1
|
Gorgey AS, Khalil RE, Carter W, Ballance B, Gill R, Khan R, Goetz L, Lavis T, Sima AP, Adler RA. Effects of two different paradigms of electrical stimulation exercise on cardio-metabolic risk factors after spinal cord injury. A randomized clinical trial. Front Neurol 2023; 14:1254760. [PMID: 37808500 PMCID: PMC10556465 DOI: 10.3389/fneur.2023.1254760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Objective To examine the combined effects of neuromuscular electrical stimulation-resistance training (NMES-RT) and functional electrical stimulation-lower extremity cycling (FES-LEC) compared to passive movement training (PMT) and FES-LEC in adults with SCI on (1) oxygen uptake (VO2), insulin sensitivity and glucose disposal in adults with SCI; (2) Metabolic and inflammatory biomarkers; (3) skeletal muscle, intramuscular fat (IMF) and visceral adipose tissue (VAT) cross-sectional areas (CSAs). Materials and methods Thirty-three participants with chronic SCI (AIS A-C) were randomized to 24 weeks of NMES-RT + FES or PMT + FES. The NMES-RT + FES group underwent 12 weeks of evoked surface NMES-RT using ankle weights followed by an additional 12 weeks of progressive FES-LEC. The control group, PMT + FES performed 12 weeks of passive leg extension movements followed by an additional 12 weeks of FES-LEC. Measurements were performed at baseline (BL; week 0), post-intervention 1 (P1; week 13) and post-intervention 2 (P2; week 25) and included FES-VO2 measurements, insulin sensitivity and glucose effectiveness using the intravenous glucose tolerance test; anthropometrics and whole and regional body composition assessment using dual energy x-ray absorptiometry (DXA) and magnetic resonance imaging to measure muscle, IMF and VAT CSAs. Results Twenty-seven participants completed both phases of the study. NMES-RT + FES group showed a trend of a greater VO2 peak in P1 [p = 0.08; but not in P2 (p = 0.25)] compared to PMT + FES. There was a time effect of both groups in leg VO2 peak. Neither intervention elicited significant changes in insulin, glucose, or inflammatory biomarkers. There were modest changes in leg lean mass following PMT + FES group. Robust hypertrophy of whole thigh muscle CSA, absolute thigh muscle CSA and knee extensor CSA were noted in the NMES-RT + FES group compared to PMT + FES at P1. PMT + FES resulted in muscle hypertrophy at P2. NMES-RT + FES resulted in a decrease in total VAT CSA at P1. Conclusion NMES-RT yielded a greater peak leg VO2 and decrease in total VAT compared to PMT. The addition of 12 weeks of FES-LEC in both groups modestly impacted leg VO2 peak. The addition of FES-LEC to NMES-RT did not yield additional increases in muscle CSA, suggesting a ceiling effect on signaling pathways following NMES-RT. Clinical trial registration identifier NCT02660073.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Refka E. Khalil
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - William Carter
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Boyd Ballance
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
| | - Ranjodh Gill
- Endocrinology Service, Richmond VA Medical Center, Richmond, VA, United States
- Endocrine Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rehan Khan
- Radiology Service, Richmond VA Medical Center, Richmond, VA, United States
| | - Lance Goetz
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Timothy Lavis
- Spinal Cord Injury and Disorders, Richmond VA Medical Center, Richmond, VA, United States
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Adam P. Sima
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert A. Adler
- Endocrinology Service, Richmond VA Medical Center, Richmond, VA, United States
- Endocrine Division, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
2
|
Benefits of 1-Yr Home Training With Functional Electrical Stimulation Cycling in Paraplegia During COVID-19 Crisis. Am J Phys Med Rehabil 2021; 100:1148-1151. [PMID: 34596097 PMCID: PMC8594387 DOI: 10.1097/phm.0000000000001898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT The purpose of this observational study was to report the experience of a 1-yr home training with functional electrical stimulation cycling of a person with T4 American Impairment Scale A paraplegia for 9 yrs, homebound due to the COVID-19 health crisis. The 40-yr-old participant had a three-phase training: V1, isometric stimulation; V2, functional electrical stimulation cycling for 3 sessions/wk; and V3, functional electrical stimulation cycling for 2-4 sessions/wk. Data on general and physical tolerance, health impact, and performance were collected. Borg Scale score relating to fatigue was 10.1 before training and 11.8 after training. The average score for satisfaction at the end of sessions was 8.7. Lean leg mass increased more than 29%, although total bone mineral density dropped by 1.6%. The ventilatory thresholds increased from 19.5 to 29% and the maximum ventilatory peak increased by 9.5%. Rosenberg's Self-esteem Scale score returned to its highest level by the end of training. For the only track event on a competition bike, the pilot covered a distance of 1607.8 m in 17 mins 49 secs. When functional electrical stimulation cycling training is based on a clear and structured protocol, it offers the person with paraplegia the opportunity to practice this activity recreationally and athletically. In times of crisis, this training has proven to be very relevant.
