1
|
Raslan AMAA, Peters RJ. Exploring evolutionary use of single residue switches for alternative product outcome in class II diterpene cyclases. PHYTOCHEMISTRY 2025; 235:114459. [PMID: 40024494 DOI: 10.1016/j.phytochem.2025.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Class II diterpene cyclases (DTCs) define the widespread labdane-related diterpenoids. These are particularly prevalent in plants due to the requisite production of gibberellin (GA) phytohormones, specifically from gene duplication and neofunctionalization of the relevant DTC. Alteration of product outcome can be predicted/engineered to some extent by changes in the ancestral histidine-asparagine catalytic base dyad found in the ent-copalyl pyrophosphate (ent-CPP) synthases (CPSs) involved in GA biosynthesis. It has been shown such changes can switch product outcome in CPSs, with substitution of alanine for either leading to incorporation of water - i.e., production of 8α-hydroxy-ent-labda-13-en-15-yl pyrophosphate (ent-LPP), while replacing the histidine with tyrosine leads to production of a rearranged product - i.e., ent-kolavenyl pyrophosphate (ent-KPP). Indeed, native ent-KPP synthases from dicots with such substitution have been found, and restoration of the ancestral residue results in production of ent-CPP. Observation of a similar ent-KPP synthase and, strikingly, an ent-LPP synthase with serine in place of the asparagine, along with another DTC with such substitution but still producing ent-CPP, was recently made in non-seed plants. Here the role of these substitutions was examined by ancestral residue restoration. Notably, while this led to the production of ent-CPP in the first two concordant cases, in the latter incongruent DTC this had little effect. This presumably reflects extended adaptation, consistent with its more distant phylogenetic relationship to those from GA biosynthesis. This demonstrates both the utility but also limitations of the ability of changes to the ancestral catalytic base dyad to affect product outcome.
Collapse
Affiliation(s)
- Ahmed M A A Raslan
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50010, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50010, USA.
| |
Collapse
|
2
|
Peters RJ. Between scents and sterols: Cyclization of labdane-related diterpenes as model systems for enzymatic control of carbocation cascades. J Biol Chem 2025; 301:108142. [PMID: 39732168 PMCID: PMC11795633 DOI: 10.1016/j.jbc.2024.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024] Open
Abstract
The citrus scent arises from the volatile monoterpene limonene, whose cyclic nature can be viewed as a miniaturized form of the polycyclic sterol triterpenoids. In particular, these rings are all formed from poly-isoprenyl precursors via carbocation cascades. However, the relevant reactions are initiated by distinct mechanisms, either lysis/ionization of an allylic diphosphate ester bond, as in limonene synthases, or protonation of a terminal olefin or epoxide, as in lanosterol synthases. Labdane-related diterpenoids are unique in their utilization of both types of reactions. With over 7000 such natural products known, this pair of reactions clearly generates privileged scaffolds, hydrocarbon backbones from which biological activity is readily derived. Moreover, the relevant enzymes serve as model systems for terpene cyclization more generally. Indeed, investigation of their enzymatic structure-function relationships has highlighted the importance of catalytic base positioning within the active site cavity in specifying product outcomes. Conversely, comparison to the cyclases for other types of terpenoid natural products suggests new directions for discovery and/or engineering of the catalytic activity of those from labdane-related diterpenoid biosynthesis.
Collapse
Affiliation(s)
- Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
3
|
Wenger ES, Christianson DW. Structure of Bifunctional Variediene Synthase Yields Unique Insight on Biosynthetic Diterpene Assembly and Cyclization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626647. [PMID: 39677668 PMCID: PMC11643100 DOI: 10.1101/2024.12.03.626647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
An unusual family of bifunctional terpene synthases has been discovered in which both catalytic domains - a prenyltransferase and a cyclase - are connected by a long, flexible linker. These enzymes are unique to fungi and catalyze the first committed steps in the biosynthesis of complex terpenoid natural products: the prenyltransferase assembles 5-carbon precursors to form C 20 geranylgeranyl diphosphate (GGPP), and the cyclase converts GGPP into a polycyclic hydrocarbon product. Weak domain-domain interactions as well as linker flexibility render these enzymes refractory to crystallization and challenge their visualization by cryo-EM. Despite these challenges, we now present the first experimentally-determined structure of a massive, 495-kD bifunctional terpene synthase revealing the assembly of all catalytic domains. The cryo-EM structure of variediene synthase from Emericella variecolor (EvVS) exhibits a bollard-like architecture, consisting of a hexameric prenyltransferase core sandwiched between two triads of cyclase domains. Although prenyltransferase and cyclase active sites are relatively close together, enzymological measurements indicate that GGPP is not channeled from one to the other. Surprisingly, however, the individual cyclase domain from another bifunctional diterpene synthase, fusicoccadiene synthase from Phomopsis amygdali , preferentially receives GGPP from the EvVS prenyltransferase in substrate competition experiments. Our previous studies of fusicoccadiene synthase suggest that GGPP channeling occurs through transient binding of cyclase domains to the sides of the prenyltransferase oligomer. The bollard-like architecture of EvVS leaves the sides of the prenyltransferase oligomer open and accessible, suggesting that a non-native cyclase could bind to the sides of the prenyltransferase oligomer to achieve GGPP channeling.
Collapse
|
4
|
González Requena V, Srivastava PL, Miller DJ, Allemann RK. Single Point Mutation Abolishes Water Capture in Germacradien-4-ol Synthase. Chembiochem 2024; 25:e202400290. [PMID: 39031755 PMCID: PMC11610670 DOI: 10.1002/cbic.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
The high-fidelity sesquiterpene cyclase (-)-germacradien-4-ol synthase (GdolS) converts farnesyl diphosphate into the macrocyclic alcohol (-)-germacradien-4-ol. Site-directed mutagenesis was used to decipher the role of key residues in the water control mechanism. Replacement of Ala176, located in the G1/2 helix, with non-polar aliphatic residues of increasing size (valine, leucine, isoleucine and methionine) resulted in the accumulation of the non-hydroxylated products germacrene A and germacrene D. In contrast, hydroxylation was maintained when the polar residues threonine, glutamine or aspartate replaced Ala176. Additionally, although a contribution of His150 to the nucleophilic water addition could be ruled out, the imidazole ring of His150 appears to assist carbocation stabilisation. The results presented here shed light on how hydroxylating sesquiterpene synthases can be engineered to design modified sesquiterpene synthases to reduce the need for further steps in the biocatalytic production of oxygenated sesquiterpenoids.
Collapse
Affiliation(s)
| | | | - David J. Miller
- School of ChemistryMain BuildingCardiff UniversityPark Place, CardiffCF10 3ATUnited Kingdom
| | - Rudolf K. Allemann
- School of ChemistryMain BuildingCardiff UniversityPark Place, CardiffCF10 3ATUnited Kingdom
| |
Collapse
|
5
|
Hubrich F, Kandy SK, Chepkirui C, Padhi C, Mordhorst S, Moosmann P, Zhu T, Gugger M, Chekan JR, Piel J. Ribosomal peptides with polycyclic isoprenoid moieties. Chem 2024; 10:3224-3242. [PMID: 39429465 PMCID: PMC11484575 DOI: 10.1016/j.chempr.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Isoprenoid modifications of proteins and peptides serve fundamental biological functions and are of therapeutic interest. While C15 (farnesyl) and C20 (geranylgeranyl) moieties are prevalent among proteins, known ribosomal peptide prenylations involve shorter-chain units not exceeding farnesyl in size. To our knowledge, cyclized terpene moieties have not been reported from either biomolecule class. Here we used targeted genome mining and heterologous pathway reconstitution to identify ribosomally synthesized and post-translationally modified peptides (RiPPs) with elaborate, cyclized geranylgeranyl modifications. The installing maturases commonly feature fused prenyltransferase-terpene cyclase architectures. We characterized two bifunctional maturases with distinct prenyltransferase folds and identified the terminal product of a cyanobacterial proteusin as an exceptionally complex pseudosteroid-annelated polycyclic peptide. Bioassays suggest modest anti-cyanobacterial activity with the modification being crucial for activity. Genome data predict cyclic isoprenoid units for various RiPP families including proteusin, Nif11, and lasso peptides and thus broader natural and biotechnological compatibility of the maturase system.
Collapse
Affiliation(s)
- Florian Hubrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Present address: Pharmaceutical Institute, Saarland University; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Campus Saarbrücken C2.3, 66123 Saarbrücken, Germany
| | - Sanath K. Kandy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro; Greensboro, NC 27402-6170, United States of America
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Chandrashekhar Padhi
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Present address: Department of Chemistry and Howard Hughes Medical Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Present address: Pharmaceutical Institute, University of Tübingen; Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Philipp Moosmann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Tao Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences; Shandong Energy Institute; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Muriel Gugger
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, F-75015 Paris, France
| | - Jonathan R. Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro; Greensboro, NC 27402-6170, United States of America
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Lead contact: Jörn Piel
| |
Collapse
|
6
|
Chen X, Xu M, Han J, Schmidt-Dannert M, Peters RJ, Chen F. Discovery of bifunctional diterpene cyclases/synthases in bacteria supports a bacterial origin for the plant terpene synthase gene family. HORTICULTURE RESEARCH 2024; 11:uhae221. [PMID: 39398952 PMCID: PMC11469919 DOI: 10.1093/hr/uhae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Abstract
Land plants are well-known producers of terpenoids that play diverse roles in plant-environment interactions. The vast chemical diversity of terpenoids is initiated by terpene synthases. Plants contain a distinct mid-sized terpene synthase gene family termed TPS, which appears to have an ancient origin in a fused bacterial Class I (di)terpene synthase (TS) and Class II diterpene cyclase (DTC), corresponding to the catalytically relevant α-domain and βγ-didomains, respectively. However, while such fused tridomain bifunctional (Class I/II) diterpene cyclases/synthases (DCSs) have been found in plants (and fungi), no examples have been reported from bacteria, leaving the origin of the fusion event initiating the TPS gene family opaque. Here, the discovery of such tridomain bifunctional DCSs in bacteria is reported. Extensive genome mining unearthed five putative bacterial DCSs, with biochemical characterization revealing the expected bifunctional activity for three. The most intriguing was CseDCS from Candidatus sericytochromatia bacterium, which produces ent-kaurene, an intermediate in plant hormone biosynthesis, as this is the hypothesized activity for the ancestral TPS. Unlike the extant functionally equivalent TPSs, it was possible to split CseDCS into separate, independently acting DTC and TS, with the first producing the expected ent-copalyl diphosphate (CPP), serving as a CPP synthase (CPS), while the second converts this to ent-kaurene, serving as a kaurene synthase (KS). Nevertheless, sequence alignment and mutation analysis revealed intriguing similarities between this cyanobacterial fused CPS-KS and functionally equivalent TPSs. Regardless of the exact relationship, the discovery of fused bifunctional DCSs in bacteria supports the hypothesized origin of the plant TPS family from such a bacterial gene.
