1
|
Seraj F, Naz F, Özil M, Baltaş N, Tariq SS, Ul-Haq Z, Salar U, Taha M, Khan KM. Synthesis of arylated tetrahydrobenzo[ H]quinoline-3-carbonitrile derivatives as potential hits for treatment of diabetes. Future Med Chem 2024; 16:2609-2625. [PMID: 39530526 DOI: 10.1080/17568919.2024.2419359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Quinoline scaffolds are serving as the core structure for numerous antifungal, analgesic, antipyretic, anti-inflammatory drugs as well as have also been investigated for their potential antidiabetic properties. Though further exploration is required in this area as the current antidiabetic agents, such as acarbose, miglitol and voglibose, are associated with several adverse side effects. In this context, arylated tetrahydrobenzo[H]quinoline-3-carbonitrile derivatives were designed and evaluated as potential antidiabetic agents.Materials & methods: A one-pot multicomponent reaction of 6-methoxy-1-tetralone with ethyl cyanoacetate, ammonium acetate and varying aldehydes yielded a range of new arylated tetrahydrobenzo[h]quinoline-3-carbonitrile molecules 1-36.Results: Compounds 2-5, 12, 13, 19 and 32-34 showed excellent inhibition against α-amylase (IC50 = 3.42-15.14 μM) and α-glucosidase (IC50 = 0.65-9.23 μM) enzymes in comparison to the standard acarbose (IC50 = 14.35 μM). In addition, all compounds revealed significant to moderate DPPH radical scavenging activity (SC50 = 21.30-138.30 μM) compared with BHT (SC50 = 64.40 μM). Kinetic studies confirmed competitive inhibition mode, while molecular docking studies comprehend ligands' interaction with enzyme's active sites and absorption, distribution, metabolism, and excretion analysis confirms that all synthetic derivatives are nontoxic.Conclusion: This research offers a range of lead candidates to become antidiabetic agents after further advanced study.
Collapse
Affiliation(s)
- Faiza Seraj
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fouzia Naz
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, 53100, Turkiye
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, 53100, Turkiye
| | - Syeda Sumayya Tariq
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Pakistan Academy of Science, 3-Constitution Avenue, G-5/2, Islamabad, 44000, Pakistan
| |
Collapse
|
2
|
Mohammed HS, Elariny HA, Seif-Eldein NA, Mahgoub S, El-Said NT, Abu El Wafa SA, Taha EF. Investigating the involvement of the NLRP3/ASC/caspase-1 and NF-κb/MAPK pathways in the pathogenesis of gouty arthritis: Insights from irradiated and non-irradiated Trifolium alexandrium L. extracts and some metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118566. [PMID: 39002823 DOI: 10.1016/j.jep.2024.118566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trifolium alexandrinum L. (TA), has traditionally been used in folk medicine for its anti-inflammatory properties against hyperuricemia and gout. However, the specific mechanisms of action of TA have not been thoroughly studied. AIM OF THE WORK This study aimed to evaluate the protective effects of irradiated (TR25) and non-irradiated (TR0) Trifolium alexandrinum L. aqueous extract (TAAE), along with two isolated compounds, caffeine (CAF) and saponin (SAP), in a rat model of acute gouty arthritis (GA). MATERIALS AND METHODS The GA model was established by injecting a monosodium urate (MSU) suspension into the knee joint. Synovial tissue pathology was assessed, and levels of TNF-α, IL-6, IL-1β, NF-κB, mTOR, AKT1, PI3K, NLRP3, and ASC were measured by ELISA. mRNA expression of ERK1, JNK, and p-38 MAPK was detected using qRT-PCR, and Caspase-1 protein expression was assessed by immunohistochemical analysis. Knee swelling, uric acid levels, liver and kidney function, and oxidative stress markers were also evaluated. RESULTS TAAE analysis identified 170 compounds, with 73 successfully identified using LC-HR-MS/MS, including caffeine citrate and theasapogenol B glycoside as the main constituents. The studied materials demonstrated significant protective effects against GA. TR25 administration significantly mitigated knee joint circumference compared to other treatments. It demonstrated potential in alleviating hyperuricemia, renal and hepatic impairments induced by MSU crystals. TR25 also alleviated oxidative stress and reduced levels of IL1β, IL-6, TNF-α, and NF-κB. Weak Caspase-1 immune-positive staining was observed in the TR25 group. TR25 decreased NLRP3 and ASC expression, reducing inflammatory cytokine levels in GA. It effectively inhibited the PI3K, AKT, and mTOR signaling pathways, promoting autophagy. Additionally, TR25 suppressed ERK1, JNK, and p-38 MAPK gene expression in synovial tissue. These effects were attributed to various components in TAAE, such as flavonoids, phenolic acids, tannins, alkaloids, and triterpenes. CONCLUSION Importantly, irradiation (25 KGy) enhanced the antioxidant effects and phtchemical contents of TAAE. Additionally, TR0, TR25, CAF, and SAP exhibited promising protective effects against GA, suggesting their therapeutic potential for managing this condition. These effects were likely mediated through modulation of the NLRP3/ASC/Caspase-1 and ERK/JNK/p-38 MAPK signaling pathways, as well as regulation of the PI3K/AKT/mTOR pathway. Further research is warranted to fully elucidate the underlying mechanisms and optimize their clinical applications.
