - Marjolein M. W. van der Poel
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Thomas Tousseyn
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | | | - Arjan Diepstra
- Department of Pathology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.v.d.B.); (J.R.P.); (A.D.)
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Joost S. P. Vermaat
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (F.A.d.G.); (R.A.L.d.G.)
- Correspondence:
| |
Collapse
|
11
|
Piris MA. SPARC macrophages in lymphoma. Ann Oncol 2021; 32:1314-1315. [PMID: 34492312 DOI: 10.1016/j.annonc.2021.08.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022] Open
Affiliation(s)
- M A Piris
- Pathology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
12
|
Croci GA, Au-Yeung RKH, Reinke S, Staiger AM, Koch K, Oschlies I, Richter J, Poeschel V, Held G, Loeffler M, Trümper L, Rosenwald A, Ott G, Spang R, Altmann B, Ziepert M, Klapper W. SPARC-positive macrophages are the superior prognostic factor in the microenvironment of diffuse large B-cell lymphoma and independent of MYC rearrangement and double-/triple-hit status. Ann Oncol 2021; 32:1400-1409. [PMID: 34438040 DOI: 10.1016/j.annonc.2021.08.1991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with respect to outcome. Features of the tumor microenvironment (TME) are associated with prognosis when assessed by gene expression profiling. However, it is uncertain whether assessment of the microenvironment can add prognostic information to the most relevant and clinically well-established molecular subgroups when analyzed by immunohistochemistry (IHC). PATIENTS AND METHODS We carried out a histopathologic analysis of biomarkers related to TME in a very large cohort (n = 455) of DLBCL treated in prospective trials and correlated with clinicopathologic and molecular data, including chromosomal rearrangements and gene expression profiles for cell-of-origin and TME. RESULTS The content of PD1+, FoxP3+ and CD8+, as well as vessel density, was not associated with outcome. However, we found a low content of CD68+ macrophages to be associated with inferior progression-free survival (PFS) and overall survival (OS; P = 0.023 and 0.040, respectively) at both univariable and multivariable analyses, adjusted for the factors of the International Prognostic Index (IPI), MYC break and BCL2/MYC and BCL6/MYC double-hit status. The subgroup of PDL1+ macrophages was not associated with survival. Instead, secreted protein acidic and cysteine rich (SPARC)-positive macrophages were identified as the subtype of macrophages most associated with survival. SPARC-positive macrophages and stromal cells directly correlated with favorable PFS and OS (both, P[log rank] <0.001, P[trend] < 0.001). The association of SPARC with prognosis was independent of the factors of the IPI, MYC double-/triple-hit status, Bcl2/c-myc double expression, cell-of-origin subtype and a recently published gene expression signature [lymphoma-associated macrophage interaction signature (LAMIS)]. CONCLUSIONS SPARC expression in the TME detected by a single IHC staining with fair-to-good interobserver reproducibility is a powerful prognostic parameter. Thus SPARC expression is a strong candidate for risk assessment in DLBCL in daily practice.
Collapse
Affiliation(s)
- G A Croci
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - R K H Au-Yeung
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - S Reinke
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - A M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tübingen, Germany
| | - K Koch
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - I Oschlies
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - J Richter
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - V Poeschel
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical School, Homburg/Saar, Germany
| | - G Held
- DSHNHL Studiensekretariat, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - M Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - L Trümper
- Department of Hematology and Oncology, Georg-August Universität, Göttingen, Germany
| | - A Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Center Mainfranken (CCCMF), Würzburg, Germany
| | - G Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tübingen, Germany
| | - R Spang
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - B Altmann
- DSHNHL Studiensekretariat, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - M Ziepert
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - W Klapper
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
13
|
Pan PJ, Liu JX. Diagnostic and prognostic value of secreted protein acidic and rich in cysteine in the diffuse large B-cell lymphoma. World J Clin Cases 2021; 9:6287-6299. [PMID: 34434995 PMCID: PMC8362571 DOI: 10.12998/wjcc.v9.i22.6287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix-associated protein. Studies have revealed that SPARC is involved in the cell interaction and function including proliferation, differentiation, and apoptosis. However, the role of SPARC in cancer is controversial, as it was reported as the promoter or suppressor in different cancers. Further, the role of SPARC in lymphoma is unclear.
AIM To identify the expression and significance of SPARC in lymphoma, especially in diffuse large B-cell lymphoma (DLBCL).
METHODS The expression analysis of SPARC in different cancers was evaluated with Oncomine. The Brune, Eckerle, Piccaluga, Basso, Compagno, Alizadeh, and Rosenwald datasets were included to evaluate the mRNA expression of SPARC in lymphoma. The Cancer Genome Atlas (TCGA)-DLBCL was used to analyze the diagnostic value of SPARC in DLBCL. The Compagno and Brune DLBCL datasets were used for validation. Then, the diagnostic value was evaluated with the receiver operating characteristic (ROC) curve. The Kaplan-Meier plot was conducted with TCGA-DLBCL, and the ROC analysis was performed based on the survival time. Further, the overall survival analysis based on the level of SPARC expression was performed with the GSE4475 and E-TABM-346. The Gene Set Enrichment Analyses (GSEA) was performed to make the underlying mechanism-regulatory networks.
RESULTS The pan-cancer analysis of SPARC showed that SPARC was highly expressed in the brain and central nervous system, breast, colon, esophagus, stomach, head and neck, pancreas, and sarcoma, especially in lymphoma. The overexpression of SPARC in lymphoma, especially DLBCL, was confirmed in several datasets. The ROC analysis revealed that SPARC was a valuable diagnostic biomarker. More importantly, compared with DLBCL patients with low SPARC expression, those with higher SPARC expression represented a higher overall survival rate. The ROC analysis showed that SPARC was a favorable prognostic biomarker for DLBCL. Results of the GSEA confirmed that the high expression of SPARC was closely associated with focal adhesion, extracellular matrix receptor interaction, and leukocyte transendothelial migration, which suggested that SPARC may be involved in the regulation of epithelial-mesenchymal transition, KRAS, and myogenesis in DLBCL.
CONCLUSION SPARC was highly expressed in DLBCL, and the overexpression of SPARC showed sound diagnostic value. More interestingly, the overexpression of SPARC might be a favorable prognostic biomarker for DLBCL, suggesting that SPARC might be an inducible factor in the development of DLBCL, and inducible SPARC was negative in some oncogenic pathways. All the evidence suggested that inducible SPARC might be a good diagnostic and prognostic biomarker for DLBCL.
Collapse
Affiliation(s)
- Peng-Ji Pan
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Jun-Xia Liu
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|
14
|
Papageorgiou SG, Thomopoulos TP, Katagas I, Bouchla A, Pappa V. Prognostic molecular biomarkers in diffuse large B-cell lymphoma in the rituximab era and their therapeutic implications. Ther Adv Hematol 2021; 12:20406207211013987. [PMID: 34104369 PMCID: PMC8150462 DOI: 10.1177/20406207211013987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents a group of tumors characterized by substantial heterogeneity in terms of their pathological and biological features, a causal factor of their varied clinical outcome. This variation has persisted despite the implementation of rituximab in treatment regimens over the last 20 years. In this context, prognostic biomarkers are of great importance in order to identify high-risk patients that might benefit from treatment intensification or the introduction of novel therapeutic agents. Herein, we review current knowledge on specific immunohistochemical or genetic biomarkers that might be useful in clinical practice. Gene-expression profiling is a tool of special consideration in this effort, as it has enriched our understanding of DLBCL biology and has allowed for the classification of DLBCL by cell-of-origin as well as by more elaborate molecular signatures based on distinct gene-expression profiles. These subgroups might outperform individual biomarkers in terms of prognostication; however, their use in clinical practice is still limited. Moreover, the underappreciated role of the tumor microenvironment in DLBCL prognosis is discussed in terms of prognostic gene-expression signatures, as well as in terms of individual biomarkers of prognostic significance. Finally, the efficacy of novel therapeutic agents for the treatment of DLBCL patients are discussed and an evidence-based therapeutic approach by specific genetic subgroup is suggested.
Collapse
Affiliation(s)
- Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital ‘Attikon’, 1 Rimini Street, Haidari, Athens 12462, Greece
| | - Thomas P. Thomopoulos
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Ioannis Katagas
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Anthi Bouchla
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Vassiliki Pappa
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| |
Collapse
|
15
|
Pan K, Huang X, Jia X. SPARC promotes pancreatic cancer cell proliferation and migration through autocrine secretion into the extracellular milieu. Oncol Lett 2021; 21:485. [PMID: 33968201 PMCID: PMC8100956 DOI: 10.3892/ol.2021.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
SPARC is a secreted glycoprotein that plays a complex and multifaceted role in tumour formation and progression. However, whether SPARC is an oncogene or a tumour suppressor is still unclear. Moreover, SPARC demonstrates potential in clinical pancreatic adenocarcinoma (PAAD) treatment, although it has been identified as an oncogene in some studies and a tumor suppressor in others. In the present study, a pan-cancer analysis of SPARC was carried out using The Cancer genome Atlas data, which demonstrated that SPARC was an oncogene in most cancer types and a cancer suppressor in others. In addition, SPARC expression was significantly upregulated in PAAD and associated with poor prognosis. SPARC also promoted the proliferation and migration of PANC-1 and SW1990 cell lines in vitro. SPARC was detected in the culture supernatant of PAAD cells and pancreatic acinar AR42J cells. SPARC regulated PAAD cell proliferation only when secreted into the extracellular milieu, thus explaining why the prognosis of patients with PAAD is correlated with the SPARC expression of both tumour cells and stromal cells. Collectively, the present findings demonstrated that the function of SPARC was associated with tumour type and that SPARC may represent an important oncogene in PAAD that merits further study.