Collapse
Affiliation(s)
- Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jin Han
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Mark Schmidt-Dannert
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
7
|
Papanikolaou AS, Papaefthimiou D, Matekalo D, Karakousi CV, Makris AM, Kanellis AK. Chemical and transcriptomic analyses of leaf trichomes from Cistus creticus subsp. creticus reveal the biosynthetic pathways of certain labdane-type diterpenoids and their acetylated forms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3431-3451. [PMID: 38520311 PMCID: PMC11156806 DOI: 10.1093/jxb/erae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Labdane-related diterpenoids (LRDs), a subgroup of terpenoids, exhibit structural diversity and significant commercial and pharmacological potential. LRDs share the characteristic decalin-labdanic core structure that derives from the cycloisomerization of geranylgeranyl diphosphate (GGPP). Labdanes derive their name from the oleoresin known as 'Labdanum', 'Ladano', or 'Aladano', used since ancient Greek times. Acetylated labdanes, rarely identified in plants, are associated with enhanced biological activities. Chemical analysis of Cistus creticus subsp. creticus revealed labda-7,13(E)-dien-15-yl acetate and labda-7,13(E)-dien-15-ol as major constituents. In addition, novel labdanes such as cis-abienol, neoabienol, ent-copalol, and one as yet unidentified labdane-type diterpenoid were detected for the first time. These compounds exhibit developmental regulation, with higher accumulation observed in young leaves. Using RNA-sequencing (RNA-seq) analysis of young leaf trichomes, it was possible to identify, clone, and eventually functionally characterize labdane-type diterpenoid synthase (diTPS) genes, encoding proteins responsible for the production of labda-7,13(E)-dien-15-yl diphosphate (endo-7,13-CPP), labda-7,13(E)-dien-15-yl acetate, and labda-13(E)-ene-8α-ol-15-yl acetate. Moreover, the reconstitution of labda-7,13(E)-dien-15-yl acetate and labda-13(E)-ene-8α-ol-15-yl acetate production in yeast is presented. Finally, the accumulation of LRDs in different plant tissues showed a correlation with the expression profiles of the corresponding genes.
Collapse
Affiliation(s)
- Antigoni S Papanikolaou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Dragana Matekalo
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Christina-Vasiliki Karakousi
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), 57001 Thessaloniki, Macedonia, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
8
|
Schwartz R, Zev S, Major DT. Differential Substrate Sensing in Terpene Synthases from Plants and Microorganisms: Insight from Structural, Bioinformatic, and EnzyDock Analyses. Angew Chem Int Ed Engl 2024; 63:e202400743. [PMID: 38556463 DOI: 10.1002/anie.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Terpene synthases (TPSs) catalyze the first step in the formation of terpenoids, which comprise the largest class of natural products in nature. TPSs employ a family of universal natural substrates, composed of isoprenoid units bound to a diphosphate moiety. The intricate structures generated by TPSs are the result of substrate binding and folding in the active site, enzyme-controlled carbocation reaction cascades, and final reaction quenching. A key unaddressed question in class I TPSs is the asymmetric nature of the diphosphate-(Mg2+)3 cluster, which forms a critical part of the active site. In this asymmetric ion cluster, two diphosphate oxygen atoms protrude into the active site pocket. The substrate hydrocarbon tail, which is eventually molded into terpenes, can bind to either of these oxygen atoms, yet to which is unknown. Herein, we employ structural, bioinformatics, and EnzyDock docking tools to address this enigma. We bring initial data suggesting that this difference is rooted in evolutionary differences between TPSs. We hypothesize that this alteration in binding, and subsequent chemistry, is due to TPSs originating from plants or microorganisms. We further suggest that this difference can cast light on the frequent observation that the chiral products or intermediates of plant and bacterial terpene synthases represent opposite enantiomers.
Collapse
Affiliation(s)
- Renana Schwartz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shani Zev
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Dan T Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| |
Collapse
|
9
|
Coca-Ruiz V, Suárez I, Aleu J, Cantoral JM, González C, Garrido C, Brito N, Collado IG. Unravelling the Function of the Sesquiterpene Cyclase STC3 in the Lifecycle of Botrytis cinerea. Int J Mol Sci 2024; 25:5125. [PMID: 38791163 PMCID: PMC11120764 DOI: 10.3390/ijms25105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The genome sequencing of Botrytis cinerea supplies a general overview of the map of genes involved in secondary metabolite synthesis. B. cinerea genomic data reveals that this phytopathogenic fungus has seven sesquiterpene cyclase (Bcstc) genes that encode proteins involved in the farnesyl diphosphate cyclization. Three sesquiterpene cyclases (BcStc1, BcStc5 and BcStc7) are characterized, related to the biosynthesis of botrydial, abscisic acid and (+)-4-epi-eremophilenol, respectively. However, the role of the other four sesquiterpene cyclases (BcStc2, BcStc3, BcStc4 and BcStc6) remains unknown. BcStc3 is a well-conserved protein with homologues in many fungal species, and here, we undertake its functional characterization in the lifecycle of the fungus. A null mutant ΔBcstc3 and an overexpressed-Bcstc3 transformant (OvBcstc3) are generated, and both strains show the deregulation of those other sesquiterpene cyclase-encoding genes (Bcstc1, Bcstc5 and Bcstc7). These results suggest a co-regulation of the expression of the sesquiterpene cyclase gene family in B. cinerea. The phenotypic characterization of both transformants reveals that BcStc3 is involved in oxidative stress tolerance, the production of reactive oxygen species and virulence. The metabolomic analysis allows the isolation of characteristic polyketides and eremophilenols from the secondary metabolism of B. cinerea, although no sesquiterpenes different from those already described are identified.
Collapse
Affiliation(s)
- Víctor Coca-Ruiz
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (V.C.-R.); (I.S.); (J.A.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Ivonne Suárez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (V.C.-R.); (I.S.); (J.A.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
- Laboratorio de Microbiología, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (J.M.C.); (C.G.)
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (V.C.-R.); (I.S.); (J.A.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Jesús M. Cantoral
- Laboratorio de Microbiología, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (J.M.C.); (C.G.)
- Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Celedonio González
- Área de Bioquímica y Biología Molecular, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain;
| | - Carlos Garrido
- Laboratorio de Microbiología, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (J.M.C.); (C.G.)
- Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Nélida Brito
- Área de Bioquímica y Biología Molecular, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain;
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (V.C.-R.); (I.S.); (J.A.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
10
|
Xing B, Lei Z, Bai Z, Zang G, Wang Y, Zhang C, Chen M, Zhou Y, Ding J, Yang D, Ma M. Structural biology of terpene synthases. Methods Enzymol 2024; 699:59-87. [PMID: 38942516 DOI: 10.1016/bs.mie.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Structural biology research of terpene synthases (TSs) has provided a useful basis to understand their catalytic mechanisms in producing diverse terpene products with polycyclic ring systems and multiple chiral centers. However, compared to the large numbers of>95,000 terpenoids discovered to date, few structures of TSs have been solved and the understanding of their catalytic mechanisms is lagging. We here (i) introduce the basic catalytic logic, the structural architectures, and the metal-binding conserved motifs of TSs; (ii) provide detailed experimental procedures, in gene cloning and plasmid construction, protein purification, crystallization, X-ray diffraction data collection and structural elucidation, for structural biology research of TSs; and (iii) discuss the prospects of structure-based engineering and de novo design of TSs in generating valuable terpene molecules, which cannot be easily achieved by chemical synthesis.
Collapse
Affiliation(s)
- Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Zhenyu Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Zhaoye Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Guowei Zang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yuxian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Chenyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Minren Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yucheng Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Jiahao Ding
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China.