Collapse
Affiliation(s)
- Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Noha A Seif-Eldein
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig, 44511, Egypt.
| | - Nermin T El-Said
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Salwa A Abu El Wafa
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Eman Fs Taha
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
3
|
Santos CS, Lemos MPO, Betschart LM, Baader WJ. Antiradical capacity assay for hydrophobic substances using hemin-catalyzed luminol chemiluminescence in cationic micelles. Photochem Photobiol 2024; 100:1787-1802. [PMID: 38396365 DOI: 10.1111/php.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Antioxidant substances which can diminish the steady-state concentration of free radicals in vivo are important in the human dietary to diminish the deleterious effects of oxidative stress. As the potential of certain substances as antioxidants is difficult to be verified in vivo, simple chemical in vitro assays which test the potential of substances as antioxidants are of great importance for the screening of new antioxidants. These assays measure the capacity of a substance to suppress free radicals. We describe here an antiradical capacity assay, based on luminol chemiluminescence, in cationic micellar medium, allowing the capacity determination of hydrophobic compounds. The antiradical capacity of antioxidants is determined using the Trolox standard by the measurement of the light emission inhibition area caused by the addition of different antiradical concentrations. The obtained results are compared to the values determined using the scavenging of stable free radicals be the substances and shown to be similar for compounds like uric acid, rutin, and quercetin. However, for vitamin E, the luminol assay results in a considerably higher antiradical capacity than the assay with a stable free radical, which is rationalized by the higher reactivity of the radical generated in the luminol assay and a specific localization of vitamin E in the micellar medium.
Collapse
Affiliation(s)
- Cerize S Santos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos P O Lemos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa M Betschart
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Huang L, Chen C, Cai J, Chen Y, Zhu Y, Yang B, Zhou X, Liu Y, Tao H. Two C 23-Steroids and a New Isocoumarin Metabolite from Mangrove Sediment-Derived Fungus Penicillium sp. SCSIO 41429. Mar Drugs 2024; 22:393. [PMID: 39330274 PMCID: PMC11433223 DOI: 10.3390/md22090393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Two new C23-steroids derivatives, cyclocitrinoic acid A (1) and cyclocitrinoic acid B (2), and a new isocoumarin metabolite, (3R,4S)-6,8-dihydroxy-3,4,5-trimethyl-7-carboxamidelisocoumarin (10), together with 12 known compounds (3-9, 11-15) were isolated from the mangrove-sediment fungus Penicillium sp. SCSIO 41429. The structures of the new compounds were comprehensively characterized by 1D and 2D NMR, HRESIMS and ECD calculation. All isolates were evaluated for pancreatic lipase (PL) inhibitory and antioxidant activities. The biological evaluation results revealed that compounds 2, 14 and 15 displayed weak or moderate inhibition against PL, with IC50 values of 32.77, 5.15 and 2.42 µM, respectively. In addition, compounds 7, 12 and 13 showed radical scavenging activities against DPPH, with IC50 values of 64.70, 48.13, and 75.54 µM, respectively. In addition, molecular docking results indicated that these compounds had potential for PL inhibitory and antioxidant activities, which provided screening candidates for antioxidants and a reduction in obesity.
Collapse
Affiliation(s)
- Lishan Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (L.H.); (Y.C.); (Y.Z.)