Collapse
|
3
|
Corbin GN, Weaver K, Dolbow DR, Credeur D, Pattanaik S, Stokic DS. Safety and preliminary efficacy of functional electrical stimulation cycling in an individual with cervical cord injury, autonomic dysreflexia, and a pacemaker: Case report. J Spinal Cord Med 2021; 44:613-616. [PMID: 31809247 PMCID: PMC8288131 DOI: 10.1080/10790268.2019.1692180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Context: Functional electric stimulation (FES) cycling is a commonly used therapeutic exercise modality after spinal cord injury (SCI); however, additional precautions must be taken in certain situations. The purpose of this study was to develop and apply a safety monitoring protocol for autonomic dysreflexia (AD) during FES cycling and to determine if an interval-FES cycling program can be safe and beneficial to an individual with cervical SCI, a history of AD, and a non-dependent cardiac pacemaker.The participant was a 36-year-old male with C6 AIS-C SCI sustained 9 years earlier, intermittent AD, and implanted cardiac pacemaker. Ten sessions of interval-FES cycling were performed twice weekly for 5 weeks. Rating of perceived exertion (RPE), blood pressure (BP), oxygen saturation (O2sat), and heart rate (HR) were monitored before, after, and every 5 min during cycling. ECG and cardiac pacemaker were evaluated by a cardiologist after ending the program.Findings: The participant reported self-limited chills 27 times over 10 sessions (19 "light", 3 "moderate", 5 "sharp"). Chills coincided with BP increases 59% of the time and their magnitudes moderately correlated (r = 0.32). The ECG was determined to be normal and the pacemaker fully functional at the end of the study, while blood glucose decreased (111-105 mg/dl), HbA1c levels increased (5.5-5.9%), and resting BP decreased (118/84-108/66 mmHg).Conclusion/Clinical Relevance: A person with cervical SCI, symptomatic AD, and a non-dependent pacemaker can safely participate and benefit from the interval-FES cycling program provided adequate monitoring of symptoms and vital signs.
Collapse
Affiliation(s)
- Gevork N. Corbin
- School of Physical Therapy, Department of Biomedical Sciences, and College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA
| | - Kelsi Weaver
- School of Physical Therapy, Department of Biomedical Sciences, and College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA
| | - David R. Dolbow
- School of Physical Therapy, Department of Biomedical Sciences, and College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA,Correspondence to: David R. Dolbow, PT, DPT, PhD, RKT, Associate Professor, Physical Therapy Program, William Carey University, 710 William Carey Parkway, Hattiesburg, MS 39401, USA; Ph: 601-318-6274.