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China.
| |
Collapse
|
11
|
Abstract
Covering: up to July 2023Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid-base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
Gaynes MN, Ronnebaum TA, Schultz K, Faylo JL, Marmorstein R, Christianson DW. Structure of the prenyltransferase in bifunctional copalyl diphosphate synthase from Penicillium fellutanum reveals an open hexamer conformation. J Struct Biol 2024; 216:108060. [PMID: 38184156 PMCID: PMC10939776 DOI: 10.1016/j.jsb.2023.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Copalyl diphosphate synthase from Penicillium fellutanum (PfCPS) is an assembly-line terpene synthase that contains both prenyltransferase and class II cyclase activities. The prenyltransferase catalyzes processive chain elongation reactions using dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate to yield geranylgeranyl diphosphate, which is then utilized as a substrate by the class II cyclase domain to generate copalyl diphosphate. Here, we report the 2.81 Å-resolution cryo-EM structure of the hexameric prenyltransferase of full-length PfCPS, which is surrounded by randomly splayed-out class II cyclase domains connected by disordered polypeptide linkers. The hexamer can be described as a trimer of dimers; surprisingly, one of the three dimer-dimer interfaces is separated to yield an open hexamer conformation, thus breaking the D3 symmetry typically observed in crystal structures of other prenyltransferase hexamers such as wild-type human GGPP synthase (hGGPPS). Interestingly, however, an open hexamer conformation was previously observed in the crystal structure of D188Y hGGPPS, apparently facilitated by hexamer-hexamer packing in the crystal lattice. The cryo-EM structure of the PfCPS prenyltransferase hexamer is the first to reveal that an open conformation can be achieved even in the absence of a point mutation or interaction with another hexamer. Even though PfCPS octamers are not detected, we suggest that the open hexamer conformation represents an intermediate in the hexamer-octamer equilibrium for those prenyltransferases that do exhibit oligomeric heterogeneity.
Collapse
Affiliation(s)
- Matthew N Gaynes
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Trey A Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacque L Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| |
Collapse
|
13
|
Gaynes MN, Christianson DW. Methods for the preparation and analysis of a bifunctional class II diterpene synthase, copalyl diphosphate synthase from Penicillium fellutanum. Methods Enzymol 2024; 699:1-23. [PMID: 38942500 PMCID: PMC11213978 DOI: 10.1016/bs.mie.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes comprise the largest class of natural products and are used in applications spanning the areas of medicine, cosmetics, fuels, flavorings, and more. Copalyl diphosphate synthase from the Penicillium genus is the first bifunctional terpene synthase identified to have both prenyltransferase and class II cyclase activities within the same polypeptide chain. Prior studies of bifunctional terpene synthases reveal that these systems achieve greater catalytic efficiency by channeling geranylgeranyl diphosphate between the prenyltransferase and cyclase domains. A molecular-level understanding of substrate transit phenomena in these systems is highly desirable, but a long disordered polypeptide segment connecting the prenyltranferase and cyclase domains thwarts the crystallization of full-length enzymes. Accordingly, these systems are excellent candidates for structural analysis using cryo-electron microscopy (cryo-EM). Notably, these systems form hexameric or octameric oligomers, so the quaternary structure of the full-length enzyme may influence substrate transit between catalytic domains. Here, we describe methods for the preparation of bifunctional hexameric copalyl diphosphate synthase from Penicillium fellutanum (PfCPS). We also outline approaches for the preparation of cryo-EM grids, data collection, and data processing to yield two-dimensional and three-dimensional reconstructions.
Collapse
Affiliation(s)
- Matthew N Gaynes
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
14
|
Li R, Yao B, Zeng H. Identification and Characterization of a Nerol Synthase in Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:416-423. [PMID: 38156892 DOI: 10.1021/acs.jafc.3c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nerol, a linear monoterpenoid, is naturally found in essential oils of various plants and is widely used in the fragrance, food, and cosmetic industries. Nerol synthase, essential for nerol biosynthesis, has previously been identified only in plants that use NPP as the precursor. In this study, a novel fungal nerol synthase, named PgfB, was cloned and characterized from Penicillium griseofulvum. In vitro enzymatic assays showed that PgfB could directly convert the substrate GPP into nerol. Furthermore, the successful expression of PgfB and its homologous protein in Saccharomyces cerevisiae resulted in the heterologous production of nerol. Finally, crucial amino acid residues for PgfB's catalytic activity were identified through site-directed mutagenesis. This research broadens our understanding of fungal monoterpene synthases and presents precious gene resources for the industrial production of nerol.
Collapse
Affiliation(s)
- Rumeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bo Yao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Haichun Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
15
|
Wenger ES, Christianson DW. Methods for the preparation and analysis of the diterpene cyclase fusicoccadiene synthase. Methods Enzymol 2023; 699:89-119. [PMID: 38942517 PMCID: PMC11213977 DOI: 10.1016/bs.mie.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Prenyltransferases are terpene synthases that combine 5-carbon precursor molecules into linear isoprenoids of varying length that serve as substrates for terpene cyclases, enzymes that catalyze fascinating cyclization reactions to form diverse terpene natural products. Terpenes and their derivatives comprise the largest class of natural products and have myriad functions in nature and diverse commercial uses. An emerging class of bifunctional terpene synthases contains both prenyltransferase and cyclase domains connected by a disordered linker in a single polypeptide chain. Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is one of the most well-characterized members of this subclass and serves as a model system for the exploration of structure-function relationships. PaFS has been structurally characterized using a variety of biophysical techniques. The enzyme oligomerizes to form a stable core of six or eight prenyltransferase domains that produce a 20-carbon linear isoprenoid, geranylgeranyl diphosphate (GGPP), which then transits to the cyclase domains for the generation of fusicoccadiene. Cyclase domains are in dynamic equilibrium between randomly splayed-out and prenyltransferase-associated positions; cluster channeling is implicated for GGPP transit from the prenyltransferase core to the cyclase domains. In this chapter, we outline the methods we are developing to interrogate the nature of cluster channeling in PaFS, including enzyme activity and product analysis assays, approaches for engineering the linker segment connecting the prenyltransferase and cyclase domains, and structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Eliott S Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
16
|
Wang S, Chen R, Yuan L, Zhang C, Liang D, Qiao J. Molecular and Functional Analyses of Characterized Sesquiterpene Synthases in Mushroom-Forming Fungi. J Fungi (Basel) 2023; 9:1017. [PMID: 37888273 PMCID: PMC10608071 DOI: 10.3390/jof9101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Sesquiterpenes are a type of abundant natural product with widespread applications in several industries. They are biosynthesized by sesquiterpene synthases (STSs). As valuable and abundant biological resources, mushroom-forming fungi are rich in new sesquiterpenes and STSs, which remain largely unexploited. In the present study, we collected information on 172 STSs from mushroom-forming fungi with experimentally characterized products from the literature and sorted them to develop a dataset. Furthermore, we analyzed and discussed the phylogenetic tree, catalytic products, and conserved motifs of STSs. Phylogenetic analysis revealed that the STSs were clustered into four clades. Furthermore, their cyclization reaction mechanism was divided into four corresponding categories. This database was used to predict 12 putative STS genes from the edible fungi Flammulina velutipes. Finally, three FvSTSs were selected to experimentally characterize their functions. FvSTS03 predominantly produced Δ-cadinol and FvSTS08 synthesized β-barbatene as the main product; these findings were consistent with those of the functional prediction analysis. A product titer of 78.8 mg/L β-barbatene was achieved in Saccharomyces cerevisiae via metabolic engineering. Our study findings will help screen or design STSs from fungi with specific product profiles as functional elements for applications in synthetic biology.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Lin Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Chenyang Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China;
| | - Dongmei Liang
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| |
Collapse
|
17
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
18
|
Schiff WH, Oprian DD. Mutational Analysis of (+)-Limonene Synthase. Biochemistry 2023; 62:2472-2479. [PMID: 37531404 DOI: 10.1021/acs.biochem.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The monoterpene limonene is produced by the enzyme limonene synthase in one of the simplest terpene cyclization reactions. The enzyme can use linalyl diphosphate (LPP) and neryl diphosphate (NPP) as substrates in addition to the naturally occurring substrate geranyl diphosphate (GPP), but the relationship among the three alternative substrates is not well understood. We explored the (+)-limonene synthase ((+)-LS) reaction using site-directed mutagenesis with the three different substrates (GPP, NPP, and LPP) to tease out details of the mechanism. In total, 23 amino acid positions in the active site of (+)-LS were targeted for mutation. In all cases, substitution with Ala resulted in a significant loss of enzyme activity using GPP or NPP as the substrate, but the mutations fell into two groups depending on the effect of using LPP as a substrate: group 1 mutations resulted in the loss of activity with all three substrates (GPP, NPP, and LPP); group 2 mutations resulted in loss of activity with GPP and NPP, but retained near-WT activity with LPP as a substrate. Importantly, mutations resulting in loss of activity with LPP but retention of activity with GPP and NPP were never observed. These data, in combination with the substrate order of reactivity for the WT enzyme (LPP > NPP > GPP), are consistent with a role for LPP as an intermediate in the (+)-LS reaction using either GPP or NPP as a substrate.
Collapse
Affiliation(s)
- William H Schiff
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
19
|
Eaton SA, Christianson DW. Reprogramming the Cyclization Cascade of epi-Isozizaene Synthase to Generate Alternative Terpene Products. Biochemistry 2023; 62:2301-2313. [PMID: 37449555 PMCID: PMC10527993 DOI: 10.1021/acs.biochem.3c00247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The class I sesquiterpene cyclase epi-isozizaene synthase from Streptomyces coelicolor (EIZS) catalyzes the transformation of linear farnesyl diphosphate (FPP) into the tricyclic hydrocarbon epi-isozizaene in the biosynthesis of albaflavenone antibiotics. The active site cavity of EIZS is largely framed by four aromatic residues - F95, F96, F198, and W203 - that form a product-shaped contour, serving as a template to chaperone conformations of the flexible substrate and multiple carbocation intermediates leading to epi-isozizaene. Remolding the active site contour by mutagenesis can redirect the cyclization cascade away from epi-isozizaene biosynthesis to generate alternative sesquiterpene products. Here, we present the biochemical and structural characterization of four EIZS mutants in which aromatic residues have been substituted with polar residues (F95S, F96H, F198S, and F198T) to generate alternative cyclization products. Most notably, F95S EIZS generates a mixture of monocyclic sesquiterpene precursors of bisabolane, a D2 diesel fuel substitute. X-ray crystal structures of the characterized mutants reveal subtle changes in the active site contour showing how each aromatic residue influences the chemistry of a different carbocation intermediate in the cyclization cascade. We advance that EIZS may serve as a robust platform for the development of designer cyclases for the generation of high-value sesquiterpene products ranging from pharmaceuticals to biofuels in synthetic biology approaches.