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Yixin Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (L.H.); (Y.C.); (Y.Z.)
| | - Yongyan Zhu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (L.H.); (Y.C.); (Y.Z.)
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (C.C.); (J.C.); (B.Y.); (X.Z.); (Y.L.)
| | - Huaming Tao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (L.H.); (Y.C.); (Y.Z.)
| |
Collapse
|
5
|
Kim C, Kim S, Jung AR, Jang JH, Bae J, Choi WII, Sung D. Nanoparticle Encapsulation of the Hexane Fraction of Cyperus Rotundus Extract for Enhanced Antioxidant and Anti-Inflammatory Activities in vitro. Int J Nanomedicine 2024; 19:8403-8415. [PMID: 39165772 PMCID: PMC11335006 DOI: 10.2147/ijn.s452636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
Aim Cyperus rotundus L. (CR) is traditionally used in medicine for its anti-inflammatory properties. In particular, α-cyperone, which is isolated from the essential oil and found primarily in the n-hexane fraction of the ethanolic extract, is known to inhibit NO production in LPS-stimulated RAW 264.7 cells. However, high concentrations of α-cyperone are required for sufficient anti-inflammatory activity. Even, essential oil obtained from C. rotundus has the disadvantage of low solubility and stability in aqueous environment, which makes it difficult to be applied in various fields and easily loses its activity. Therefore, in this study, we aimed to increase the extraction yield of C. rotundus by microbubble extraction and prepare nanoparticles (NPs) that can preserve its activity in a stable and bioavailable manner by utilizing nanoprecipitation. Methods C. rotundus rhizomes were extracted in 50% ethanol using microbubbles and then fractionated with n-hexane to obtain α-cyperone-rich C. rotundus n-hexane fraction (CRHF). The biodegradable plant extract, α-cyperone, was prepared as green nanoparticles (CR@NPs) by nanoprecipitation technique under mild reaction conditions. The physicochemical properties of CR@NPs, including size, polydispersity index, and surface charge, were determined using dynamic light scattering. The extraction yield and encapsulation efficiency of α-cyperone were quantified by high-performance liquid chromatography. Antioxidant and anti-inflammatory activities were evaluated by DPPH assay and in vitro ROS and NO assays, and biocompatibility was assessed by MTT assay. Results C. rotundus loaded nanoparticles demonstrated overcoming the limitation of α-cyperone solubility and stability in CRHF and also the antioxidant, anti-inflammatory properties as evidenced by in vitro assays in cellular models. Conclusion The versatility of green chemistry, such as α-cyperone, enables the production of nanoparticles with promising biomedical applications such as cosmetics, pharmaceuticals, and food products.
Collapse
Affiliation(s)
- Chaehyun Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ah-Reum Jung
- J2K-Metabiome, J2KBIO, Cheongju, 28104, Republic of Korea
| | - Jun-Hwan Jang
- J2K-Metabiome, J2KBIO, Cheongju, 28104, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Juntae Bae
- J2K-Metabiome, J2KBIO, Cheongju, 28104, Republic of Korea
| | - Won I I Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| |
Collapse
|
6
|
Tok F, Baltaş N, Abas Bİ, Tatar Yılmaz G, Kaya S, Koçyiğit-Kaymakçıoğlu B, Çevik Ö. Design, synthesis, molecular modeling, in vitro evaluation of novel piperidine-containing hydrazone derivatives as cholinesterase inhibitors. Drug Dev Res 2024; 85:e22240. [PMID: 39105636 DOI: 10.1002/ddr.22240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
In an effort to develop new and effective therapeutic agents for Alzheimer's disease, a series of hydrazone derivatives bearing piperidine rings have been designed and synthesized. The chemical structures of the compounds were characterized by various spectroscopic techniques. In vitro antioxidant and cholinesterase activities of the compounds were evaluated. Among the compounds, N12 exhibited the most antioxidant activity in all methods (CUPRAC, FRAP, DPPH, ABTS). In vitro acetylcholinesterase (AChE) activity results of the compounds showed good IC50 values between 14.124 ± 0.084 and 49.680 ± 0.110 µM were obtained (IC50 = 38.842 ± 0.053 µM for Donepezil). Among the compounds, N7 and N6 are much more effective derivatives than the standard compound donepezil with IC50 values of 14.124 ± 0.084 and 17.968 ± 0.072 µM, respectively. In vitro, butyrylcholinesterase (BChE) inhibition values of the compounds were between 13.505 ± 0.025 and 52.230 ± 0.027 μm. Among the compounds, N6 has the highest BChE inhibition with an IC50 value of 13.505 μm in the series. The cytotoxicity and AChE inhibitory activity of the compounds on SH-SY5Y cell lines were also evaluated. Kinetic studies were also performed to determine the behavior of the compounds as competitive or noncompetitive inhibitors. The binding modes of N6, which was determined to be highly effective according to in vitro analyses, with AChE and BChE were investigated using molecular docking studies, and the stability of the complexes was determined by molecular dynamics simulations. These findings indicated that AChE and BChE enzymes maintained their overall structural stability and compactness during interactions with compound N6.