Collapse
Affiliation(s)
- Kehua Pan
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xince Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiufen Jia
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
16
|
Pileri SA, Tripodo C, Melle F, Motta G, Tabanelli V, Fiori S, Vegliante MC, Mazzara S, Ciavarella S, Derenzini E. Predictive and Prognostic Molecular Factors in Diffuse Large B-Cell Lymphomas. Cells 2021; 10:cells10030675. [PMID: 33803671 PMCID: PMC8003012 DOI: 10.3390/cells10030675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the commonest form of lymphoid malignancy, with a prevalence of about 40% worldwide. Its classification encompasses a common form, also termed as “not otherwise specified” (NOS), and a series of variants, which are rare and at least in part related to viral agents. Over the last two decades, DLBCL-NOS, which accounts for more than 80% of the neoplasms included in the DLBCL chapter, has been the object of an increasing number of molecular studies which have led to the identification of prognostic/predictive factors that are increasingly entering daily practice. In this review, the main achievements obtained by gene expression profiling (with respect to both neoplastic cells and the microenvironment) and next-generation sequencing will be discussed and compared. Only the amalgamation of molecular attributes will lead to the achievement of the long-term goal of using tailored therapies and possibly chemotherapy-free protocols capable of curing most (if not all) patients with minimal or no toxic effects.
Collapse
Affiliation(s)
- Stefano A. Pileri
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
- Correspondence: or
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, 90133 Palermo, Italy;
- Tumor and Microenvironment Histopathology Unit, IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Federica Melle
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Giovanna Motta
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Valentina Tabanelli
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Stefano Fiori
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Maria Carmela Vegliante
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, Viale Flacco 65, 70124 Bari, Italy; (M.C.V.); (S.C.)
| | - Saveria Mazzara
- Division of Haematopathology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (F.M.); (G.M.); (V.T.); (S.F.); (S.M.)
| | - Sabino Ciavarella
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, Viale Flacco 65, 70124 Bari, Italy; (M.C.V.); (S.C.)
| | - Enrico Derenzini
- Division of Haemato-Oncology, European Institute of Oncology, IEO IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
- Department of Health Sciences, University of Milan, Via di Rudinì 8, 20146 Milan, Italy
| |
Collapse
|
17
|
The extracellular matrix: A key player in the pathogenesis of hematologic malignancies. Blood Rev 2020; 48:100787. [PMID: 33317863 DOI: 10.1016/j.blre.2020.100787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem and progenitor cells located in the bone marrow lay the foundation for multiple lineages of mature hematologic cells. Bone marrow niches are architecturally complex with specific cellular, physiochemical, and biomechanical factors. Increasing evidence suggests that the bone marrow microenvironment contributes to the pathogenesis of hematological neoplasms. Numerous studies have deciphered the role of genetic mutations and chromosomal translocations in the development hematologic malignancies. Significant progress has also been made in understanding how the cellular components and cytokine interactions within the bone marrow microenvironment promote the evolution of hematologic cancers. Although the extracellular matrix is known to be a key player in the pathogenesis of various diseases, it's role in the progression of hematologic malignancies is less understood. In this review, we discuss the interactions between the extracellular matrix and malignant cells, and provide an overview of the role of extracellular matrix remodeling in sustaining hematologic malignancies.
Collapse
|
18
|
Sangaletti S, Iannelli F, Zanardi F, Cancila V, Portararo P, Botti L, Vacca D, Chiodoni C, Di Napoli A, Valenti C, Rizzello C, Vegliante MC, Pisati F, Gulino A, Ponzoni M, Colombo MP, Tripodo C. Intra-tumour heterogeneity of diffuse large B-cell lymphoma involves the induction of diversified stroma-tumour interfaces. EBioMedicine 2020; 61:103055. [PMID: 33096480 PMCID: PMC7581880 DOI: 10.1016/j.ebiom.2020.103055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Intra-tumour heterogeneity in lymphoid malignancies encompasses selection of genetic events and epigenetic regulation of transcriptional programs. Clonal-related neoplastic cell populations are unsteadily subjected to immune editing and metabolic adaptations within different tissue microenvironments. How tissue-specific mesenchymal cells impact on the diversification of aggressive lymphoma clones is still unknown. Methods Combining in situ quantitative immunophenotypical analyses and RNA sequencing we investigated the intra-tumour heterogeneity and the specific mesenchymal modifications that are associated with A20 diffuse large B-cell lymphoma (DLBCL) cells seeding of different tissue microenvironments. Furthermore, we characterized features of lymphoma-associated stromatogenesis in human DLBCL samples using Digital Spatial Profiling, and established their relationship with prognostically relevant variables, such as MYC. Findings We found that the tissue microenvironment casts a relevant influence over A20 transcriptional landscape also impacting on Myc and DNA damage response programs. Extending the investigation to mice deficient for the matricellular protein SPARC, a stromal prognostic factor in human DLBCL, we demonstrated a different immune imprint on A20 cells according to stromal Sparc proficiency. Through Digital Spatial Profiling of 87 immune and stromal genes on human nodal DLBCL regions characterized by different mesenchymal composition, we demonstrate intra-lesional heterogeneity arising from diversified mesenchymal contextures and impacting on the stromal and immune milieu. Interpretation Our study provides experimental evidence that stromal microenvironment generates topological determinants of intra-tumour heterogeneity in DLBCL involving key transcriptional pathways such as Myc expression, damage response programs and immune checkpoints. Funding This study has been supported by the Italian Foundation for Cancer Research (AIRC) (grants 15999 and 22145 to C. Tripodo) and by the University of Palermo.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Line, Tumor
- Computational Biology/methods
- Disease Models, Animal
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Immunophenotyping
- In Situ Hybridization
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Models, Biological
- Phenotype
- Prognosis
- Sequence Analysis, RNA
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Transcriptome
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Fabio Iannelli
- Bioinformatics Core Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Zanardi
- Bioinformatics Core Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Paola Portararo
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Davide Vacca
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Arianna Di Napoli
- Pathology Unit, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Cesare Valenti
- Department of Mathematics and Informatics, University of Palermo, Palermo, Italy
| | - Celeste Rizzello
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Federica Pisati
- Tumor and Microenvironment Histopathology Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University Milan, Milan, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy; Tumor and Microenvironment Histopathology Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
19
|
Nair IR, Sadeesh A, Phalak P, Keechilat P. Immunohistochemical Markers of Tumor Microenvironment as Prognostic Predictors in Diffuse Large B-Cell Lymphoma: Study from an Oncology Centre in South India. ASIAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.1055/s-0040-1714305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Abstract
Introduction Diffuse large B-cell lymphoma (DLBCL) accounts for 60% of lymphomas in India. Although the survival of DLBCL patients has improved following the addition of rituximab, a subset of patients do not respond well to therapy. Among the several factors responsible for this varied response, tumor microenvironment is considered to be crucial. This study is a search for such prognostic markers in the tumor microenvironment.
Materials and Methods A total of 97 patients were selected, of whom 34 were treated with the CHOP regimen and 63 with RCHOP. Immunohistochemistry for CD68 was performed to study the stromal-1 signature and CD34 for stromal-2 signature.
Results There was a significant increase in the counts of CD68-positive cells among patients free of events. CD34 count was higher in patients with events in both CHOP and RCHOP groups.
Conclusion Additional assessment of stromal microenvironment along with the cell of origin might predict the clinical outcome better in DLBCL.
Collapse
Affiliation(s)
- Indu R. Nair
- Department of Pathology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Athulya Sadeesh
- Department of Pathology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Pooja Phalak
- Department of Pathology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Pavithran Keechilat
- Department of Pathology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| |
Collapse
|
20
|
Opinto G, Vegliante MC, Negri A, Skrypets T, Loseto G, Pileri SA, Guarini A, Ciavarella S. The Tumor Microenvironment of DLBCL in the Computational Era. Front Oncol 2020; 10:351. [PMID: 32296632 PMCID: PMC7136462 DOI: 10.3389/fonc.2020.00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Among classical exemplifications of tumor microenvironment (TME) in lymphoma pathogenesis, the “effacement model” resembled by diffuse large B cell lymphoma (DLBCL) implies strong cell autonomous survival and paucity of non-malignant elements. Nonetheless, the magnitude of TME exploration is increasing as novel technologies allow the high-resolution discrimination of cellular and extra-cellular determinants at the functional, more than morphological, level. Results from genomic-scale studies and recent clinical trials revitalized the interest in this field, prompting the use of new tools to dissect DLBCL composition and reveal novel prognostic association. Here we revisited major controversies related to TME in DLBCL, focusing on the use of bioinformatics to mine transcriptomic data and provide new insights to be translated into the clinical setting.
Collapse
Affiliation(s)
- Giuseppina Opinto
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Maria Carmela Vegliante
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Antonio Negri
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Tetiana Skrypets
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy.,CHIMOMO Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Loseto
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Stefano Aldo Pileri
- Division of Haematopathology, European Institute of Oncology-IRCCS, Milan, Italy
| | - Attilio Guarini
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Sabino Ciavarella
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| |
Collapse
|
21
|
Risueño A, Hagner PR, Towfic F, Fontanillo C, Djebbari A, Parker JS, Drew CP, Nowakowski GS, Maurer MJ, Cerhan JR, Wei X, Ren Y, Lee CW, Couto S, Wang M, Pourdehnad M, Gandhi AK, Trotter MWB. Leveraging gene expression subgroups to classify DLBCL patients and select for clinical benefit from a novel agent. Blood 2020; 135:1008-1018. [PMID: 31977005 PMCID: PMC7099333 DOI: 10.1182/blood.2019002414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease, commonly described by cell-of-origin (COO) molecular subtypes. We sought to identify novel patient subgroups through an unsupervised analysis of a large public dataset of gene expression profiles from newly diagnosed de novo DLBCL patients, yielding 2 biologically distinct subgroups characterized by differences in the tumor microenvironment. Pathway analysis and immune deconvolution algorithms identified higher B-cell content and a strong proliferative signal in subgroup A and enriched T-cell, macrophage, and immune/inflammatory signals in subgroup B, reflecting similar biology to published DLBCL stratification research. A gene expression classifier, featuring 26 gene expression scores, was derived from the public dataset to discriminate subgroup A (classifier-negative, immune-low) and subgroup B (classifier-positive, immune-high) patients. Subsequent application to an independent series of diagnostic biopsies replicated the subgroups, with immune cell composition confirmed via immunohistochemistry. Avadomide, a CRL4CRBN E3 ubiquitin ligase modulator, demonstrated clinical activity in relapsed/refractory DLBCL patients, independent of COO subtypes. Given the immunomodulatory activity of avadomide and the need for a patient-selection strategy, we applied the gene expression classifier to pretreatment biopsies from relapsed/refractory DLBCL patients receiving avadomide (NCT01421524). Classifier-positive patients exhibited an enrichment in response rate and progression-free survival of 44% and 6.2 months vs 19% and 1.6 months for classifier-negative patients (hazard ratio, 0.49; 95% confidence interval, 0.280-0.86; P = .0096). The classifier was not prognostic for rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone or salvage immunochemotherapy. The classifier described here discriminates DLBCL tumors based on tumor and nontumor composition and has potential utility to enrich for clinical response to immunomodulatory agents, including avadomide.