Collapse
Affiliation(s)
- Samuel A. Eaton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
20
|
Masunaga N, Kitaoka T, Ichinose H. Biocatalyst collection and heterologous expression of sesquiterpene synthases from basidiomycetous fungi: Discovery of a novel sesquiterpene hydrocarbon. Microb Biotechnol 2023; 16:632-644. [PMID: 36576879 PMCID: PMC9948225 DOI: 10.1111/1751-7915.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022] Open
Abstract
Basidiomycetes produce a wide variety of sesquiterpenoids, which attract significant interest in pharmaceutical and industrial applications. Structural diversification of sesquiterpenoids is performed by sesquiterpene synthases (STSs), which produce a wide array of backbone structures; therefore, functional characterization and increased biocatalyst collection of STSs are important for expanding scientific knowledge and meeting the needs of advanced biotechnology. Gene identification and functional annotation of STSs from the basidiomycetous fungi Agaricus bisporus, Auriscalpium vulgare, Lepista nuda, Pleurotus ostreatus and Trametes versicolor were conducted. Through these investigations, the catalytic functions of 30 STSs were revealed using recombinant enzymes heterologously expressed in Saccharomyces cerevisiae. Furthermore, the unique function of an STS from P. ostreatus, PoSTS-06, was revealed to be the production of a novel sesquiterpene hydrocarbon that we named pleostene. The absolute structure of pleostene was determined by NMR spectroscopy and X-ray crystallography using the crystalline sponge method.
Collapse
Affiliation(s)
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
21
|
Wilson K, de Rond T, Burkhardt I, Steele TS, Schäfer RJB, Podell S, Allen EE, Moore BS. Terpene biosynthesis in marine sponge animals. Proc Natl Acad Sci U S A 2023; 120:e2220934120. [PMID: 36802428 PMCID: PMC9992776 DOI: 10.1073/pnas.2220934120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
Sea sponges are the largest marine source of small-molecule natural products described to date. Sponge-derived molecules, such as the chemotherapeutic eribulin, the calcium-channel blocker manoalide, and antimalarial compound kalihinol A, are renowned for their impressive medicinal, chemical, and biological properties. Sponges contain microbiomes that control the production of many natural products isolated from these marine invertebrates. In fact, all genomic studies to date investigating the metabolic origins of sponge-derived small molecules concluded that microbes-not the sponge animal host-are the biosynthetic producers. However, early cell-sorting studies suggested the sponge animal host may play a role particularly in the production of terpenoid molecules. To investigate the genetic underpinnings of sponge terpenoid biosynthesis, we sequenced the metagenome and transcriptome of an isonitrile sesquiterpenoid-containing sponge of the order Bubarida. Using bioinformatic searches and biochemical validation, we identified a group of type I terpene synthases (TSs) from this sponge and multiple other species, the first of this enzyme class characterized from the sponge holobiome. The Bubarida TS-associated contigs consist of intron-containing genes homologous to sponge genes and feature GC percentage and coverage consistent with other eukaryotic sequences. We identified and characterized TS homologs from five different sponge species isolated from geographically distant locations, thereby suggesting a broad distribution amongst sponges. This work sheds light on the role of sponges in secondary metabolite production and speaks to the possibility that other sponge-specific molecules originate from the animal host.
Collapse
Affiliation(s)
- Kayla Wilson
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Tristan de Rond
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
- School of Chemical Sciences, University of Auckland, Auckland1142, New Zealand
| | - Immo Burkhardt
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Taylor S. Steele
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA92093
| | - Rebecca J. B. Schäfer
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Sheila Podell
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Eric E. Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
| | - Bradley S. Moore
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
22
|
Oku H, Mutanda I, Inafuku M. Molecular characteristics of isoprene synthase and its control effects on isoprene emissions from tropical trees. JOURNAL OF PLANT RESEARCH 2023; 136:63-82. [PMID: 36367585 DOI: 10.1007/s10265-022-01418-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The isoprene emission rate from plants is simulated by a function of light intensity and leaf temperature, and the G-93 formula is the most extensively applied algorithm for this purpose. Isoprene is biosynthesized by the enzyme isoprene synthase (IspS), and instantly emitted from the leaf. Enzyme kinetics of IspS and substrate availability are important factors involved in the short-term leaf-level control of isoprene emissions. It is thus assumed that the parameters of G-93 may correlate with the kinetics of IspSs, however, at present there is no data available on the relationship between these two parameters. In this investigation, six IspS genes from tropical trees were cloned, their properties characterized, and the relationship between the enzyme kinetics of IspSs and the parameters of G-93 examined. There was a negative correlation between the enzyme kinetics of IspS Km and parameter CT1 of G93, which is used to define the temperature dependency of isoprene emissions. However, performance constant of IspS (kcat/Km) only showed slight positive correlation with CT1.suggesting that the enzyme kinetics of IspS has limited significance in controlling the temperature response of isoprene emissions. The molecular structure of IspS was further elucidated using a molecular dynamics simulation with a focus on the active site in the 6 α-helices bundle. The simulation of the enzyme-substrate complex of IspS from B. variegata predicted a new metal binding domain in helix F (E383) and catalytic motif FXRDRLXE in the A-C loop that could involve the deprotonation of dimethylallyl diphosphate (DMADP) to form a carbocation. Notably, after the binding of a metal ion and DMADP, the active-site closure mechanism was found to involve conformational alterations in the helix H-α1 and transition from a loose to tight enclosure of the 6 α-helices bundles to tune the active pocket size. The characteristics identified for the IspSs from tropical trees could help to explain regional isoprene emissions in tropical areas.
Collapse
Affiliation(s)
- Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| | - Ishmael Mutanda
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Masashi Inafuku
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
23
|
Yan J, Li C, Zhang N, Li C, Wang Y, Li B. Functional verification and characterization of a type-III geranylgeranyl diphosphate synthase gene from Sporobolomyces pararoseus NGR. Front Microbiol 2022; 13:1032234. [PMID: 36504770 PMCID: PMC9729869 DOI: 10.3389/fmicb.2022.1032234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Carotenoids, a group of natural pigments, have strong antioxidant properties and act as precursors to vitamin A, which have garnered attention from industry and researchers. Sporobolomyces pararoseus represents a hyper-producer of carotenoids, mainly including β-carotene, torulene, and torularhodin. Geranylgeranyl diphosphate synthase (GGPPS) is regarded as a key enzyme in the carotenoid biosynthesis pathway. However, the precise nature of the gene encoding GGPPS in S. pararoseus has not been reported yet. Here, we cloned a cDNA copy of the GGPPS protein-encoding gene crtE from S. pararoseus NGR. The crtE full-length genomic DNA and cDNA are 1,722 and 1,134 bp, respectively, which consist of 9 exons and 8 introns. This gene encodes 377 amino acids protein with a predicted molecular mass of 42.59 kDa and a PI of 5.66. Identification of the crtE gene encoding a functional GGPPS was performed using heterologous complementation detection in Escherichia coli. In vitro enzymatic activity experiments showed that CrtE utilized farnesyl diphosphate (FPP) as an allylic substrate for the condensation reaction with isopentenyl diphosphate (IPP), generating more of the unique product GGPP compared to other allylic substrates. The predicted CrtE 3D-model was analyzed in comparison with yeast GGPPS. The condensation reaction occurs in the cavity of the subunit, and three bulky amino acids (Tyr110, Phe111, and His141) below the cavity prevent further extension of the product. Our findings provide a new source of genes for carotenoid genetic engineering.
Collapse
Affiliation(s)
- Jianyu Yan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China,College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China,*Correspondence: Ning Zhang,
| | - Chunwang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yunjiao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China,Bingxue Li,
| |
Collapse
|
24
|
Stowell EA, Ehrenberger MA, Lin YL, Chang CY, Rudolf JD. Structure-guided product determination of the bacterial type II diterpene synthase Tpn2. Commun Chem 2022; 5:146. [PMID: 36698006 PMCID: PMC9814783 DOI: 10.1038/s42004-022-00765-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
A grand challenge in terpene synthase (TS) enzymology is the ability to predict function from protein sequence. Given the limited number of characterized bacterial TSs and significant sequence diversities between them and their eukaryotic counterparts, this is currently impossible. To contribute towards understanding the sequence-structure-function relationships of type II bacterial TSs, we determined the structure of the terpentedienyl diphosphate synthase Tpn2 from Kitasatospora sp. CB02891 by X-ray crystallography and made structure-guided mutants to probe its mechanism. Substitution of a glycine into a basic residue changed the product preference from the clerodane skeleton to a syn-labdane skeleton, resulting in the first syn-labdane identified from a bacterial TS. Understanding how a single residue can dictate the cyclization pattern in Tpn2, along with detailed bioinformatics analysis of bacterial type II TSs, sets the stage for the investigation of the functional scope of bacterial type II TSs and the discovery of novel bacterial terpenoids.