Collapse
Affiliation(s)
- Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Nimet Baltaş
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Burçin İrem Abas
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Gizem Tatar Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Süleyman Kaya
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | | | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın, Türkiye
| |
Collapse
|
7
|
Kim S, Kim Y, Kim C, Choi WI, Kim BS, Hong J, Lee H, Sung D. A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. DISCOVER NANO 2024; 19:119. [PMID: 39073653 PMCID: PMC11286613 DOI: 10.1186/s11671-024-04058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The present study proposes an innovative transdermal drug delivery system using ferrocene-incorporated fibers to enhance the bioavailability and therapeutic efficacy of ascorbyl tetraisopalmitate. Using electrospinning technology, the authors created ferrocene polymer fibers capable of highly efficient drug encapsulation and controlled release in response to reactive oxygen species commonly found in wound sites. The approach improves upon previous methods significantly by offering higher drug loading capacities and sustained release, directly targeting diseased cells. The results confirm the potential of ferrocene fibers for localized drug delivery, potentially reducing side effects and increasing patient convenience. The method could facilitate the application of bioactive compounds in medical textiles and targeted therapy.
Collapse
Affiliation(s)
- Sangwoo Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoon Kim
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chaehyun Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Il Choi
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Byoung Soo Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hoik Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea.
| | - Daekyung Sung
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
8
|
Bouhedda A, Laouer H, Souilah N, Çakır C, Bouriah N, Abu-Elsaoud AM, Selamoglu Z, Ben Hamadi N, Alomran MM, Özdemir S, Öztürk M, Boufahja F, Bendif H. Does Erodium trifolium (Cav.) Guitt exhibit medicinal properties? Response elements from phytochemical profiling, enzyme-inhibiting, and antioxidant and antimicrobial activities. OPEN CHEM 2024; 22. [DOI: 10.1515/chem-2024-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2024] Open
Abstract
Abstract
Geraniaceae are typically used as diuretic, anti-diarrhoeal, stomachic, and anti-hemorrhagic drugs. This study examined the phytochemicals and bioactivities in methanolic extract (ME) and petroleum ether extract (PEE) of the Erodium trifolium aerial part. Inductively coupled plasma mass spectrometry was used to assess the mineral profiles, high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and high-performance liquid chromatography with diode-array detection (HPLC-DAD) were used to assess the phenolic content of ME, and gas chromatography-mass spectrometry (GC-MS) was used to assess the fatty acid and volatile composition of the PEEs. In addition, the bioactivities of extracts were evaluated by using the 1,1-diphenyl-2-picrylhydrazyl, ABTS, and cupric reducing antioxidant capacity assays, including enzyme inhibition against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase activities, and antibacterial properties. HPLC-MS identified eight compounds in ME: rutin, catechin, and caffeine were the major phenolic compounds detected. HPLC-DAD analysis showed that 11 compounds detected among epicatechin, catechin, chlorogenic acid, and gallic acid were predominant. GC-MS analysis revealed 30 fatty acids in PEE, with palmitic acid and oleic acid being predominant. The mineral content showed that Fe was the abundant microelement, and Ca and K were the abundant macroelements. The ME exhibited the highest activity compared to the PEE in all tests regarding antioxidant and antibacterial activities. Furthermore, all the extracts showed moderate inhibition against AChE, BChE, α-amylase, and α-glucosidase. In conclusion, E. trifolium may be employed to separate novel bioactive metabolites with potential pharmaceutical activities.