Collapse
Affiliation(s)
- Alberto Risueño
- Celgene Institute for Translational Research Europe, a Bristol-Myers Squibb Company, Seville, Spain
| | | | | | - Celia Fontanillo
- Celgene Institute for Translational Research Europe, a Bristol-Myers Squibb Company, Seville, Spain
| | - Amira Djebbari
- Celgene Institute for Translational Research Europe, a Bristol-Myers Squibb Company, Seville, Spain
| | - Joel S Parker
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Clifton P Drew
- Peninsular Veterinary Pathology Consulting, LLC, San Diego, CA
| | | | | | | | - Xin Wei
- Bristol-Myers Squibb, Berkeley Heights, NJ
| | - Yan Ren
- Bristol-Myers Squibb, San Diego, CA
| | | | | | | | | | | | - Matthew W B Trotter
- Celgene Institute for Translational Research Europe, a Bristol-Myers Squibb Company, Seville, Spain
| |
Collapse
|
22
|
Identification of gene modules associated with survival of diffuse large B-cell lymphoma treated with CHOP-based chemotherapy. THE PHARMACOGENOMICS JOURNAL 2020; 20:705-716. [PMID: 32042095 DOI: 10.1038/s41397-020-0161-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Diffuse Large B-cell Lymphoma (DLBCL), a heterogeneous disease, is influenced by complex network of gene interactions. Most previous studies focused on individual genes, but ignored the importance of intergenic correlations. In current study, we aimed to explore the association between gene networks and overall survival (OS) of DLBCL patients treated with CHOP-based chemotherapy (cyclophosphamide combination with doxorubicin, vincristine and prednisone). Weighted gene co-expression network analysis was conducted to obtain insights into the molecular characteristics of DLBCL. Ten co-expression gene networks (modules) were identified in training dataset (n = 470), and their associations with patients' OS after chemotherapy were tested. The results were validated in four independent datasets (n = 802). Gene ontology (GO) biological function enrichment analysis was conducted with Metascape. Three modules (purple, brown and red), which were enriched in T-cell immune, cell-cell adhesion and extracellular matrix (ECM), respectively, were found to be related to longer OS. Higher expression of several hub genes within these three co-expression modules, for example, LCP2 (HR = 0.77, p = 5.40 × 10-2), CD2 (HR = 0.87, p = 6.31 × 10-2), CD3D (HR = 0.83, p = 6.94 × 10-3), FYB (HR = 0.82, p = 1.40 × 10-2), GZMK (HR = 0.92, p = 1.19 × 10-1), FN1 (HR = 0.88, p = 7.06 × 10-2), SPARC (HR = 0.82, p = 2.06 × 10-2), were found to be associated with favourable survival. Moreover, the associations of the modules and hub genes with OS in different molecular subtypes and different chemotherapy groups were also revealed. In general, our research revealed the key gene modules and several hub genes were upregulated correlated with good survival of DLBCL patients, which might provide potential therapeutic targets for future clinical research.
Collapse
|
23
|
Ma Y, Chen H, Ma H, Yao Z, Hu J, Ma J, Zhang X, Chen G, Liu Y. Prognostic role of secreted protein acidic and rich in cysteine in patients with solid tumors. Saudi Med J 2020; 40:755-765. [PMID: 31423511 PMCID: PMC6718847 DOI: 10.15537/smj.2019.8.24379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To analyze the heterogeneous functions of secreted protein acidic and rich in cysteine (SPARC) from different origins and in different tumor microenvironments with the purpose of determining its clinical significance. Methods: The PubMed, CINAHL, Cochrane, Web of Science and Embase databases were utilized. Studies that focused on the effects of SPARC expression on solid tumor progression and clinical implications were used. The different outcomes including overall survival and disease-free survival were analyzed to evaluate their relations with tumor- and stroma-derived SPARC expression. Results: A total of 26 studies including 5,939 patients were enrolled in the present meta-analysis. Tumor-derived SPARC overexpression was significantly related with poor overall survival (hazard ratio: 1.478; 95% CI: 1.143-1.910; p=0.003), and a similar tendency was also observed in disease-free survival (hazard ratio: 1.476; 95% CI: 0.993-2.195; p=0.054). However, the hazard ratios for overall survival and disease-free survival did not present a statistical trend in stromal SPARC overexpression. Tumor type subgroup analysis revealed marked heterogeneity among outcomes. In pancreatic cancer, SPARC overexpression in the stroma was significantly associated with poorer overall survival and disease-free survival. In colorectal cancer, SPARC overexpression in the stroma was associated with better disease-free survival. Conclusion: For the majority of solid tumors, SPARC in cancer cells may be an unfavorable indicator for long-term survival for patients. As for stromal expression, SPARC indicates a poorer prognosis in pancreatic cancer, but a better disease-free survival in colorectal cancer. Secreted protein acidic and rich in cysteine might be a potential biomarker for solid tumor prognosis.
Collapse
Affiliation(s)
- Yongchen Ma
- Department of General Surgery, Peking University First Hospital, Beijing, People's Republic of China. E-mail.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tumor Microenvironment in Diffuse Large B-Cell Lymphoma: Role and Prognosis. Anal Cell Pathol (Amst) 2019; 2019:8586354. [PMID: 31934533 PMCID: PMC6942707 DOI: 10.1155/2019/8586354] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents 30-40% of all non-Hodgkin lymphomas (NHL) and is a disease with an aggressive behavior. Because about one-third of DLBCL patients will be refractory or resistant to standard therapy, several studies focused on identification of new individual prognostic and risk stratification biomarkers and new potential therapeutic targets. In contrast to other types of cancers like carcinomas, where tumor microenvironment was widely investigated, its role in DLBCL pathogenesis and patient survival is still poorly understood, although few studies had promising results. The composition of TME and its interaction with neoplastic cells may explain the role of several genes (beta2-microglobulin gene, CD58 gene), receptor-like programmed cell death-1 (PD-1) and its ligand (PD-L1), or other cell components (Treg) in tumor evasion of immune surveillance, resulting in tumor progression. Also, it was found that “gene expression profile” of the microenvironmental cells, the phenotype of tumor-associated macrophages (TAM), the expression of matricellular proteins like SPARC and fibronectin, the overexpression of several types of matrix metalloproteinases (MMPs) like MMP-2 and MMP-9, or the tissue inhibitors of matrix metalloproteinases (TIMPs) may lead to a favorable or adverse outcome. With this review, we try to highlight the influence of microenvironment components over lymphoid clone progression and their prognostic impact in DLBCL patients.
Collapse
|
25
|
Ciavarella S, Vegliante MC, Fabbri M, De Summa S, Melle F, Motta G, De Iuliis V, Opinto G, Enjuanes A, Rega S, Gulino A, Agostinelli C, Scattone A, Tommasi S, Mangia A, Mele F, Simone G, Zito AF, Ingravallo G, Vitolo U, Chiappella A, Tarella C, Gianni AM, Rambaldi A, Zinzani PL, Casadei B, Derenzini E, Loseto G, Pileri A, Tabanelli V, Fiori S, Rivas-Delgado A, López-Guillermo A, Venesio T, Sapino A, Campo E, Tripodo C, Guarini A, Pileri SA. Dissection of DLBCL microenvironment provides a gene expression-based predictor of survival applicable to formalin-fixed paraffin-embedded tissue. Ann Oncol 2019; 29:2363-2370. [PMID: 30307529 PMCID: PMC6311951 DOI: 10.1093/annonc/mdy450] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Gene expression profiling (GEP) studies recognized a prognostic role for tumor microenvironment (TME) in diffuse large B-cell lymphoma (DLBCL), but the routinely adoption of prognostic stromal signatures remains limited. Patients and methods Here, we applied the computational method CIBERSORT to generate a 1028-gene matrix incorporating signatures of 17 immune and stromal cytotypes. Then, we carried out a deconvolution on publicly available GEP data of 482 untreated DLBCLs to reveal associations between clinical outcomes and proportions of putative tumor-infiltrating cell types. Forty-five genes related to peculiar prognostic cytotypes were selected and their expression digitally quantified by NanoString technology on a validation set of 175 formalin-fixed, paraffin-embedded DLBCLs from two randomized trials. Data from an unsupervised clustering analysis were used to build a model of clustering assignment, whose prognostic value was also assessed on an independent cohort of 40 cases. All tissue samples consisted of pretreatment biopsies of advanced-stage DLBCLs treated by comparable R-CHOP/R-CHOP-like regimens. Results In silico analysis demonstrated that higher proportion of myofibroblasts (MFs), dendritic cells, and CD4+ T cells correlated with better outcomes and the expression of genes in our panel is associated with a risk of overall and progression-free survival. In a multivariate Cox model, the microenvironment genes retained high prognostic performance independently of the cell-of-origin (COO), and integration of the two prognosticators (COO + TME) improved survival prediction in both validation set and independent cohort. Moreover, the major contribution of MF-related genes to the panel and Gene Set Enrichment Analysis suggested a strong influence of extracellular matrix determinants in DLBCL biology. Conclusions Our study identified new prognostic categories of DLBCL, providing an easy-to-apply gene panel that powerfully predicts patients’ survival. Moreover, owing to its relationship with specific stromal and immune components, the panel may acquire a predictive relevance in clinical trials exploring new drugs with known impact on TME.