Collapse
Affiliation(s)
- Emma A Stowell
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | | | - Ya-Lin Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
25
|
Satta A, Esquirol L, Ebert BE, Newman J, Peat TS, Plan M, Schenk G, Vickers CE. Molecular characterization of cyanobacterial short-chain prenyltransferases and discovery of a novel GGPP phosphatase. FEBS J 2022; 289:6672-6693. [PMID: 35704353 PMCID: PMC9796789 DOI: 10.1111/febs.16556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes with strong potential to be used for industrial terpenoid production. However, the key enzymes forming the principal terpenoid building blocks, called short-chain prenyltransferases (SPTs), are insufficiently characterized. Here, we examined SPTs in the model cyanobacteria Synechococcus elongatus sp. PCC 7942 and Synechocystis sp. PCC 6803. Each species has a single putative SPT (SeCrtE and SyCrtE, respectively). Sequence analysis identified these as type-II geranylgeranyl pyrophosphate synthases (GGPPSs) with high homology to GGPPSs found in the plastids of green plants and other photosynthetic organisms. In vitro analysis demonstrated that SyCrtE is multifunctional, producing geranylgeranyl pyrophosphate (GGPP; C20 ) primarily but also significant amounts of farnesyl pyrophosphate (FPP, C15 ) and geranyl pyrophosphate (GPP, C10 ); whereas SeCrtE appears to produce only GGPP. The crystal structures were solved to 2.02 and 1.37 Å, respectively, and the superposition of the structures against the GGPPS of Synechococcus elongatus sp. PCC 7002 yield a root mean square deviation of 0.8 Å (SeCrtE) and 1.1 Å (SyCrtE). We also discovered that SeCrtE is co-encoded in an operon with a functional GGPP phosphatase, suggesting metabolic pairing of these two activities and a putative function in tocopherol biosynthesis. This work sheds light on the activity of SPTs and terpenoid synthesis in cyanobacteria. Understanding native prenyl phosphate metabolism is an important step in developing approaches to engineering the production of different chain-length terpenoids in cyanobacteria.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and BiotechnologyThe University of QueenslandSt. LuciaAustralia,CSIRO Synthetic Biology Future Science PlatformBrisbaneAustralia
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug DiscoveryGriffith UniversityNathanAustralia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and BiotechnologyThe University of QueenslandSt. LuciaAustralia
| | - Janet Newman
- CSIRO Biomedical ProgramParkvilleAustralia,School of Biotechnology and Biomolecular SciencesUniversity of New South WalesKensingtonAustralia
| | - Thomas S. Peat
- CSIRO Biomedical ProgramParkvilleAustralia,School of Biotechnology and Biomolecular SciencesUniversity of New South WalesKensingtonAustralia
| | - Manuel Plan
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaAustralia
| | - Gerhard Schenk
- Australian Institute for Bioengineering and BiotechnologyThe University of QueenslandSt. LuciaAustralia,School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaAustralia,Sustainable Minerals InstituteThe University of QueenslandSt. LuciaAustralia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science PlatformBrisbaneAustralia,Centre for Cell Factories and Biopolymers, Griffith Institute for Drug DiscoveryGriffith UniversityNathanAustralia,ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
26
|
Tararina MA, Yee DA, Tang Y, Christianson DW. Structure of the Repurposed Fungal Terpene Cyclase FlvF Implicated in the C-N Bond-Forming Reaction of Flavunoidine Biosynthesis. Biochemistry 2022; 61:2014-2024. [PMID: 36037799 PMCID: PMC9489668 DOI: 10.1021/acs.biochem.2c00335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fungal species Aspergillus flavus produces an alkaloid terpenoid, flavunoidine, through a hybrid biosynthetic pathway combining both terpene cyclase and nonribosomal peptide synthetase enzymes. Flavunoidine consists of a tetracyclic, oxygenated sesquiterpene core decorated with dimethyl cadaverine and 5,5-dimethyl-l-pipecolate moieties. Unique to the flavunoidine biosynthetic pathway is FlvF, a putative enzyme implicated in stereospecific C-N bond formation as dimethyl cadaverine is linked to the sesquiterpene core to generate pre-flavunoidine. Here, we report the 2.6 Å resolution crystal structure of FlvF, which adopts the α-helical fold of a class I terpene synthase. However, FlvF is not a terpene synthase, as indicated by its lack of enzymatic activity with farnesyl diphosphate and its lack of signature metal ion binding motifs that would coordinate to catalytic Mg2+ ions. Thus, FlvF is the first example of a protein that adopts a terpene synthase fold but is not a terpene synthase. Two Bis-Tris molecules bind in the active site of FlvF, and the binding of these ligands guided the docking of pre-flavunoidine to generate a model of the enzyme-product complex. Phylogenetic analysis of FlvF and related fungal homologues reveals conservation of residues that interact with the tetracyclic sesquiterpene in this model, but less conservation of residues interacting with the pendant amino moiety. This may hint toward the possibility that alternative amino substrates can be linked to a common sesquiterpene core by FlvF homologues to generate flavunoidine congeners, such as the phospholipase C inhibitor hispidospermidin.
Collapse
Affiliation(s)
- Margarita A. Tararina
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Danielle A. Yee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095-1405, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095-1405, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1405, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
27
|
Hueting DA, Vanga SR, Syrén PO. Thermoadaptation in an Ancestral Diterpene Cyclase by Altered Loop Stability. J Phys Chem B 2022; 126:3809-3821. [PMID: 35583961 PMCID: PMC9169049 DOI: 10.1021/acs.jpcb.1c10605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Thermostability is
the key to maintain the structural integrity
and catalytic activity of enzymes in industrial biotechnological processes,
such as terpene cyclase-mediated generation of medicines, chiral synthons,
and fine chemicals. However, affording a large increase in the thermostability
of enzymes through site-directed protein engineering techniques can
constitute a challenge. In this paper, we used ancestral sequence
reconstruction to create a hyperstable variant of the ent-copalyl diphosphate synthase PtmT2, a terpene cyclase involved in
the assembly of antibiotics. Molecular dynamics simulations on the
μs timescale were performed to shed light on possible molecular
mechanisms contributing to activity at an elevated temperature and
the large 40 °C increase in melting temperature observed for
an ancestral variant of PtmT2. In silico analysis
revealed key differences in the flexibility of a loop capping the
active site, between extant and ancestral proteins. For the modern
enzyme, the loop collapses into the active site at elevated temperatures,
thus preventing biocatalysis, whereas the loop remains in a productive
conformation both at ambient and high temperatures in the ancestral
variant. Restoring a Pro loop residue introduced in the ancestral
variant to the corresponding Gly observed in the extant protein led
to reduced catalytic activity at high temperatures, with only moderate
effects on the melting temperature, supporting the importance of the
flexibility of the capping loop in thermoadaptation. Conversely, the
inverse Gly to Pro loop mutation in the modern enzyme resulted in
a 3-fold increase in the catalytic rate. Despite an overall decrease
in maximal activity of ancestor compared to wild type, its increased
thermostability provides a robust backbone amenable for further enzyme
engineering. Our work cements the importance of loops in enzyme catalysis
and provides a molecular mechanism contributing to thermoadaptation
in an ancestral enzyme.
Collapse
Affiliation(s)
- David A Hueting
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm 114 28, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| | - Sudarsana R Vanga
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm 114 28, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| | - Per-Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm 114 28, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| |
Collapse
|
28
|
Nagata R, Suemune H, Kobayashi M, Shinada T, Shin‐ya K, Nishiyama M, Hino T, Sato Y, Kuzuyama T, Nagano S. Structural Basis for the Prenylation Reaction of Carbazole‐Containing Natural Products Catalyzed by Squalene Synthase‐Like Enzymes. Angew Chem Int Ed Engl 2022; 61:e202117430. [DOI: 10.1002/anie.202117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hironori Suemune
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Masaya Kobayashi
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tetsuro Shinada
- Graduate School of Science Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Kazuo Shin‐ya
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomoya Hino
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Yusuke Sato
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Shingo Nagano
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| |
Collapse
|
29
|
In crystallo observation of three metal ion promoted DNA polymerase misincorporation. Nat Commun 2022; 13:2346. [PMID: 35487947 PMCID: PMC9054841 DOI: 10.1038/s41467-022-30005-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 11/11/2022] Open
Abstract
Error-free replication of DNA is essential for life. Despite the proofreading capability of several polymerases, intrinsic polymerase fidelity is in general much higher than what base-pairing energies can provide. Although researchers have investigated this long-standing question with kinetics, structural determination, and computational simulations, the structural factors that dictate polymerase fidelity are not fully resolved. Time-resolved crystallography has elucidated correct nucleotide incorporation and established a three-metal-ion-dependent catalytic mechanism for polymerases. Using X-ray time-resolved crystallography, we visualize the complete DNA misincorporation process catalyzed by DNA polymerase η. The resulting molecular snapshots suggest primer 3´-OH alignment mediated by A-site metal ion binding is the key step in substrate discrimination. Moreover, we observe that C-site metal ion binding preceded the nucleotidyl transfer reaction and demonstrate that the C-site metal ion is strictly required for misincorporation. Our results highlight the essential but separate roles of the three metal ions in DNA synthesis. By observing DNA polymerase misincorporation with time-resolved crystallography, the authors visualize three-metal ion dependent polymerase catalysis and identify A-site metal-mediated primer alignment as a key step in nucleotide discrimination.
Collapse
|
30
|
Abstract
As a midsized gene family conserved more by lineage than function, the typical plant terpene synthases (TPSs) could be a valuable tool to examine plant evolution. TPSs are pivotal in biosynthesis of gibberellins and related phytohormones as well as in formation of the extensive arsenal of specialized plant metabolites mediating ecological interactions whose production is often lineage specific. Yet the origin and early evolution of the TPS family is not well understood. Systematic analysis of an array of transcriptomes and sequenced genomes indicated that the TPS family originated after the divergence of land plants from charophytic algae. Phylogenetic and biochemical analyses support the hypothesis that the ancestral TPS gene encoded a bifunctional class I and II diterpene synthase producing the ent-kaurene required for phytohormone production in all extant lineages of land plants. Moreover, the ancestral TPS gene likely underwent duplication at least twice early in land plant evolution. Together these two gave rise to three TPS lineages leading to the extant TPS-c, TPS-e/f, and the remaining TPS (h/d/a/b/g) subfamilies, with the latter dedicated to secondary rather than primary metabolism while the former two contain those genes involved in ent-kaurene production. Nevertheless, parallel evolution from the ent-kaurene–producing class I and class II diterpene synthases has led to roles for TPS-e/f and -c subfamily members in secondary metabolism as well. These results clarify TPS evolutionary history and provide context for the role of these genes in producing the vast diversity of terpenoid natural products observed today in various land plant lineages.