| | - Daniel Credeur
- School of Kinesiology, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Sambit Pattanaik
- School of Physical Therapy, Department of Biomedical Sciences, and College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA
| | - Dobrivoje S. Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, Mississippi, USA
| |
Collapse
|
4
|
van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J Neuroeng Rehabil 2021; 18:99. [PMID: 34118958 PMCID: PMC8196442 DOI: 10.1186/s12984-021-00882-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The objective of this review was to summarize and appraise evidence on functional electrical stimulation (FES) cycling exercise after spinal cord injury (SCI), in order to inform the development of evidence-based clinical practice guidelines. METHODS PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, SPORTDiscus, and CINAHL were searched up to April 2021 to identify FES cycling exercise intervention studies including adults with SCI. In order to capture the widest array of evidence available, any outcome measure employed in such studies was considered eligible. Two independent reviewers conducted study eligibility screening, data extraction, and quality appraisal using Cochranes' Risk of Bias or Downs and Black tools. Each study was designated as a Level 1, 2, 3 or 4 study, dependent on study design and quality appraisal scores. The certainty of the evidence for each outcome was assessed using GRADE ratings ('High', 'Moderate', 'Low', or 'Very low'). RESULTS Ninety-two studies met the eligibility criteria, comprising 999 adults with SCI representing all age, sex, time since injury, lesion level and lesion completeness strata. For muscle health (e.g., muscle mass, fiber type composition), significant improvements were found in 3 out of 4 Level 1-2 studies, and 27 out of 32 Level 3-4 studies (GRADE rating: 'High'). Although lacking Level 1-2 studies, significant improvements were also found in nearly all of 35 Level 3-4 studies on power output and aerobic fitness (e.g., peak power and oxygen uptake during an FES cycling test) (GRADE ratings: 'Low'). CONCLUSION Current evidence indicates that FES cycling exercise improves lower-body muscle health of adults with SCI, and may increase power output and aerobic fitness. The evidence summarized and appraised in this review can inform the development of the first international, evidence-based clinical practice guidelines for the use of FES cycling exercise in clinical and community settings of adults with SCI. Registration review protocol: CRD42018108940 (PROSPERO).
Collapse
Affiliation(s)
- Jan W van der Scheer
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
- The Healthcare Improvement Studies (THIS) Institute, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Clifford Allbutt Building, Cambridge, CB2 OAH, UK
| | - Victoria L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Sydney E Valentino
- Department of Kinesiology, McMaster University, Room IWC EG115, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Glen M Davis
- Discipline of Exercise and Sport Sciences, Faculty of Medicine and Health, Sydney School of Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chester H Ho
- Division of Physical Medicine & Rehabilitation, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
5
|
Coste CA, Bergeron V, Berkelmans R, Martins EF, Fornusek C, Jetsada A, Hunt KJ, Tong R, Triolo R, Wolf P. Comparison of strategies and performance of functional electrical stimulation cycling in spinal cord injury pilots for competition in the first ever CYBATHLON. Eur J Transl Myol 2017; 27:7219. [PMID: 29299228 PMCID: PMC5745381 DOI: 10.4081/ejtm.2017.7219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 01/25/2023] Open
Abstract
Functional Electrical Stimulation (FES) can elicit muscular contraction and restore motor function in paralyzed limbs. FES is a rehabilitation technique applied to various sensorimotor deficiencies and in different functional situations, e.g. grasping, walking, standing, transfer, cycling and rowing. FES can be combined with mechanical devices. FES-assisted cycling is mainly used in clinical environments for training sessions on cycle ergometers, but it has also been adapted for mobile devices, usually tricycles. In October 2016, twelve teams participated in the CYBATHLON competition in the FES-cycling discipline for persons with motor-complete spinal cord injury. It was the first event of this kind and a wide variety of strategies, techniques and designs were employed by the different teams in the competition. The approaches of the teams are detailed in this special issue. We hope that the knowledge contained herein, together with recent positive results of FES for denervated degenerating muscles, will provide a solid basis to encourage improvements in FES equipment and open new opportunities for many patients in need of safe and effective FES management. We hope to see further developments and/or the benefit of new training strategies at future FES competitions, e.g. at the Cybathlon 2020 (www.cybathlon.ethz.ch).
Collapse
Affiliation(s)
| | | | | | | | | | - Arnin Jetsada
- Department of Biomedical Engineering, Mahidol University, Thailand
| | - Kenneth J. Hunt
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Switzerland
| | - Raymond Tong
- Dept of Biomedical Engineering, The Chinese University of Hong Kong, China
| | - Ronald Triolo
- Case Western Reserve University and the Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| | - Peter Wolf
- Sensory-Motor Systems Lab, ETH Zurich, Switzerland
| |
Collapse
|