Collapse
Affiliation(s)
- S Ciavarella
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - M C Vegliante
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - M Fabbri
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - S De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - F Melle
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - G Motta
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - V De Iuliis
- Post-graduated Medical School of Clinical Pathology, "Gabriele D'Annunzio", University of Chieti, Chieti, Italy
| | - G Opinto
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Enjuanes
- Unitat de Genòmica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBERONC, Barcelona, Spain
| | - S Rega
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Gulino
- Tumor Immunology Unit, Dipartimento per la Promozione della Salute e Materno Infantile "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - C Agostinelli
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - A Scattone
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - S Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Mangia
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - F Mele
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - G Simone
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A F Zito
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - G Ingravallo
- Pathology Section, Department of Emergency and Organ Transplantation (DETO), University of Bari "Aldo Moro", Bari, Italy
| | - U Vitolo
- Department of Hematology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - A Chiappella
- Department of Hematology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - C Tarella
- Onco-Hematology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - A M Gianni
- Onco-Hematology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - A Rambaldi
- Department of Hematology and Oncology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; School of Medicine, University of Milan, Milan, Italy
| | - P L Zinzani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B Casadei
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - E Derenzini
- Onco-Hematology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - G Loseto
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Pileri
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - V Tabanelli
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - S Fiori
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - A Rivas-Delgado
- CIBERONC, Barcelona, Spain; Hematology Department, Hospital Clínic, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - A López-Guillermo
- CIBERONC, Barcelona, Spain; Hematology Department, Hospital Clínic, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - T Venesio
- Pathology Department, Candiolo Cancer Institute, Turin, Italy
| | - A Sapino
- Pathology Department, Candiolo Cancer Institute, Turin, Italy
| | - E Campo
- CIBERONC, Barcelona, Spain; Haematopathology Unit, Pathology Department, Hospital Clínic, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - C Tripodo
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - A Guarini
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - S A Pileri
- Division of Diagnostic Haematopathology, European Institute of Oncology, IRCCS, Milan, Italy.
| |
Collapse
|
26
|
A novel lymphoma-associated macrophage interaction signature (LAMIS) provides robust risk prognostication in diffuse large B-cell lymphoma clinical trial cohorts of the DSHNHL. Leukemia 2019; 34:543-552. [PMID: 31530861 DOI: 10.1038/s41375-019-0573-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a disease with heterogeneous outcome. Stromal signatures have been correlated to survival in DLBCL. Their use, however, is hampered by the lack of assays for formalin-fixed paraffin-embedded material (FFPE). We constructed a lymphoma-associated macrophage interaction signature (LAMIS) interrogating features of the microenvironment using a NanoString assay applicable to FFPE. The clinical impact of the signature could be validated in a cohort of 466 patients enrolled in prospective clinical trials of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Patients with high expression of the signature (LAMIShigh) had shorter EFS, PFS, and OS. Multivariate analyses revealed independence from IPI factors in EFS (HR 1.7, 95% CI 1.2-2.4, p-value = 0.001), PFS (HR 1.8, 95% CI 1.2-2.5, p-value = 0.001) and OS (HR 1.8, 95% CI 1.3-2.7, p-value = 0.001). Multivariate analyses adjusted for the IPI factors showed the signature to be independent from COO, MYC rearrangements and double expresser status (DE). LAMIShigh and simultaneous DE status characterized a patient subgroup with dismal prognosis and early relapse. Our data underline the importance of the microenvironment in prognosis. Combined analysis of stromal features, the IPI and DE may provide a new rationale for targeted therapy.
Collapse
|
27
|
Noyori O, Komohara Y, Nasser H, Hiyoshi M, Ma C, Pan C, Carreras J, Nakamura N, Sato A, Ando K, Okuno Y, Nosaka K, Matsuoka M, Suzu S. Expression of IL-34 correlates with macrophage infiltration and prognosis of diffuse large B-cell lymphoma. Clin Transl Immunology 2019; 8:e1074. [PMID: 31417675 PMCID: PMC6691654 DOI: 10.1002/cti2.1074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Infiltration of macrophages through the tyrosine kinase receptor CSF1R is a poor prognosis factor in various solid tumors. Indeed, these tumors produce CSF1R ligand, macrophage colony‐stimulating factor (M‐CSF) or interleukin‐34 (IL‐34). However, the significance of these cytokines, particularly, the newly discovered IL‐34 in haematological malignancies, is not fully understood. We therefore analysed the role of IL‐34 in diffuse large B‐cell lymphoma (DLBCL), the most common subtype of malignant lymphoma. Methods We analysed formalin‐fixed paraffin‐embedded lymphoma tissues of 135 DLBCL patients for the expression of IL‐34 and the number of macrophages, and the survival of these patients. The expression of IL‐34 in DLBCL cell lines and the activity of IL‐34 to induce the migration of monocytic cells were also characterised. Results Several lymphoma tissues showed a clear IL‐34 signal, and such signal was detectable in 36% of patients. DLBCL cell lines also expressed IL‐34. Interestingly, the percentage of IL‐34+ patients in the activated B‐cell subtype was significantly higher than that in the germinal centre B‐cell subtype. More interestingly, IL‐34+ patients showed shorter survival periods and higher number of macrophages in lymphoma tissues. The recruitment of monocytes is likely the first step for the higher macrophage density in the IL‐34+ lymphoma tissues. Indeed, IL‐34 induced the migration of monocytic cells. Conclusion Our results raise the possibility that IL‐34 in lymphoma tissues of DLBCL patients recruits monocytes, leading to the higher number of macrophages in the tissues and poor prognosis of patients. IL‐34 may be an additional therapeutic target of DLBCL.
Collapse
Affiliation(s)
- Osamu Noyori
- International Research Center for Medical Sciences Joint Research Center for Human Retrovirus Infection Kumamoto University Kumamoto Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Hesham Nasser
- International Research Center for Medical Sciences Joint Research Center for Human Retrovirus Infection Kumamoto University Kumamoto Japan
| | - Masateru Hiyoshi
- International Research Center for Medical Sciences Joint Research Center for Human Retrovirus Infection Kumamoto University Kumamoto Japan.,Present address: Department of Safety Research on Blood and Biologics National Institute of Infectious Diseases Tokyo Japan
| | - Chaoya Ma
- Department of Cell Pathology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Cheng Pan
- Department of Cell Pathology Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Joaquim Carreras
- Department of Pathology School of Medicine Tokai University Kanagawa Japan
| | - Naoya Nakamura
- Department of Pathology School of Medicine Tokai University Kanagawa Japan
| | - Ai Sato
- Department of Hematology and Oncology School of Medicine Tokai University Kanagawa Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology School of Medicine Tokai University Kanagawa Japan
| | - Yutaka Okuno
- Department of Hematology, Rheumatology, and Infectious Diseases Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Diseases Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases Graduate School of Medical Sciences Kumamoto University Kumamoto Japan
| | - Shinya Suzu
- International Research Center for Medical Sciences Joint Research Center for Human Retrovirus Infection Kumamoto University Kumamoto Japan
| |
Collapse
|
28
|
Liu X, Mo F, Zeng H, Zhu S, Ma X. Quantitative proteomic analysis of cerebrospinal fluid from patients with diffuse large B-cell lymphoma with central nervous system involvement: A novel approach to diagnosis. Biomed Rep 2019; 11:70-78. [PMID: 31338193 PMCID: PMC6610216 DOI: 10.3892/br.2019.1222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
The outcome of patients with diffuse large B-cell lymphoma (DLBCL) with central nervous system (CNS) recurrence is poor. However, there is currently no consensus regarding diagnostic techniques. The aim of the present study was to investigate the cerebrospinal fluid (CSF) protein profile of DLBCL and identify a potential novel method for the early diagnosis of patients with DLBCL at high risk for subsequent CNS involvement. The CSF proteomic profiling of patients with DLBCL and a control group were compared using label-free liquid chromatography-tandem mass spectrometry. Gene Ontology and pathway analyses were conducted using the Database for Annotation, Visualization and Integrated Discovery. The protein interactions were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins database. In the present study, a total of 53 differentially expressed proteins with >1 log2 fold change (false discovery rate <0.01, P<0.05) were identified and quantified. These proteins appeared to be involved in platelet degranulation, innate immune response and cell adhesion. Two hub gene network modules were obtained by protein-protein interaction network analysis. Of these proteins, secreted protein acidic and rich in cysteine (SPARC) and proenkephalin (PENK) were significantly decreased in the CSF of patients with DLBCL, which appeared to be correlated with CNS involvement. The findings of the present study indicate that decreased expression levels of SPARC and PENK in the CSF may serve as early-phase biomarkers to evaluate the risk of CNS involvement in patients with DLBCL, enabling clinicians to offer prophylactic therapy at the time of diagnosis.