Collapse
|
31
|
Nagata R, Suemune H, Kobayashi M, Shinada T, Shin‐ya K, Nishiyama M, Hino T, Sato Y, Kuzuyama T, Nagano S. Structural Basis for the Prenylation Reaction of Carbazole‐Containing Natural Products Catalyzed by Squalene Synthase‐Like Enzymes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hironori Suemune
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Masaya Kobayashi
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tetsuro Shinada
- Graduate School of Science Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Kazuo Shin‐ya
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomoya Hino
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Yusuke Sato
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Shingo Nagano
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| |
Collapse
|
32
|
Latent potentials of the white-rot basidiomycete Phanerochaete chrysosporium responsible for sesquiterpene metabolism: CYP5158A1 and CYP5144C8 decorate (E)-α-bisabolene. Enzyme Microb Technol 2022; 158:110037. [DOI: 10.1016/j.enzmictec.2022.110037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022]
|
33
|
Zhuang J, Zhang F, Tang X, Liu C, Huang M, Xie H, Wu R. Insights into Enzymatic Catalytic Mechanism of bCinS: The Importance of Protein Conformational Change. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01913a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the available crystal structures of BCinS (Streptomyces clavuligerus 1,8-cineole synthase), a typic class I terpene cyclases (TPCs), have shown notable protein conformational flexibility once binding with the substrate, the...
Collapse
|
34
|
Abstract
Valerena-1,10-diene synthase (VDS) catalyzes the conversion of the universal precursor farnesyl diphosphate into the unusual sesquiterpene valerena-1,10-diene (VLD), which possesses a unique isobutenyl substituent group. In planta, one of VLD's isobutenyl terminal methyl groups becomes oxidized to a carboxylic acid forming valerenic acid (VA), an allosteric modulator of the GABAA receptor. Because a structure-activity relationship study of VA for its modulatory activity is desired, we sought to manipulate the VDS enzyme for the biosynthesis of structurally diverse scaffolds that could ultimately lead to the generation of VA analogues. Using three-dimensional structural homology models, phylogenetic sequence comparisons to well-characterized sesquiterpene synthases, and a substrate-active site contact mapping approach, the contributions of specific amino acid residues within or near the VDS active site to possible catalytic cascades for VLD and other sesquiterpene products were assessed. An essential role of Tyr535 in a germacrenyl route to VLD was demonstrated, while its contribution to a family of other sesquiterpenes derived from a humulyl route was not. No role for Cys415 or Cys452 serving as a proton donor to reaction intermediates in VLD biosynthesis was observed. However, a gatekeeper role for Asn455 in directing farnesyl carbocations down all-trans catalytic cascades (humulyl and germacrenyl routes) versus a cisoid cascade (nerolidyl route) was demonstrated. Altogether, these results have mapped residues that establish a context for the catalytic cascades operating in VDS and future manipulations for generating more structurally constrained scaffolds.
Collapse
Affiliation(s)
- Garrett E Zinck
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Joe Chappell
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
35
|
Ronnebaum TA, Eaton SA, Brackhahn EAE, Christianson DW. Engineering the Prenyltransferase Domain of a Bifunctional Assembly-Line Terpene Synthase. Biochemistry 2021; 60:3162-3172. [PMID: 34609847 DOI: 10.1021/acs.biochem.1c00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copalyl diphosphate (CPP) synthase from Penicillium verruculosum (PvCPS) is a bifunctional diterpene synthase with both prenyltransferase and class II cyclase activities. The prenyltransferase α domain catalyzes the condensation of C5 dimethylallyl diphosphate with three successively added C5 isopentenyl diphosphates (IPPs) to form C20 geranylgeranyl diphosphate (GGPP), which then undergoes a class II cyclization reaction at the βγ domain interface to generate CPP. The prenyltransferase α domain mediates oligomerization to form a 648-kD (αβγ)6 hexamer. In the current study, we explore prenyltransferase structure-function relationships in this oligomeric assembly-line platform with the goal of generating alternative linear isoprenoid products. Specifically, we report steady-state enzyme kinetics, product analysis, and crystal structures of various site-specific variants of the prenyltransferase α domain. Crystal structures of the H786A, F760A, S723Y, S723F, and S723T variants have been determined at resolutions of 2.80, 3.10, 3.15, 2.65, and 2.00 Å, respectively. The substitution of S723 with bulky aromatic amino acids in the S723Y and S723F variants constricts the active site, thereby directing the formation of the shorter C15 isoprenoid, farnesyl diphosphate. While the S723T substitution only subtly alters enzyme kinetics and does not compromise GGPP biosynthesis, the crystal structure of this variant reveals a nonproductive binding mode for IPP that likely accounts for substrate inhibition at high concentrations. Finally, mutagenesis of the catalytic general acid in the class II cyclase domain, D313A, significantly compromises prenyltransferase activity. This result suggests molecular communication between the prenyltransferase and cyclase domains despite their distant connection by a flexible polypeptide linker.
Collapse
Affiliation(s)
- Trey A Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Samuel A Eaton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emily A E Brackhahn
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
36
|
Faylo JL, Ronnebaum TA, Christianson DW. Assembly-Line Catalysis in Bifunctional Terpene Synthases. Acc Chem Res 2021; 54:3780-3791. [PMID: 34254507 DOI: 10.1021/acs.accounts.1c00296] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The magnificent chemodiversity of more than 95 000 terpenoid natural products identified to date largely originates from catalysis by two types of terpene synthases, prenyltransferases and cyclases. Prenyltransferases utilize 5-carbon building blocks in processive chain elongation reactions to generate linear C5n isoprenoid diphosphates (n ≥ 2), which in turn serve as substrates for terpene cyclases that convert these linear precursors into structurally complex hydrocarbon products containing multiple rings and stereocenters. Terpene cyclization reactions are the most complex organic transformations found in nature in that more than half of the substrate carbon atoms undergo changes in chemical bonding during a multistep reaction sequence proceeding through several carbocation intermediates. Two general classes of cyclases are established on the basis of the chemistry of initial carbocation formation, and structural studies from our laboratory and others show that three fundamental protein folds designated α, β, and γ govern this chemistry. Catalysis by a class I cyclase occurs in an α domain, where a trinuclear metal cluster activates the substrate diphosphate leaving group to generate an allylic cation. Catalysis by a class II cyclase occurs in a β domain or at the interface of β and γ domains, where an aspartic acid protonates the terminal π bond of the substrate to yield a tertiary carbocation. Crystal structures reveal domain architectures of α, αβ, αβγ, βγ, and β.In some terpene synthases, these domains are combined to yield bifunctional enzymes that catalyze successive biosynthetic steps in assembly line fashion. Structurally characterized examples include bacterial geosmin synthase, an αα domain enzyme that catalyzes a class I cyclization reaction of C15 farnesyl diphosphate in one active site and a transannulation-fragmentation reaction in the other to yield C12 geosmin and C3 acetone products. In comparison, plant abietadiene synthase is an αβγ domain enzyme in which C20 geranylgeranyl diphosphate undergoes tandem class II-class I cyclization reactions to yield the tricyclic product. Recent structural studies from our laboratory show that bifunctional fungal cyclases form oligomeric complexes for assembly line catalysis. Bifunctional (+)-copalyl diphosphate synthase adopts (αβγ)6 architecture in which the α domain generates geranylgeranyl diphosphate, which then undergoes class II cyclization in the βγ domains to yield the bicyclic product. Bifunctional fusicoccadiene synthase adopts (αα)6 or (αα)8 architecture in which one α domain generates geranylgeranyl diphosphate, which then undergoes class I cyclization in the other α domain to yield the tricyclic product. The prenyltransferase α domain mediates oligomerization in these systems. Attached by flexible polypeptide linkers, cyclase domains splay out from oligomeric prenyltransferase cores.In this Account, we review structure-function relationships for these bifunctional terpene synthases, with a focus on the oligomeric systems studied in our laboratory. The observation of substrate channeling for fusicoccadiene synthase suggests a model for dynamic cluster channeling in catalysis by oligomeric assembly line terpenoid synthases. Resulting efficiencies in carbon management suggest that such systems could be particularly attractive for use in synthetic biology approaches to generate high-value terpenoid natural products.
Collapse
Affiliation(s)
- Jacque L. Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Trey A. Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
37
|
Ashaari NS, Ab Rahim MH, Sabri S, Lai KS, Song AAL, Abdul Rahim R, Ong Abdullah J. Kinetic studies and homology modeling of a dual-substrate linalool/nerolidol synthase from Plectranthus amboinicus. Sci Rep 2021; 11:17094. [PMID: 34429465 PMCID: PMC8385045 DOI: 10.1038/s41598-021-96524-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Linalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis-Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10-3 µM-1 s-1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.