Collapse
Affiliation(s)
- Amina Bouhedda
- Department of Biochemistry, Faculty of Nature and Life Science, Ferhat Abbas University Setif 1 , El Bez , Sétif, 19000 , Algeria
- Department of Microbiology and Biochemistry, Faculty of Sciences, University of M’sila , PO Box 166 , Ichebilia , 28000 , Algeria
| | - Hocine Laouer
- Laboratory of Valorization of Natural Biological Resources, Department of Biology and Vegetal Ecology, University of Setif 1 , Setif , Algeria
| | - Nabila Souilah
- Laboratory of Optimization of Agriculture Production on Subhumide Zone, Department of Agronomy, Faculty of Sciences, University of Skikda , Skikda , 21000 , Algeria
| | - Cansel Çakır
- Faculty of Sciences, Department of Chemistry, Muğla Sıtkı Koçman University , 48121 , Kötekli , Muğla , Turkey
| | - Nacéra Bouriah
- Department and Faculty of Nature and Life Sciences, University of Tiaret , Tiaret , 14000 , Algeria
| | - Abdelghafar M. Abu-Elsaoud
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh , 11623 , Saudi Arabia
| | - Zeliha Selamoglu
- Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University , Nigde , Turkey
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IM-SIU) , Riyadh , 11623 , Saudi Arabia
| | - Maryam M. Alomran
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University , P.O.Box 84428 , Riyadh , 11671 , Saudi Arabia
| | - Sadin Özdemir
- Food Processing Programme Technical Science Vocational School Mersin University, TR- Yenisehir , Mersin , Turkey
| | - Mehmet Öztürk
- Faculty of Sciences, Department of Chemistry, Muğla Sıtkı Koçman University , 48121 , Kötekli , Muğla , Turkey
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh , 11623 , Saudi Arabia
| | - Hamdi Bendif
- Department of Natural and Life Sciences, Faculty of Sciences, University of M’sila , PO Box 166 , Ichebilia , 28000 , Algeria
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, Ecole Normale Supérieure (ENS) , Alger , 16308 , Algeria
| |
Collapse
|
9
|
Liu Y, Oey I, Leong SY, Kam R, Kantono K, Hamid N. Pulsed Electric Field Pretreatments Affect the Metabolite Profile and Antioxidant Activities of Freeze- and Air-Dried New Zealand Apricots. Foods 2024; 13:1764. [PMID: 38890992 PMCID: PMC11172103 DOI: 10.3390/foods13111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Pulsed electric field (PEF) pretreatment has been shown to improve the quality of dried fruits in terms of antioxidant activity and bioactive compounds. In this study, apricots were pretreated with PEF at different field strengths (0.7 kV/cm; 1.2 kV/cm and 1.8 kv/cm) at a frequency of 50 Hz, and electric pulses coming in every 20 µs for 30 s, prior to freeze-drying and air-drying treatments. PEF treatments were carried out at different field strengths. The impact of different pretreatments on the quality of dried apricot was determined in terms of physical properties, antioxidant activity, total phenolic content, and metabolite profile. PEF pretreatments significantly (p < 0.05) increased firmness of all the air-dried samples the most by 4-7-fold and most freeze-dried apricot samples (44.2% to 98.64%) compared to the control group. However, PEF treatment at 1.2 kV/cm did not have any effect on hardness of the freeze-dried sample. The moisture content and water activity of freeze-dried samples were found to be significantly lower than those of air-dried samples. Scanning electron microscopy results revealed that air drying caused the loss of fruit structure due to significant moisture loss, while freeze drying preserved the honeycomb structure of the apricot flesh, with increased pore sizes observed at higher PEF intensities. PEF pretreatment also significantly increased the antioxidant activity and total phenol content of both air-dried and freeze-dried apricots. PEF treatment also significantly (p < 0.05) increased amino acid and fatty acid content of air-dried samples but significantly (p < 0.05) decreased sugar content. Almost all amino acids (except tyrosine, alanine, and threonine) significantly increased with increasing PEF intensity. The results of this study suggest that PEF pretreatment can influence the quality of air-dried and freeze-dried apricots in terms antioxidant activity and metabolites such as amino acids, fatty acids, sugar, organic acids, and phenolic compounds. The most effective treatment for preserving the quality of dried apricots is freeze drying combined with high-intensity (1.8 kv/cm) PEF treatment.