Collapse
Affiliation(s)
- Xiaobei Liu
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fei Mo
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hao Zeng
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Sha Zhu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuelei Ma
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Poles WA, Nishi EE, de Oliveira MB, Eugênio AIP, de Andrade TA, Campos AHFM, de Campos RR, Vassallo J, Alves AC, Scapulatempo Neto C, Paes RAP, Landman G, Zerbini MCN, Colleoni GWB. Targeting the polarization of tumor-associated macrophages and modulating mir-155 expression might be a new approach to treat diffuse large B-cell lymphoma of the elderly. Cancer Immunol Immunother 2019; 68:269-282. [PMID: 30430204 PMCID: PMC11028330 DOI: 10.1007/s00262-018-2273-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/08/2018] [Indexed: 11/25/2022]
Abstract
Aging immune deterioration and Epstein-Barr (EBV) intrinsic mechanisms play an essential role in EBV-positive diffuse large B-cell lymphoma (DLBCL) of the elderly (EBV + DLBCLe) pathogenesis, through the expression of viral proteins, interaction with host molecules and epigenetic regulation, such as miR-155, required for induction of M1 phenotype of macrophages. This study aims to evaluate the relationship between macrophage polarization pattern in the tumor microenvironment and relative expression of miR-155 in EBV + DLBCLe and EBV-negative DLBCL patients. We studied 28 EBV + DLBCLe and 65 EBV-negative DLBCL patients. Tumor-associated macrophages (TAM) were evaluated by expression of CD68, CD163 and CD163/CD68 ratio (degree of M2 polarization), using tissue microarray. RNA was extracted from paraffin-embedded tumor samples for miR-155 relative expression study. We found a significantly higher CD163/CD68 ratio in EBV + DLBCLe compared to EBV-negative DLBCL. In EBV-negative DLBCL, CD163/CD68 ratio was higher among advanced-staged/high-tumor burden disease and overexpression of miR-155 was associated with decreased polarization to the M2 phenotype of macrophages. The opposite was observed in EBV + DLBCLe patients: we found a positive association between miR-155 relative expression and CD163/CD68 ratio, which was not significant after outlier exclusion. We believe that the higher CD163/CD68 ratio in this group is probably due to the presence of the EBV since it directly affects macrophage polarization towards M2 phenotype through cytokine secretion in the tumor microenvironment. Therapeutic strategies modulating miR-155 expression or preventing immuno-regulatory and pro-tumor macrophage polarization could be adjuvants in EBV + DLBCLe therapy since this entity has a rich infiltration of M2 macrophages in its tumor microenvironment.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/physiology
- Humans
- Lymphoma, Large B-Cell, Diffuse/complications
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Macrophage Activation/immunology
- Macrophages/classification
- Macrophages/immunology
- Macrophages/metabolism
- Male
- MicroRNAs/genetics
- MicroRNAs/immunology
- Middle Aged
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Wagner A Poles
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | - Erika E Nishi
- Department of Physiology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Mariana B de Oliveira
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | - Angela I P Eugênio
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | - Tathiana A de Andrade
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil
| | | | - Ruy R de Campos
- Department of Physiology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - José Vassallo
- Department of Pathology, AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Antonio C Alves
- Department of Pathology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | - Gilles Landman
- Department of Pathology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | - Gisele W B Colleoni
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, Rua Diogo de Faria, 824, 5° andar, Hemocentro, CEP 04037-002, Sao Paulo, Brazil.
| |
Collapse
|
30
|
Pileri SA, Derenzini E, Melle F, Motta G, Calleri A, Antoniotti P, Maltoni V, Spagnolo S, Fiori S, Tabanelli V, Fabbri M. Dissecting diffuse large B-cell lymphomas of the "not otherwise specified" type: the impact of molecular techniques. F1000Res 2019; 7. [PMID: 30613381 PMCID: PMC6305213 DOI: 10.12688/f1000research.16755.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 12/25/2022] Open
Abstract
The updated edition of the Classification of Tumours of Haematopoietic and Lymphoid Tissues, published in September 2017 by the World Health Organization (WHO), presents many important changes to the document published in 2008. Most of these novelties are linked to the exceptional development of biomolecular techniques during the last 10 years. To illustrate how much new technologies have contributed to the better classification of single entities, as well as the discovery of new ones, would go beyond the objectives of this work. For this reason, we will take diffuse large B-cell lymphoma as an example of the cognitive improvement produced by high-yield technologies (such as the gene expression profile, the study of copy number variation, and the definition of the mutational spectrum). The acquisition of this knowledge not only has a speculative value but also represents the elements for effective application in daily practice. On the one hand, it would allow the development of personalised therapy programs, and on the other it would promote the transition from the bench of the researcher's laboratory to the patient's bedside.
Collapse
Affiliation(s)
- Stefano A Pileri
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | - Enrico Derenzini
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | - Federica Melle
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | - Giovanna Motta
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | - Angelica Calleri
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | | | - Virginia Maltoni
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | | | - Stefano Fiori
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| | | | - Marco Fabbri
- Haematopathology Division, European Institute of Oncology, Milan, Italy
| |
Collapse
|
31
|
Haro M, Orsulic S. A Paradoxical Correlation of Cancer-Associated Fibroblasts With Survival Outcomes in B-Cell Lymphomas and Carcinomas. Front Cell Dev Biol 2018; 6:98. [PMID: 30211161 PMCID: PMC6120974 DOI: 10.3389/fcell.2018.00098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment is increasingly recognized as an active participant in tumor progression. A recent pan-cancer genomic profile analysis has revealed that gene signatures representing components of the tumor microenvironment are robust predictors of survival. A stromal gene signature representing fibroblasts and extracellular matrix components has been associated with good survival in diffuse large B-cell lymphoma (DLBCL). Paradoxically, a closely related gene signature has been shown to correlate with poor survival in carcinomas, including breast, ovarian, pancreatic, and colorectal cancer. To date, there has been no explanation for this paradoxical inverse correlation with survival outcomes in DLBCL and carcinomas. Using public gene data sets, we confirm that the DLBCL stromal gene signature is associated with good survival in DLBCL and several other B-cell lymphomas while it is associated with poor survival in ovarian cancer and several other solid tumors. We show that the DLBCL stromal gene signature is enriched in lymphoid fibroblasts in normal lymph nodes and in cancer-associated fibroblasts (CAFs) in ovarian cancer. Based on these findings, we propose several possible mechanisms by which CAFs may contribute to opposite survival outcomes in B-cell lymphomas and carcinomas.
Collapse
Affiliation(s)
- Marcela Haro
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sandra Orsulic
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
32
|
Genomic Profile and Pathologic Features of Diffuse Large B-Cell Lymphoma Subtype of Methotrexate-associated Lymphoproliferative Disorder in Rheumatoid Arthritis Patients. Am J Surg Pathol 2018; 42:936-950. [DOI: 10.1097/pas.0000000000001071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Wight JC, Chong G, Grigg AP, Hawkes EA. Prognostication of diffuse large B-cell lymphoma in the molecular era: moving beyond the IPI. Blood Rev 2018; 32:400-415. [PMID: 29605154 DOI: 10.1016/j.blre.2018.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with variable outcomes. Despite the majority of patients being cured with combination chemoimmunotherapy, up to 30% eventually succumb to the disease. Until recently, baseline prognostic assessment has centred on the International Prognostic Index (IPI), although this index is yet to impact strongly on treatment choice. Molecular features such as cell of origin, MYC and BCL-2 genetic alterations and protein overexpression were identified over a decade ago, yet their prognostic value is still not fully elucidated. Adding complexity are the plethora of new clinical, biological and molecular prognostic markers described in the recent literature, most of which lack independent validation, likely act as surrogate markers for those already in common use and have yet to substantially impact on therapeutic decision making. This review comprehensively assesses the value of individual prognostic markers in the clinical setting and their potential to predict response to novel agents, and ways to optimise their use in future research.
Collapse
Affiliation(s)
- Joel C Wight
- Olivia Newton John Cancer Research and Wellness Centre, Austin Health, Heidelberg, Australia.
| | - Geoffrey Chong
- Olivia Newton John Cancer Research and Wellness Centre, Austin Health, Heidelberg, Australia.
| | - Andrew P Grigg
- Olivia Newton John Cancer Research and Wellness Centre, Austin Health, Heidelberg, Australia; University of Melbourne, Melbourne, Australia.
| | - Eliza A Hawkes
- Olivia Newton John Cancer Research and Wellness Centre, Austin Health, Heidelberg, Australia; University of Melbourne, Melbourne, Australia; Eastern Health, Box Hill, Australia.
| |
Collapse
|
34
|
Liu W, Ye H, Liu YF, Xu CQ, Zhong YX, Tian T, Ma SW, Tao H, Li L, Xue LC, He HQ. Transcriptome-derived stromal and immune scores infer clinical outcomes of patients with cancer. Oncol Lett 2018. [PMID: 29541203 PMCID: PMC5835954 DOI: 10.3892/ol.2018.7855] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The stromal and immune cells that form the tumor microenvironment serve a key role in the aggressiveness of tumors. Current tumor-centric interpretations of cancer transcriptome data ignore the roles of stromal and immune cells. The aim of the present study was to investigate the clinical utility of stromal and immune cells in tissue-based transcriptome data. The 'Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data' (ESTIMATE) algorithm was used to probe diverse cancer datasets and the fraction of stromal and immune cells in tumor tissues was scored. The association between the ESTIMATE scores and patient survival data was asessed; it was indicated that the two scores have implications for patient survival, metastasis and recurrence. Analysis of a colorectal cancer progression dataset revealed that decreased levels immune cells could serve an important role in cancer progression. The results of the present study indicated that trasncriptome-derived stromal and immune scores may be a useful indicator of cancer prognosis.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China.,Department of Pathology, Human Centrifuge Medical Training Center, Institute of Aviation Medicine of Chinese PLA Air Force, Beijing 100089, P.R. China
| | - Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Ying-Fu Liu
- Department of Cell Biology, Logistics University of Chinese Armed Police Forces, Tianjin 300309, P.R. China
| | - Chao-Qun Xu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Yue-Xian Zhong
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Tian Tian
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Shi-Wei Ma
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Huan Tao
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ling Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Li-Chun Xue
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Hua-Qin He
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
35
|
Tirado-Gonzalez I, Czlonka E, Nevmerzhitskaya A, Soetopo D, Bergonzani E, Mahmoud A, Contreras A, Jeremias I, Platzbecker U, Bourquin JP, Kloz U, Van der Hoeven F, Medyouf H. CRISPR/Cas9-edited NSG mice as PDX models of human leukemia to address the role of niche-derived SPARC. Leukemia 2017; 32:1049-1052. [PMID: 29209043 PMCID: PMC7703605 DOI: 10.1038/leu.2017.346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- I Tirado-Gonzalez
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - E Czlonka
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - A Nevmerzhitskaya
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - D Soetopo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - E Bergonzani
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - A Mahmoud
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - A Contreras
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - I Jeremias
- Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Münich, German Center for Environmental Health (HMGU), Munich, Germany.,German Cancer Consortium, DKTK Partner Site Munich, Heidelberg, Germany
| | - U Platzbecker
- University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium, DKTK Partner Site Dresden, Heidelberg, Germany
| | - J P Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - U Kloz
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - F Van der Hoeven
- Transgenic Service, German Cancer Research Center, Heidelberg, Germany
| | - H Medyouf
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium, DKTK Partner Site Frankfurt/Mainz, Heidelberg, Germany.,Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
36
|
Hong J, Kim SJ, Chang MH, Kim JA, Kwak JY, Kim JS, Yoon DH, Lee WS, Do YR, Kang HJ, Eom HS, Park Y, Won JH, Mun YC, Kim HJ, Kwon JH, Kong JH, Oh SY, Lee S, Bae SH, Yang DH, Jun HJ, Lee HS, Yun HJ, Lee SI, Kim MK, Yi JH, Lee JH, Kim WS, Suh C. Improved prognostic stratification using NCCN- and GELTAMO-international prognostic index in patients with diffuse large B-cell lymphoma. Oncotarget 2017; 8:92171-92182. [PMID: 29190906 PMCID: PMC5696172 DOI: 10.18632/oncotarget.20988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/27/2017] [Indexed: 12/30/2022] Open
Abstract
The National Comprehensive Cancer Network (NCCN)-International Prognostic Index (IPI) and GELTAMO (Grupo Español de Linfomas/Trasplante Autólogo de Médula Ósea)-IPI were developed to enable better risk prediction of patients with diffuse large B-cell lymphoma (DLBCL). The present study compared the effectiveness of risk prediction between IPI, NCCN-IPI, and GELTAMO-IPI in patients with DLBCL particularly in terms of determining high-risk patients. Among 439 patients who were enrolled to a prospective DLBCL cohort treated with R-CHOP immunochemotherapy, risk groups were classified according to the three IPIs and the prognostic significance of individual IPI factors and IPI models were analyzed and compared. All three IPI effectively separated the analyzed patients into four risk groups according to overall survival (OS). Estimated 5-year OS of patients classified as high-risk according to the IPI was 45.7%, suggesting that the IPI is limited in the selection of patients who are expected to have a poor outcome. In contrast, the 5-year OS of patients stratified as high-risk according to NCCN- and GELTAMO-IPI was 31.4% and 21.9%, respectively. The results indicate that NCCN- and GELTAMO-IPI are better than the IPI in predicting patients with poor prognosis, suggesting the superiority of enhanced, next-generation IPIs for DLBCL.