Collapse
Affiliation(s)
- Nur Suhanawati Ashaari
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohd Hairul Ab Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
38
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
39
|
Faylo JL, van Eeuwen T, Kim HJ, Gorbea Colón JJ, Garcia BA, Murakami K, Christianson DW. Structural insight on assembly-line catalysis in terpene biosynthesis. Nat Commun 2021; 12:3487. [PMID: 34108468 PMCID: PMC8190136 DOI: 10.1038/s41467-021-23589-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is a unique bifunctional terpenoid synthase that catalyzes the first two steps in the biosynthesis of the diterpene glycoside Fusicoccin A, a mediator of 14-3-3 protein interactions. The prenyltransferase domain of PaFS generates geranylgeranyl diphosphate, which the cyclase domain then utilizes to generate fusicoccadiene, the tricyclic hydrocarbon skeleton of Fusicoccin A. Here, we use cryo-electron microscopy to show that the structure of full-length PaFS consists of a central octameric core of prenyltransferase domains, with the eight cyclase domains radiating outward via flexible linker segments in variable splayed-out positions. Cryo-electron microscopy and chemical crosslinking experiments additionally show that compact conformations can be achieved in which cyclase domains are more closely associated with the prenyltransferase core. This structural analysis provides a framework for understanding substrate channeling, since most of the geranylgeranyl diphosphate generated by the prenyltransferase domains remains on the enzyme for cyclization to form fusicoccadiene.
Collapse
Affiliation(s)
- Jacque L Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Trevor van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jose J Gorbea Colón
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
40
|
Xu B, Li Z, Alsup TA, Ehrenberger MA, Rudolf JD. Bacterial diterpene synthases prenylate small molecules. ACS Catal 2021; 11:5906-5915. [PMID: 34796043 PMCID: PMC8594881 DOI: 10.1021/acscatal.1c01113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biosynthesis of terpenoid natural products begins with a carbocation-based cyclization or prenylation reaction. While these reactions are mechanistically similar, there are several families of enzymes, namely terpene synthases and prenyltransferases, that have evolved to specifically catalyze terpene cyclization or prenylation reactions. Here, we report that bacterial diterpene synthases, enzymes that are traditionally considered to be specific for cyclization, are capable of efficiently catalyzing both diterpene cyclization and the prenylation of small molecules. We investigated this unique dual reactivity of terpene synthases through a series of kinetic, biocatalytic, structural, and bioinformatics studies. Overall, this study unveils the ability of terpene synthases to catalyze C-, N-, O-, and S-prenylation on small molecules, proposes a substrate decoy mechanism for prenylation by terpene synthases, supports the physiological relevance of terpene synthase-catalyzed prenylation in vivo, and addresses questions regarding the evolution of prenylation function and its potential role in natural products biosynthesis.
Collapse
Affiliation(s)
- Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Tyler A. Alsup
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Jeffrey D. Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Brown R, Jia M, Peters RJ. A pair of threonines mark ent-kaurene synthases for phytohormone biosynthesis. PHYTOCHEMISTRY 2021; 184:112672. [PMID: 33524857 PMCID: PMC7990685 DOI: 10.1016/j.phytochem.2021.112672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 05/27/2023]
Abstract
All land plants (embryophytes) must contain an ent-kaurene synthase (KS), as the ability to produce this olefin from ent-copalyl diphosphate (ent-CPP) is required for phytohormone biosynthesis. These KSs have frequently given rise to other class I diterpene synthases that catalyze distinct reactions for more specialized plant metabolism. Indeed, the prevalence of such gene duplication and neofunctionalization has obscured phylogenetic assignment of function. Here a pair of threonines is found to be conserved in all land plant KS involved in phytohormone biosynthesis, and their role in enzyme function investigated. Surprisingly, these threonines are not required, nor even particularly important for efficient production of ent-kaurene from ent-CPP. In addition, these threonines do not seem to affect protein structure or stability. Moreover, the absence of codon bias and positioning within an intron do not support a role in transcription or translation either. Despite their lack of apparent function, this pair of threonines are nevertheless completely conserved in all embryophyte KS from phytohormone biosynthesis. Thus, regardless of exact role, this serves as a diagnostic mark for such KS, enabling more confident distinction of these critical enzymes.
Collapse
Affiliation(s)
- Reid Brown
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, United States
| | - Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, United States
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, United States.
| |
Collapse
|
42
|
Münzker L, Petrick JK, Schleberger C, Clavel D, Cornaciu I, Wilcken R, Márquez JA, Klebe G, Marzinzik A, Jahnke W. Fragment-Based Discovery of Non-bisphosphonate Binders of Trypanosoma brucei Farnesyl Pyrophosphate Synthase. Chembiochem 2020; 21:3096-3111. [PMID: 32537808 DOI: 10.1002/cbic.202000246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT). Nitrogen-containing bisphosphonates, a current treatment for bone diseases, have been shown to block the growth of the T. brucei parasites by inhibiting farnesyl pyrophosphate synthase (FPPS); however, due to their poor pharmacokinetic properties, they are not well suited for antiparasitic therapy. Recently, an allosteric binding pocket was discovered on human FPPS, but its existence on trypanosomal FPPS was unclear. We applied NMR and X-ray fragment screening to T. brucei FPPS and report herein on four fragments bound to this previously unknown allosteric site. Surprisingly, non-bisphosphonate active-site binders were also identified. Moreover, fragment screening revealed a number of additional binding sites. In an early structure-activity relationship (SAR) study, an analogue of an active-site binder was unexpectedly shown to bind to the allosteric site. Overlaying identified fragment binders of a parallel T. cruzi FPPS fragment screen with the T. brucei FPPS structure, and medicinal chemistry optimisation based on two binders revealed another example of fragment "pocket hopping". The discovery of binders with new chemotypes sets the framework for developing advanced compounds with pharmacokinetic properties suitable for the treatment of parasitic infections by inhibition of FPPS in T. brucei parasites.
Collapse
Affiliation(s)
- Lena Münzker
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Joy Kristin Petrick
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Christian Schleberger
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Damien Clavel
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Irina Cornaciu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France.,ALPX, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Rainer Wilcken
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - José A Márquez
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France.,ALPX, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Gerhard Klebe
- Institut für Pharmazie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Andreas Marzinzik
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| |
Collapse
|
43
|
Zhuang J, Zhang F, Zhou J, Deng W, Wu R. Residue-Orientation-Dependent Dynamics and Selectivity of Active Pocket in Microbe Class I Terpene Cyclases. J Chem Inf Model 2020; 60:4985-4994. [PMID: 32786702 DOI: 10.1021/acs.jcim.0c00159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbe class I terpene cyclases (TPCs) are responsible for deriving numerous functionally and structurally diverse groups of terpenoid natural products. The conformational change of their active pockets from "open" state to "closed" state upon substrate binding has been clarified. However, the key structural basis relevant to this active pocket dynamics and its detailed molecular mechanism are still unclear. In this work, on the basis of the molecular dynamics (MD) on two microbe class I TPCs (SdS and bCinS), we propose that the active pocket dynamics is highly dependent on the residue orientation of two conserved structural bases R-D dyad and X-R-D triad, rather than the previously suggested flexibility of kink region. Actually, we considered that the flexibility of kink region is synchronous with the R residue orientation of the X-R-D triad, which could regulate the entrance size of active pocket and thus affect the substrate selectivity of active pocket by utilizing the promiscuity of the X-R-D triad. Furthermore, to better understand the function of the two structural bases, two intelligible models of "PPi catcher-locker" and "selector-PPi sensor-orienter" are proposed to, respectively, describe the R-D dyad and X-R-D triad and broadened to more microbe class I TPCs. These findings exhibit the dynamics of active pocket inaccessible in static crystal structures and provide useful structural basis knowledge for further design of microbe class I TPCs with different cyclization ability.
Collapse
Affiliation(s)
- Jingyuan Zhuang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jingwei Zhou
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
44
|
Tang X, Zhang F, Zeng T, Li W, Yin S, Wu R. Enzymatic Plasticity Inspired by the Diterpene Cyclase CotB2. ACS Chem Biol 2020; 15:2820-2832. [PMID: 32986400 DOI: 10.1021/acschembio.0c00645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymatic plasticity, as a modern term referring to the functional conversion of an enzyme, is significant for enzymatic activity redesign. The bacterial diterpene cyclase CotB2 is a typical plastic enzyme by which its native form precisely conducts a chemical reaction while its mutants diversify the catalytic functions drastically. Many efforts have been made to disclose the mysteries of CotB2 enzyme catalysis. However, the catalytic details and regulatory mechanism toward the precise chemo- and stereoselectivity are still elusive. In this work, multiscale simulations are employed to illuminate the biocyclization mechanisms of the linear substrate into the final product cyclooctat-9-en-7-ol with a 5-8-5 fused ring scaffold, and the derailment products arising from the premature quenching of reactive carbocation intermediates are also discussed. The two major regulatory factors, local electrostatic stabilization effects from aromatic residues or polar residue in pocket and global features of active site including pocket-contour and pocket-hydrophobicity, are responsible for the enzymatic plasticity of CotB2. Further comparative studies of representative Euphorbiaceae and fungal diterpene cyclase (RcCS and PaFS) show a correlation between pocket plasticity and product diversity, which inspires a tentative enzyme product prediction and the rational diterpene cyclases' reengineering in the future.
Collapse
Affiliation(s)
- Xiaowen Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sheng Yin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
45
|
Wang PY, Ni R, Zhu TT, Sun CJ, Lou HX, Zhang X, Cheng AX. Isolation and functional characterization of four microbial type terpene synthases from ferns. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:716-724. [PMID: 32862021 DOI: 10.1016/j.plaphy.2020.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Typical plant terpene synthases (TPSs) are responsible for the production of terpenes, a major class of plant secondary metabolites. However, various nonseed plants also harbor genes encoding microbial terpene synthase-like (MTPSL) enzymes. Here, a scan of 31 ferns transcriptomes revealed 40 sequences putatively encoding MTPSLs. Two groups of sequences were recognized based on the key conserved motifs. Four representative genes were isolated from each of the four species Adiantum capillus-veneris, Cyclosorus parasiticus, Drynaria bonii and Microlepia platyphylla. Following their heterologous expression in E. coli, the recombinant proteins were tested for monoterpene synthase and sesquiterpene synthase activity. These enzymatic products were typical monoterpenes and sesquiterpenes that have been previous shown to be generated by classical plant TPSs when provided with GPP and FPP as substrates. Subcellular localization experiments in the leaf epidermis of Nicotiana benthamiana and onion (Allium cepa) inner epidermal cells indicated that AcMTPSL1 and DbMTPSL were deposited in both the cytoplasm and nucleus, whereas CpMTPSL1 and MpMTPSL were localized in the cytoplasm, chloroplasts and nucleus. AcMTPSL1 was up-regulated in plants exposed to methyl jasmonate treatment, suggesting a role for this gene in host defense. This study provides more information about the catalytic function of MTPSLs in nonseed plants and for the first time, the subcellular localization of MTPSLs was experimentally characterized.