Collapse
Affiliation(s)
- Ye Liu
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (I.O.); (S.Y.L.)
| | - Sze Ying Leong
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (I.O.); (S.Y.L.)
| | - Rothman Kam
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| | - Kevin Kantono
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| | - Nazimah Hamid
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| |
Collapse
|
10
|
Hameed S, Saleem F, Özil M, Baltaş N, Salar U, Ashraf S, Ul-Haq Z, Taha M, Khan KM. Indenoquinoxaline-phenylacrylohydrazide hybrids as promising drug candidates for the treatment of type 2 diabetes: In vitro and in silico evaluation of enzyme inhibition and antioxidant activity. Int J Biol Macromol 2024; 263:129517. [PMID: 38266833 DOI: 10.1016/j.ijbiomac.2024.129517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Existing drugs that are being used to treat type-2 diabetes mellitus are associated with several side effects; thus, exploring potential drug candidates is still an utter need these days. Hybrids of indenoquinoxaline and hydrazide have never been explored as antidiabetic agents. In this study, a series of new indenoquinoxaline-phenylacrylohydrazide hybrids (1-30) were synthesized, structurally characterized, and evaluated for α-amylase and α-glucosidase inhibitory activities, as well as for their antioxidant properties. All scaffolds exhibited varying degrees of inhibitory activity against both enzymes, with IC50 values ranging from 2.34 to 61.12 μM for α-amylase and 0.42 to 54.72 μM for α-glucosidase. Particularly, compounds 10, 16, 17, 18, 24, and 25 demonstrated the highest efficacy in inhibiting α-amylase, while compounds 6, 7, 8, 10, 12, 14, 13, 16, 17, 18, 24, and 25 were the most effective α-glucosidase inhibitors, compared to standard acarbose. Moreover, most of these compounds displayed substantial antioxidant potential compared to standard butylated hydroxytoluene (BHT). Kinetics studies revealed competitive inhibition modes by compounds. Furthermore, a comprehensive in silico study and toxicity prediction were also conducted, further validating these analogs as potential drug candidates. The structured compounds demonstrated enhanced profiles, underscoring their potential as primary candidates in drug discovery.
Collapse
Affiliation(s)
- Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Pakistan Academy of Science, 3-Constitution Avenue, G-5/2, Islamabad 44000, Pakistan.
| |
Collapse
|
11
|
Hoyos BE, Johnson JB, Mani JS, Batley RJ, Trotter T, Bhattarai SP, Naiker M. The Effect of Water Stress on Bioactive Compounds in Australian-Grown Black Sesame. PLANTS (BASEL, SWITZERLAND) 2024; 13:793. [PMID: 38592794 PMCID: PMC10974145 DOI: 10.3390/plants13060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Sesame is an emerging crop of interest in Australia and has attracted widespread interest due to the health-benefitting properties of its bioactive compounds, including fatty acids, lignans, and polyphenols. This study aimed to investigate the impact of drought stress on these bioactive compounds, using eleven cultivars of black sesame seeds grown in Australia. Specific varieties responded positively to water deficit (WD) conditions, showing increased levels of TPC, FRAP, CUPRAC, and lignans. Varieties 1, 4, 7, and 12 showed significantly increased FRAP values ranging from 158.02 ± 10.43 to 195.22 ± 9.63 mg TE/100 g DW in the WD treatment compared to the well-watered (WW) treatment, whereas varieties 7, 10, 12, 13, and 18 demonstrated the highest CUPRAC values of all varieties (2584.86 ± 99.68-2969.56 ± 159.72 mg TE/100 g) across both WW and WD conditions, with no significant variations between irrigation regimes. Moreover, lignan contents (sesamin and sesamolin) were higher in varieties 1, 2, 5, and 8 grown in WD conditions. Compared to the optimal unsaturated to saturated fatty acid ratio (Σ UFA/Σ SFA ratio) of 0.45, all sesame genotypes showed superior ratios (ranging between 1.86 and 2.34). Moreover, the ω-6/ω-3 PUFA ratio varied from 33.7-65.5, with lower ratios in varieties 2, 4, 5, 8, and 18 under WD conditions. The high levels of phenolic compounds and healthy fats suggest the potential of black sesame to be incorporated into diets as a functional food. Furthermore, the enhanced phytochemistry of these cultivars in WD conditions is promising for widespread adoption. However, larger trial studies to confirm these findings across different geographic locations and seasons are warranted.