Collapse
Affiliation(s)
- Junshik Hong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Seok Jin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Myung Hee Chang
- Department of Hematology-Oncology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Jeong-A Kim
- Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Yong Kwak
- Department of Internal Medicine, Chonbuk National University Medical School & Hospital, Jeonju, South Korea
| | - Jin Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Won Sik Lee
- Department of Internal Medicine, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan, South Korea
| | - Young Rok Do
- Division of Hematology-Oncology, Department of Medicine, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Hye Jin Kang
- Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hyeon-Seok Eom
- Hematology-Oncology Clinic, National Cancer Center, Goyang, South Korea
| | - Yong Park
- Department of Internal Medicine, Korea University Anam Hospital, College of Medicine, Seoul, South Korea
| | - Jong-Ho Won
- Department of Internal Medicine, Soon Chun Hyang University, Seoul, South Korea
| | - Yeung-Chul Mun
- Department of Internal Medicine, Ewha Womans University, Seoul, South Korea
| | - Hyo Jung Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jung Hye Kwon
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Jee Hyun Kong
- Division of Hematology-Oncology, Department of Medicine, Wonju Severance Christian Hospital, Yonsei University College of Medicine, Wonju, South Korea
| | - Sung Yong Oh
- Department of Internal Medicine, Dong-A University Hospital, Busan, South Korea
| | - Sunah Lee
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, South Korea
| | - Sung Hwa Bae
- Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - Deok-Hwan Yang
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Jeollanamdo, South Korea
| | - Hyun Jung Jun
- Department of Internal Medicine, Seoul Medical Center, Seoul, South Korea
| | - Ho Sup Lee
- Department of Internal Medicine, Kosin University Gospel Hospital, Busan, South Korea
| | - Hwan Jung Yun
- Department of Hemato-Oncology, Chungnam National University Hospital, Daejeon, South Korea
| | - Soon Il Lee
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, South Korea
| | - Min Kyoung Kim
- Department of Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jun Ho Yi
- Department of Internal Medicine, Chung Ang University, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, South Korea
| | - Won Seog Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Cheolwon Suh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
Goyal S, Oak E, Luo J, Cashen AF, Carson K, Fehniger T, DiPersio J, Bartlett NL, Wagner-Johnston ND. Minimal activity of nanoparticle albumin-bound (nab) paclitaxel in relapsed or refractory lymphomas: results of a phase-I study. Leuk Lymphoma 2017; 59:357-362. [PMID: 28597723 DOI: 10.1080/10428194.2017.1330954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Compared with solvent-based taxanes, nanoparticle albumin-bound (nab®) paclitaxel has demonstrated improved efficacy and tolerability in several solid tumor malignancies. Studies evaluating nab paclitaxel in patients with lymphoma are lacking. In this planned phase-I/phase-II study, we sought to determine the safety and efficacy of nab-paclitaxel in patients with relapsed/refractory (R/R) lymphoma. Eligible patients (R/R to ≥2 prior systemic therapies) received weekly nab-paclitaxel on days 1, 8 and 15 every 28 days. Dosing was initiated at 100 mg/m2 with dose escalations in 25 mg/m2 increments up to 150 mg/m2 in a classic 3 + 3 design. Twenty heavily pretreated patients (median 5 prior regimens), including 65% with refractory disease, enrolled. The maximum dose tested was well tolerated and grade 3/4 hematologic adverse events (neutropenia 25%, thrombocytopenia 20% and anemia 15%) were modest. The overall response rate was 10% with two partial responses, leading to a decision to close the study prematurely.
Collapse
Affiliation(s)
- Sagun Goyal
- a St. Louis University , St. Louis , MO , USA
| | - Eunhye Oak
- b Siteman Comprehensive Cancer Center, Washington University , St. Louis , MO , USA
| | - Jingqin Luo
- b Siteman Comprehensive Cancer Center, Washington University , St. Louis , MO , USA.,c Division of Public Health Sciences, Department of Surgery , Washington University Biostatistics , St. Louis , MO , USA
| | - Amanda F Cashen
- b Siteman Comprehensive Cancer Center, Washington University , St. Louis , MO , USA
| | - Kenneth Carson
- b Siteman Comprehensive Cancer Center, Washington University , St. Louis , MO , USA
| | - Todd Fehniger
- b Siteman Comprehensive Cancer Center, Washington University , St. Louis , MO , USA
| | - John DiPersio
- b Siteman Comprehensive Cancer Center, Washington University , St. Louis , MO , USA
| | - Nancy L Bartlett
- b Siteman Comprehensive Cancer Center, Washington University , St. Louis , MO , USA
| | | |
Collapse
|
38
|
B-cell Function Gene Mutations in Diffuse Large B-cell Lymphoma: A Retrospective Cohort Study. EBioMedicine 2017; 16:106-114. [PMID: 28153771 PMCID: PMC5474506 DOI: 10.1016/j.ebiom.2017.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous subtype of non-Hodgkin lymphoma. In addition to clinical and immunophenotypic characteristics, recurrent gene mutations have recently been identified in patients with DLBCL using next-generation sequencing technologies. The aim of this study is to investigate the clinical relevance of B-cell function gene mutations in DLBCL. Clinical analysis was performed on 680 Chinese DLBCL patients (146 non-CR and 534 CR cases) treated with six cycles of 21-day R-CHOP (Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone), alone or followed by two additional doses of rituximab consolidation on patients' own intention. Somatic mutations of B-cell function genes were further screened on 275 (71 non-CR and 204 CR) cases with available tumor samples by targeted sequencing, including genes involved in B-cell receptors (BCRs) pathway (CARD11, LYN, CD79A, and CD79B), Toll-like receptors (TLRs) pathway (MYD88), and tumor necrotic factor receptor (TNFR) pathway (TRAF2 and TNFAIP3). B-cell function gene mutations occurred in 44.0% (121/275) of DLBCL patients. The TLRs and TNFR related gene mutations were more frequently observed in non-CR patients (p = 0.019 and p = 0.032, respectively). BCRs related gene mutations, as well as revised IPI (R-IPI) and double BCL-2/MYC expression, were independently related to short progression-free survival in DLBCL after CR. The adverse prognostic effect of BCRs related gene mutations could be overcome by two additional doses of rituximab consolidation. These results highlight the molecular heterogeneity of DLBCL and identify a significant role of B-cell function gene mutations on lymphoma progression and response to rituximab in DLBCL. Next-generation sequencing technologies permit rapid screening of gene mutations. TLRs and TNFR related gene mutations indicate poor response to R-CHOP in DLBCL. BCRs related gene mutations could be overcome by prolonged rituximab consolidation.
We performed a retrospective study and assessed B-cell function gene mutations in a large cohort of Chinese patients with diffuse large B-cell lymphoma (DLBCL). Patients not achieving complete remission show significant increased TLRs (MYD88) and TNFR related gene mutations (TRAF2, TNFAIP3). Patients with BCRs related gene mutations (CARD11, LYN, CD79A, CD79B) display improved progression-free survival from additional two doses of rituximab, along with those of low-risk revised International Prognostic Index or negative for double BCL-2/MYC expression. Our study highlights the molecular heterogeneity of DLBCL and provides clinical significance of B-cell function gene mutations in guiding risk stratification treatment in DLBCL.