Collapse
Affiliation(s)
- Piao-Yi Wang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Rong Ni
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Chun-Jing Sun
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xuebin Zhang
- Henan Joint International Laboratory for Crop Multi-Omics Research, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
46
|
Evolution of isoprenyl diphosphate synthase-like terpene synthases in fungi. Sci Rep 2020; 10:14944. [PMID: 32913319 PMCID: PMC7484799 DOI: 10.1038/s41598-020-71219-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023] Open
Abstract
Terpene synthases (TPSs) and trans-isoprenyl diphosphate synthases (IDSs) are among the core enzymes for creating the enormous diversity of terpenoids. Despite having no sequence homology, TPSs and IDSs share a conserved “α terpenoid synthase fold” and a trinuclear metal cluster for catalysis, implying a common ancestry with TPSs hypothesized to evolve from IDSs anciently. Here we report on the identification and functional characterization of novel IDS-like TPSs (ILTPSs) in fungi that evolved from IDS relatively recently, indicating recurrent evolution of TPSs from IDSs. Through large-scale bioinformatic analyses of fungal IDSs, putative ILTPSs that belong to the geranylgeranyl diphosphate synthase (GGDPS) family of IDSs were identified in three species of Melampsora. Among the GGDPS family of the two Melampsora species experimentally characterized, one enzyme was verified to be bona fide GGDPS and all others were demonstrated to function as TPSs. Melampsora ILTPSs displayed kinetic parameters similar to those of classic TPSs. Key residues underlying the determination of GGDPS versus ILTPS activity and functional divergence of ILTPSs were identified. Phylogenetic analysis implies a recent origination of these ILTPSs from a GGDPS progenitor in fungi, after the split of Melampsora from other genera within the class of Pucciniomycetes. For the poplar leaf rust fungus Melampsora larici-populina, the transcripts of its ILTPS genes were detected in infected poplar leaves, suggesting possible involvement of these recently evolved ILTPS genes in the infection process. This study reveals the recurrent evolution of TPSs from IDSs since their ancient occurrence and points to the possibility of a wide distribution of ILTPS genes in three domains of life.
Collapse
|
47
|
He H, Bian G, Herbst-Gervasoni CJ, Mori T, Shinsky SA, Hou A, Mu X, Huang M, Cheng S, Deng Z, Christianson DW, Abe I, Liu T. Discovery of the cryptic function of terpene cyclases as aromatic prenyltransferases. Nat Commun 2020; 11:3958. [PMID: 32769971 PMCID: PMC7414894 DOI: 10.1038/s41467-020-17642-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022] Open
Abstract
Catalytic versatility is an inherent property of many enzymes. In nature, terpene cyclases comprise the foundation of molecular biodiversity as they generate diverse hydrocarbon scaffolds found in thousands of terpenoid natural products. Here, we report that the catalytic activity of the terpene cyclases AaTPS and FgGS can be switched from cyclase to aromatic prenyltransferase at basic pH to generate prenylindoles. The crystal structures of AaTPS and FgGS provide insights into the catalytic mechanism of this cryptic function. Moreover, aromatic prenyltransferase activity discovered in other terpene cyclases indicates that this cryptic function is broadly conserved among the greater family of terpene cyclases. We suggest that this cryptic function is chemoprotective for the cell by regulating isoprenoid diphosphate concentrations so that they are maintained below toxic thresholds.
Collapse
Affiliation(s)
- Haibing He
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Corey J Herbst-Gervasoni
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Stephen A Shinsky
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA
| | - Anwei Hou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xin Mu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Minjian Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shu Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
- Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, China.
| |
Collapse
|
48
|
Liang J, Wang L, Liu J, Shen Q, Fu J, Peters RJ, Wang Q. Probing Enzymatic Structure and Function in the Dihydroxylating Sesquiterpene Synthase ZmEDS. Biochemistry 2020; 59:2660-2666. [PMID: 32558549 DOI: 10.1021/acs.biochem.0c00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terpene synthases (TPSs) play a vital role in forming the complex hydrocarbon backbones that underlie terpenoid diversity. Notably, some TPSs can add water prior to terminating the catalyzed reaction, leading to hydroxyl groups, which are critical for biological activity. A particularly intriguing example of this is the maize (Zea mays) sesquiterpene TPS whose major product is eudesmanediol, ZmEDS. This production of dual hydroxyl groups is presumably enabled by protonation of the singly hydroxylated transient stable intermediate hedycaryol. To probe the enzymatic structure-function relationships underlying this unusual reaction, protein modeling and docking were used to direct mutagenesis of ZmEDS. Previously, an F303A mutant was shown to produce only hedycaryol, suggesting a role in protonation. Here this is shown to be dependent on the steric bulk positioning of hedycaryol, including a supporting role played by the nearby F299, rather than π-cation interaction. Among the additional residues investigated here, G411 at the conserved kink in helix G is of particular interest, as substitution of this leads to predominant production of the distinct (-)-valerianol, while substitution for the aliphatic I279 and V306 can lead to significant production of the alternative eudesmane-type diols 2,3-epi-cryptomeridiol and 3-epi-cryptomeridol, respectively. Altogether, nine residues that are important for this unusual reaction were investigated here, with the results not only emphasizing the importance of reactant positioning suggested by the stereospecificity observed among the various product types but also highlighting the potential role of the Mg2+-diphosphate complex as the general acid for the protonation-initiated (bi)cyclization of hedycaryol.
Collapse
Affiliation(s)
- Jin Liang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Liping Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiang Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jingye Fu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
49
|
Exploring the catalytic cascade of cembranoid biosynthesis by combination of genetic engineering and molecular simulations. Comput Struct Biotechnol J 2020; 18:1819-1829. [PMID: 32695274 PMCID: PMC7365961 DOI: 10.1016/j.csbj.2020.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/04/2022] Open
Abstract
While chemical steps involved in bioactive cembranoid biosynthesis have been examined, the corresponding enzymatic mechanisms leading to their formation remain elusive. In the tobacco plant, Nicotiana tabacum, a putative cembratriene-ol synthase (CBTS) initiates the catalytic cascade that lead to the biosynthesis of cembratriene-4,6-diols, which displays antibacterial- and anti-proliferative activities. We report here on structural homology models, functional studies, and mechanistic explorations of this enzyme using a combination of biosynthetic and computational methods. This approach guided us to develop an efficient de novo production of five bioactive non- and monohydroxylated cembranoids. Our homology models in combination with quantum and classical simulations suggested putative principles of the CBTS catalytic cycle, and provided a possible rationale for the formation of premature olefinic side products. Moreover, the functional reconstruction of a N. tabacum-derived class II P450 with a cognate CPR, obtained by transcriptome mining provided for production of bioactive cembratriene-4,6-diols. Our combined findings provide mechanistic insights into cembranoid biosynthesis, and a basis for the sustainable industrial production of highly valuable bioactive cembranoids.
Collapse
|
50
|
Kschowak MJ, Maier F, Wortmann H, Buchhaupt M. Analyzing and Engineering the Product Selectivity of a 2-Methylenebornane Synthase. ACS Synth Biol 2020; 9:981-986. [PMID: 32364702 DOI: 10.1021/acssynbio.9b00432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Terpenes constitute the largest class of natural products with more than 70 000 compounds. Many different terpenes find applications in the flavor and fragrance industry or can be used as fine chemicals or drugs. In some bacteria, noncanonical terpenes with 11 carbon atoms are synthesized via a GPP-C2-methyltransferase and the subsequent conversion of 2-methyl-GPP by certain terpene synthases into mainly 2-methylisoborneol and 2-methylenebornane. Many other C11-terpenes were reported as side products, but they are synthesized only in minor amounts by the bacterial C11-terpene biosynthesis pathway. To enable biotechnological synthesis of these largely unexplored natural products, we changed the product selectivity of the 2-methylenebornane synthase from Pseudomonas fluorescens by a semirational protein engineering approach. Active site amino acids with impact on the product selectivity were identified and variants with completely altered product spectra could be identified and characterized. The gathered data provide new insights into the structure-function relationship for C11-terpene synthases and demonstrate the production of formerly inaccessible noncanonical terpenes.
Collapse
Affiliation(s)
- Max J. Kschowak
- DECHEMA Research Institute, Industrial Biotechnology, Frankfurt am Main, 60486, Germany
- Johann Wolfgang Goethe-University, Faculty of Biological Sciences, Frankfurt am Main, 60323, Germany
| | - Felix Maier
- DECHEMA Research Institute, Industrial Biotechnology, Frankfurt am Main, 60486, Germany
- Johann Wolfgang Goethe-University, Faculty of Biological Sciences, Frankfurt am Main, 60323, Germany
| | - Hannah Wortmann
- DECHEMA Research Institute, Industrial Biotechnology, Frankfurt am Main, 60486, Germany
| | - Markus Buchhaupt
- DECHEMA Research Institute, Industrial Biotechnology, Frankfurt am Main, 60486, Germany
| |
Collapse
|