Collapse
Affiliation(s)
- Beatriz E. Hoyos
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
| | - Joel B. Johnson
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4067, Australia
| | - Janice S. Mani
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
| | - Ryan J. Batley
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
| | - Tieneke Trotter
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
| | - Surya P. Bhattarai
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
| | - Mani Naiker
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
| |
Collapse
|
12
|
Wu K, Gong W, Lin S, Huang S, Mu H, Wang M, Sheng J, Zhao C. Regulation of Sacha Inchi protein on fecal metabolism and intestinal microorganisms in mice. Front Nutr 2024; 11:1354486. [PMID: 38524850 PMCID: PMC10959099 DOI: 10.3389/fnut.2024.1354486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction With the increasing demand for protein utilization, exploring new protein resources has become a research hotspot. Sacha Inchi Protein (SIP) is a high-quality plant protein extracted from Sacha Inchi meal. This study aimed to investigate the impact of SIP on mouse metabolomics and gut microbiota diversity and explore the underlying pathways responsible for its health benefits. Methods In this study, the structural composition of SIP was investigated, and the effects of SIP on fecal metabolomics and intestinal microorganisms in mice were explored by LC-MS metabolomics technology analysis and 16S rRNA gene sequencing. Results The results showed that SIP was rich in amino acids, with the highest Manuscript Click here to view linked References content of arginine, which accounted for 22.98% of the total amino acid content; the potential fecal metabolites of mice in the SIP group involved lipid metabolism, sphingolipid metabolism, arginine biosynthesis, and amino acid metabolism; SIP altered the microbial composition of the cecum in mice, decreased the Firmicutes/Bacteroidetes value, and It decreased the abundance of the harmful intestinal bacteria Actinobacteriota and Desulfobacterota, and increased the abundance of the beneficial intestinal bacteria Faecalibaculum, Dubosiella. Discussion In conclusion, SIP is a high-quality plant protein with great potential for development in lipid-lowering, intestinal health, and mental illness, providing valuable clues for further research on its health-promoting mechanisms.
Collapse
Affiliation(s)
- Kuan Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | | | - Shiyang Lin
- Pu'er Agricultural Science Research Institute, Pu-er, China
| | - Si Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongyu Mu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mingming Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming, Yunnan, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| |
Collapse
|
13
|
Oliveira KC, Franciscato LMSS, Mendes SS, Barizon FMA, Gonçalves DD, Barbosa LN, Faria MGI, Valle JS, Casalvara RFA, Gonçalves JE, Gazim ZC, Ruiz SP. Essential Oil from the Leaves, Fruits and Twigs of Schinus terebinthifolius: Chemical Composition, Antioxidant and Antibacterial Potential. Molecules 2024; 29:469. [PMID: 38257382 PMCID: PMC10819699 DOI: 10.3390/molecules29020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Schinus terebinthifolius Raddi, popularly known as "Pink pepper", is a plant native to Brazil. The objective of this work was to analyze the chemical composition and the antioxidant and antibacterial potential of essential oils (EOs) from the leaves, fruits and twigs of S. terebinthifolius, aiming for their application in food safety. EOs were obtained by hydrodistillation and the chemical composition was determined by gas chromatography coupled to mass spectrometry. Phenolic compounds were quantified and antioxidant activity was evaluated using three different methods. The antibacterial activity was determined by the broth microdilution method against foodborne bacteria. In the chemical analysis, 22 compounds were identified in the leaves, 13 compounds in the fruits and 37 compounds in the twigs, revealing the presence of the main compounds germacrene D (12.04%, 15.78%, 20,41%), caryophyllene (15.97%, 3.12%, 11.73%), α-pinene (11.6%, 17.16%, 2.99%), β-pinene (5.68%, 43.34%, 5.60%) and γ-gurjunene (16,85%, 3,15%) respectively. EOs showed better antioxidant potential using the β-carotene/linoleic acid method with 40.74, 61.52 and 63.65% oxidation inhibition for leaves, fruits and twigs, respectively. The EO from the leaves showed greater antibacterial potential against Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 0.62 mg mL-1, a value lower than the MIC of sodium nitrite (5.00 mg mL-1), the antimicrobial standard synthetic. The activities of pink pepper EOs suggest their potential as a biopreservative in foods.