Collapse
|
39
|
Carreras J, Kikuti YY, Beà S, Miyaoka M, Hiraiwa S, Ikoma H, Nagao R, Tomita S, Martin-Garcia D, Salaverria I, Sato A, Ichiki A, Roncador G, Garcia JF, Ando K, Campo E, Nakamura N. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in DLBC. Histopathology 2017; 70:595-621. [DOI: 10.1111/his.13106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Joaquim Carreras
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Yara Y Kikuti
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Sílvia Beà
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Masashi Miyaoka
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Shinichiro Hiraiwa
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Haruka Ikoma
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Ryoko Nagao
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Sakura Tomita
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - David Martin-Garcia
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Itziar Salaverria
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Ai Sato
- Department of Hematology and Oncology; Tokai University; School of Medicine; Kanagawa Japan
| | - Akifumi Ichiki
- Department of Hematology and Oncology; Tokai University; School of Medicine; Kanagawa Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit; Spanish National Cancer Research Centre (CNIO); Madrid Spain
| | - Juan F Garcia
- Department of Pathology; MD Anderson Cancer Center Madrid; Madrid Spain
| | - Kiyoshi Ando
- Department of Hematology and Oncology; Tokai University; School of Medicine; Kanagawa Japan
| | - Elias Campo
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Naoya Nakamura
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| |
Collapse
|
40
|
Abdou AG, Asaad N, Kandil M, Shabaan M, Shams A. Significance of stromal-1 and stromal-2 signatures and biologic prognostic model in diffuse large B-cell lymphoma. Cancer Biol Med 2017; 14:151-161. [PMID: 28607806 PMCID: PMC5444927 DOI: 10.20892/j.issn.2095-3941.2017.0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective : Diffuse Large B Cell Lymphoma (DLBCL) is a heterogeneous group of tumors with different biological and clinical characteristics that have diverse clinical outcomes and response to therapy. Stromal-1 signature of tumor microenvironment of DLBCL represents extracellular matrix deposition and histiocytic infiltrate, whereas stromal-2 represents angiogenesis that could affect tumor progression. Methods : The aim of the present study is to assess the significance of stromal-1 signature using SPARC-1 and stromal-2 signature using CD31 expression and then finally to construct biologic prognostic model (BPM) in 60 cases of DLBCL via immunohistochemistry. Results : Microvessel density (P<0.05) and SPARC percentage of expression (P<0.001) were higher in DLBCL, including germinal and nongerminal cases, compared with reactive follicular hyperplasia. High microvessel density was significantly associated with splenic involvement (P=0.008), high mitotic count (P=0.045), and presence of capsular invasion (P=0.035). Percentage of SPARC expression was significantly associated with splenic involvement (P=0.03). Constructing BPM showed that 42 cases (70%) were of low biologic score (0–1) and 18 cases (30%) were of high biologic score (2–3). Low BPM cases showed less probability for splenic involvement (P=0.04) and a higher rate of complete response to therapy compared with high score cases (P=0.08).
Conclusions : The DLBCL microenvironment could modulate tumor progression behavior since angiogenesis and SPARC positive stromal cells promote dissemination by association with spleen involvement and capsular invasion. Biologic prognostic models, including modified BPM, which considered cell origin of DLBCL and stromal signature pathways, could determine DLBCL progression and response to therapy.
Collapse
Affiliation(s)
- Asmaa Gaber Abdou
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| | - Nancy Asaad
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| | - Mona Kandil
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| | - Mohammed Shabaan
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| | - Asmaa Shams
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| |
Collapse
|
41
|
He M, Chen K, Li S, Zhang S, Zheng J, Hu X, Gao L, Chen J, Song X, Zhang W, Wang J, Yang J. Clinical Significance of "Double-hit" and "Double-protein" expression in Primary Gastric B-cell Lymphomas. J Cancer 2016; 7:1215-25. [PMID: 27390596 PMCID: PMC4934029 DOI: 10.7150/jca.15395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIMS: Primary gastric B-cell lymphoma is the second most common malignancy of the stomach. There are many controversial issues about its diagnosis, treatment and clinical management. “Double-hit” and “double-protein” involving gene rearrangement and protein expression of c-Myc and bcl2/bcl6 are the most used terms to describe DLBCL poor prognostic factors in recent years. However, very little is known about the role of these prognostic factors in primary gastric B-cell lymphomas. This study aims to obtain a molecular pathology prognostic model of gastric B-cell lymphoma for clinical stratified management by evaluating how the “double-hit” and “double-protein” in tumor cells as well as microenvironmental reaction of tumor stromal tissue affect clinical outcome in primary gastric B-cell lymphomas. METHODS: Data and tissues of 188 cases diagnosed with gastric B-cell lymphomas were used in this study. Tumor tissue microarray (TMA) of formalin fixed and paraffin embedded (FFPE) tissues was constructed for fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) analysis with a serial of biomarkers containing MYC, BCL2, BCL6, CD31, SPARC, CD10, MUM1 and Ki-67. Modeled period analysis was used to estimate 3-year and 5-year overall survival (OS) and disease-free survival (DFS) distributions. RESULTS: There was no definite “double-hit” case though the gene rearrangement of c-Myc (5.9%), bcl2 (0.1%) and bcl6 (7.4%) was found in gastric B-cell lymphomas. The gene amplification or copy gains of c-Myc (10.1%), bcl-2 (17.0%) and bcl-6 (0.9%) were present in these lymphomas. There were 12 cases of the lymphomas with the “double-protein” expression of MYC and BCL2/BCL6. All patients with “double-protein” gastric B-cell lymphomas had poor outcome compared with those without. More importantly, “MYC-BCL2-BCL6” negative group of gastric B-cell lymphoma patients had favorable clinical outcome regardless clinical stage, pathological types and therapeutic modalities. And the similar better prognosis was found in the cases with low microvessel density (MVD) in tumor tissue and high expression of SPARC (SPARC≥5%) in stromal cells. CONCLUSIONS: “Double-hit” lymphoma was rare among primary gastric lymphoma, while patients with multiple gene amplification and/or copy gains of c-Myc, bcl2 and bcl6, and “double-protein” gastric B-cell lymphomas had a poor clinical outcome. In addition, patients with MYC, BCL2 and BCL6 expression negative or low MVD in tumor tissue with high expression of SPARC in stromal cells could have better prognosis than other gastric B-cell lymphomas regardless of their clinical stage and pathological types. These results would be of very importance for clinical stratified management and precision medicine of gastric B-cell lymphomas.
Collapse
Affiliation(s)
- Miaoxia He
- 1. Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, CHINA; 2. Molecular Pathology, Cellular & Molecular Pathology Branch, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Keting Chen
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Suhong Li
- 4. Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, CHINA
| | - Shimin Zhang
- 5. Division of Molecular Pathology, Joint Pathology Center, Washington, DC 20817, USA
| | - Jianming Zheng
- 1. Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, CHINA
| | - Xiaoxia Hu
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Lei Gao
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Jie Chen
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Xianmin Song
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Weiping Zhang
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Jianmin Wang
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Jianmin Yang
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| |
Collapse
|
42
|
Abstract
Abstract
The diffuse aggressive large B-cell lymphomas are a heterogeneous group of B-cell malignancies. Although many are readily recognized due to characteristic clinical and pathologic features, several problematic areas still exist in diagnosis of these lymphomas due to a variety of reasons that include imprecise or difficult-to-apply diagnostic criteria, gaps in our understanding of lymphoma biology, and limitations in technologies available in the clinical laboratory compared to the research laboratory. This may result in some degree of confusion in the pathology report, particularly if the issues are not clearly explained, leading to frustration or misinterpretation on the part of the reader. In this review, I will discuss the pathologic features of a subset of the WHO 2008 classification diffuse aggressive large B-cell lymphomas, focusing on areas in which difficulties exist in diagnosis and/or biomarker marker assessment. A deeper understanding of the issues and areas of uncertainty due to limitations in our knowledge about the biology of these diseases should lead to better communication between pathologists and clinicians.
Collapse
|
43
|
Kridel R, Steidl C, Gascoyne RD. Tumor-associated macrophages in diffuse large B-cell lymphoma. Haematologica 2015; 100:143-5. [PMID: 25638802 DOI: 10.3324/haematol.2015.124008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Robert Kridel
- Department of Lymphoid Cancer Research, BC Cancer Agency and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christian Steidl
- Department of Lymphoid Cancer Research, BC Cancer Agency and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Randy D Gascoyne
- Department of Lymphoid Cancer Research, BC Cancer Agency and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
44
|
Ahmadzadeh V, Tofigh R, Farajnia S, Pouladi N. The Central Role for Microenvironment in B-Cell Malignancies: Recent Insights into Synergistic Effects of its Therapeutic Targeting and Anti-CD20 Antibodies. Int Rev Immunol 2015; 35:136-55. [DOI: 10.3109/08830185.2015.1077830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Coutinho R, Clear AJ, Mazzola E, Owen A, Greaves P, Wilson A, Matthews J, Lee A, Alvarez R, da Silva MG, Cabeçadas J, Neuberg D, Calaminici M, Gribben JG. Revisiting the immune microenvironment of diffuse large B-cell lymphoma using a tissue microarray and immunohistochemistry: robust semi-automated analysis reveals CD3 and FoxP3 as potential predictors of response to R-CHOP. Haematologica 2014; 100:363-9. [PMID: 25425693 DOI: 10.3324/haematol.2014.110189] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene expression studies have identified the microenvironment as a prognostic player in diffuse large B-cell lymphoma. However, there is a lack of simple immune biomarkers that can be applied in the clinical setting and could be helpful in stratifying patients. Immunohistochemistry has been used for this purpose but the results are inconsistent. We decided to reinvestigate the immune microenvironment and its impact using immunohistochemistry, with two systems of image analysis, in a large set of patients with diffuse large B-cell lymphoma. Diagnostic tissue from 309 patients was arrayed onto tissue microarrays. Results from 161 chemoimmunotherapy-treated patients were used for outcome prediction. Positive cells, percentage stained area and numbers of pixels/area were quantified and results were compared with the purpose of inferring consistency between the two semi-automated systems. Measurement cutpoints were assessed using a recursive partitioning algorithm classifying results according to survival. Kaplan-Meier estimators and Fisher exact tests were evaluated to check for significant differences between measurement classes, and for dependence between pairs of measurements, respectively. Results were validated by multivariate analysis incorporating the International Prognostic Index. The concordance between the two systems of image analysis was surprisingly high, supporting their applicability for immunohistochemistry studies. Patients with a high density of CD3 and FoxP3 by both methods had a better outcome. Automated analysis should be the preferred method for immunohistochemistry studies. Following the use of two methods of semi-automated analysis we suggest that CD3 and FoxP3 play a role in predicting response to chemoimmunotherapy in diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Rita Coutinho
- Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Andrew J Clear
- Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Emanuele Mazzola
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew Owen
- Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, UK
| | - Paul Greaves
- Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Andrew Wilson
- Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Janet Matthews
- Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Abigail Lee
- Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, UK
| | - Rute Alvarez
- Department of Hematology, Portuguese Institute of Oncology, Lisbon, Portugal
| | | | - José Cabeçadas
- Department of Pathology, Portuguese Institute of Oncology, Lisbon, Portugal
| | - Donna Neuberg
- Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, UK
| | - Maria Calaminici
- Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, UK
| | - John G Gribben
- Department of Hemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| |
Collapse
|
46
|
Abstract
B cell lymphomas are cancers that arise from cells that depend on numerous highly orchestrated interactions with immune and stromal cells in the course of normal development. Despite the recent focus on dissecting the genetic aberrations within cancer cells, it has been increasingly recognized that tumour cells retain a range of dependence on interactions with the non-malignant cells and stromal elements that constitute the tumour microenvironment. A fundamental understanding of these interactions gives insight into the pathogenesis of most B cell lymphomas and, moreover, identifies novel therapeutic opportunities for targeting oncogenic pathways, both now and in the future.
Collapse
Affiliation(s)
- David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Randy D Gascoyne
- 1] Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada. [2] Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, Canada
| |
Collapse
|
47
|
Nikoo S, Ebtekar M, Jeddi-Tehrani M, Shervin A, Bozorgmehr M, Vafaei S, Kazemnejad S, Zarnani AH. Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics. Mol Hum Reprod 2014; 20:905-18. [PMID: 24939730 DOI: 10.1093/molehr/gau044] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Retrograde flow of menstrual blood cells during menstruation is considered as the dominant theory for the development of endometriosis. Moreover, current evidence suggests that endometrial-derived stem cells are key players in the pathogenesis of endometriosis. In particular, endometrial stromal stem cells have been suggested to be involved in the pathogenesis of this disease. Here, we aimed to use menstrual blood, as a novel source of endometrial stem cells, to investigate whether stromal stem cells from endometriosis (E-MenSCs) and non-endometriosis (NE-MenSCs) women differed regarding their morphology, CD marker expression pattern, proliferation, invasion and adhesion capacities and their ability to express certain immunomodulatory molecules. E-MenSCs were morphologically different from NE-MenSCs and showed higher expression of CD9, CD10 and CD29. Furthermore, E-MenSCs had higher proliferation and invasion potentials compared with NE-MenSCs. The amount of indoleamine 2,3-dioxygenase-1 (IDO1) and cyclooxygenase-2 (COX-2) in E-MenSCs co-cultured with allogenic peripheral blood mononuclear cells (PBMCs) was shown to be higher both at the gene and protein levels, and higher IDO1 activity was detected in the endometriosis group. However, NE-MenSCs revealed increased concentrations of forkhead transcription factor-3 (FOXP3) when compared with E-MenSCs. Nonetheless, interferon (IFN)-γ, Interleukin (IL)-10 and monocyte chemoattractant protein-1 (MCP-1) levels were higher in the supernatant of E-MenSCs-PBMC co-cultures. Here, we showed that there are inherent differences between E-MenSCs and NE-MenSCs. These findings propose the key role MenSCs could play in the pathogenesis of endometriosis and further support the retrograde and stem cell theories of endometriosis. Hence, considering its renewable and easily available nature, menstrual blood could be viewed as a reliable and inexpensive material for studies addressing the cellular and molecular aspects of endometriosis.
Collapse
Affiliation(s)
- Shohreh Nikoo
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, PO Box 19615-1177, Tehran, Iran
| | - Massoumeh Ebtekar
- Department of Immunology, Faculty of Medicine, Tarbiat Modares University, PO Box 14117-13116, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Adel Shervin
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, PO Box 19615-1177, Tehran, Iran
| | - Mahmood Bozorgmehr
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sedigheh Vafaei
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somayeh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, PO Box 19615-1177, Tehran, Iran Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence. Blood 2014; 123:4054-63. [PMID: 24833352 DOI: 10.1182/blood-2013-10-533711] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Around birth, hematopoietic stem cells (HSCs) expanding in the fetal liver migrate to the developing bone marrow (BM) to mature and expand. To identify the molecular processes associated with HSCs located in the 2 different microenvironments, we compared the expression profiles of HSCs present in the liver and BM of perinatal mice. This revealed the higher expression of a cluster of extracellular matrix-related genes in BM HSCs, with secreted protein acidic and rich in cysteine (SPARC) being one of the most significant ones. This extracellular matrix protein has been described to be involved in tissue development, repair, and remodeling, as well as metastasis formation. Here we demonstrate that SPARC-deficient mice display higher resistance to serial treatment with the chemotherapeutic agent 5-fluorouracil (5-FU). Using straight and reverse chimeras, we further show that this protective effect is not due to a role of SPARC in HSCs, but rather is due to its function in the BM niche. Although the kinetics of recovery of the hematopoietic system is normal, HSCs in a SPARC-deficient niche show an accelerated return to quiescence, protecting them from the lethal effects of serial 5-FU treatment. This may become clinically relevant, as SPARC inhibition and its protective effect on HSCs could be used to optimize chemotherapy schemes.
Collapse
|
49
|
Brandt S, Montagna C, Georgis A, Schüffler PJ, Bühler MM, Seifert B, Thiesler T, Curioni-Fontecedro A, Hegyi I, Dehler S, Martin V, Tinguely M, Soldini D. The combined expression of the stromal markers fibronectin and SPARC improves the prediction of survival in diffuse large B-cell lymphoma. Exp Hematol Oncol 2013; 2:27. [PMID: 24499539 PMCID: PMC3852975 DOI: 10.1186/2162-3619-2-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/30/2013] [Indexed: 01/01/2023] Open
Abstract
Background In diffuse large B-cell lymphomas, gene expression profiling studies attributed a major biologic role to non-neoplastic cells of the tumour microenvironment as its composition and characteristics were shown to predict survival. In particular, the expression of selected genes encoding components of the extracellular matrix was reported to be associated with clinical outcome. Nevertheless, the translation of these data into robust, routinely applicable immunohistochemical markers is still warranted. Therefore, in this study, we analysed the combination of the expression of the extracellular matrix components Fibronectin and SPARC on formalin-fixed paraffin embedded tissue derived from 173 patients with DLBCL in order to recapitulate gene expression profiling data. Results The expression of Fibronectin and SPARC was detected in 77/173 (44.5%) and 125/173 (72.3%) cases, respectively, and 55/173 (31.8%) cases were double positive. Patients with lymphomas expressing Fibronectin showed significantly longer overall survival when compared to negative ones (6.3 versus 3.6 years). Moreover, patients with double positive lymphomas also presented with significantly longer overall survival when compared with the remaining cases (11.6 versus 3.6 years) and this combined expression of both markers results in a better association with overall survival data than the expression of SPARC or Fibronectin taken separately (Hazard ratio 0.41, 95% confidence interval 0.17 to 0.95, p = 0.037). Finally, neither Fibronectin nor SPARC expression was associated with any of the collected clinico-pathological parameters. Conclusions The combined immunohistochemical assessment of Fibronectin and SPARC, two components of the extracellular matrix, represents an important tool for the prediction of survival in diffuse large B-cell lymphomas. Our study suggests that translation of gene expression profiling data on tumour microenvironment into routinely applicable immunohistochemical markers is a useful approach for a further characterization of this heterogeneous type of lymphoma.
Collapse
Affiliation(s)
- Simone Brandt
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Chiara Montagna
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Antoin Georgis
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marco M Bühler
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Burkhardt Seifert
- Division of Biostatistics, Institute for Social and Preventive Medicine, University of Zurich, Zurich, Switzerland
| | - Thore Thiesler
- Institute of Pathology, University of Bonn, Bonn, Germany
| | | | - Ivan Hegyi
- Institute of Pathology, Locarno, Switzerland
| | - Silvia Dehler
- Cancer Registry, Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marianne Tinguely
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland.,Kempf and Pfaltz, Histologische Diagnostik, Zurich 8042, Switzerland
| | - Davide Soldini
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Perry AM, Crockett D, Dave BJ, Althof P, Winkler L, Smith LM, Aoun P, Chan WC, Fu K, Greiner TC, Bierman P, Gregory Bociek R, Vose JM, Armitage JO, Weisenburger DD. B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and burkitt lymphoma: study of 39 cases. Br J Haematol 2013; 162:40-9. [DOI: 10.1111/bjh.12343] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/04/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - David Crockett
- Department of Internal Medicine; University of Nebraska Medical Center; Omaha; NE; USA
| | - Bhavana J. Dave
- Human Genetics Laboratory; Munroe-Meyer Institute; University of Nebraska Medical Center; Omaha; NE; USA
| | - Pamela Althof
- Human Genetics Laboratory; Munroe-Meyer Institute; University of Nebraska Medical Center; Omaha; NE; USA
| | - Lisa Winkler
- Human Genetics Laboratory; Munroe-Meyer Institute; University of Nebraska Medical Center; Omaha; NE; USA
| | - Lynette M. Smith
- Department of Biostatistics; University of Nebraska Medical Center; Omaha; NE; USA
| | - Patricia Aoun
- Department of Pathology; City of Hope National Medical Center; Duarte; CA; USA
| | - Wing C. Chan
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Kai Fu
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Timothy C. Greiner
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Phillip Bierman
- Department of Internal Medicine; University of Nebraska Medical Center; Omaha; NE; USA
| | - Robert Gregory Bociek
- Department of Internal Medicine; University of Nebraska Medical Center; Omaha; NE; USA
| | - Julie M. Vose
- Department of Internal Medicine; University of Nebraska Medical Center; Omaha; NE; USA
| | - James O. Armitage
- Department of Internal Medicine; University of Nebraska Medical Center; Omaha; NE; USA
| | | |
Collapse
|