Collapse
Affiliation(s)
- Kátia C. Oliveira
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Lidaiane M. S. S. Franciscato
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Suelen S. Mendes
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Francielly M. A. Barizon
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
| | - Daniela D. Gonçalves
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
- Graduate Program in Medicinal Plants and Herbal Medicines in Basic Health Care, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil
| | - Lidiane N. Barbosa
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
- Graduate Program in Medicinal Plants and Herbal Medicines in Basic Health Care, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil
| | - Maria G. I. Faria
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| | - Juliana S. Valle
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
| | - Rhaira F. A. Casalvara
- Graduate Program in Clean Technologies, Cesumar Institute of Science, Technology and Innovation, Cesumar University (UniCesumar), Maringá 87050-390, PR, Brazil; (R.F.A.C.); (J.E.G.)
| | - José E. Gonçalves
- Graduate Program in Clean Technologies, Cesumar Institute of Science, Technology and Innovation, Cesumar University (UniCesumar), Maringá 87050-390, PR, Brazil; (R.F.A.C.); (J.E.G.)
| | - Zilda C. Gazim
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (F.M.A.B.); (D.D.G.); (L.N.B.)
| | - Suelen P. Ruiz
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense (UNIPAR), Umuarama 87502-210, PR, Brazil; (K.C.O.); (L.M.S.S.F.); (S.S.M.); (M.G.I.F.); (J.S.V.); (Z.C.G.)
| |
Collapse
|
14
|
Kerienė I, Šaulienė I, Šukienė L, Judžentienė A, Ligor M, Valiuškevičius G, Grendaitė D, Buszewski B. Enrichment of Water Bodies with Phenolic Compounds Released from Betula and Pinus Pollen in Surface Water. PLANTS (BASEL, SWITZERLAND) 2023; 13:99. [PMID: 38202407 PMCID: PMC10780553 DOI: 10.3390/plants13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Betula and Pinus pollen, which are dispersed in natural surface waters, release biologically active compounds into the water bodies. This study aims to evaluate variations in the distribution and composition of phenolic compounds in suspended particles in natural water bodies during pollen spreading. Samples taken from water bodies of different trophic levels were analyzed by microscopy, UV/VIS spectroscopy, HPTLC, and HPLC/DAD. The study revealed that the total phenolic content in water-suspended particles varied from 3.0 mg/g to 11.0 mg/g during Betula and Pinus pollen spreading. It was also observed that the surface water of dystrophic natural lakes had a higher content of phenolic compounds than the eutrophic, hypereutrophic, and mesotrophic water bodies. Chlorogenic, trans-ferulic, vanillin, and 3,4-dihydroxybenzoic acids were frequently detected in the surface water samples. Experimental measurements have shown variations in the release of phenolic compounds from Betula pollen into water (p < 0.05). After the exhibition of pollen, the distilled water predominantly contained bioactive chlorogenic acid. Further in situ investigations are necessary to gain a more comprehensive understanding of the function of phenolic compounds in aquatic ecosystems. The exploration of the release of bioactive compounds from pollen could provide valuable insights into the potential nutritional value of pollen as a nutrient source for aquaculture.
Collapse
Affiliation(s)
- Ilona Kerienė
- Regional Development Institute, Šiauliai Academy, Vilnius University, 84 Vytauto Str., LT-76352 Šiauliai, Lithuania; (I.Š.); (L.Š.)
| | - Ingrida Šaulienė
- Regional Development Institute, Šiauliai Academy, Vilnius University, 84 Vytauto Str., LT-76352 Šiauliai, Lithuania; (I.Š.); (L.Š.)
| | - Laura Šukienė
- Regional Development Institute, Šiauliai Academy, Vilnius University, 84 Vytauto Str., LT-76352 Šiauliai, Lithuania; (I.Š.); (L.Š.)
| | - Asta Judžentienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania;
| | - Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland; (M.L.); (B.B.)
| | - Gintaras Valiuškevičius
- Department of Hydrology and Climatology, Faculty of Chemistry and Geosciences, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania; (G.V.); (D.G.)
| | - Dalia Grendaitė
- Department of Hydrology and Climatology, Faculty of Chemistry and Geosciences, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania; (G.V.); (D.G.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland; (M.L.); (B.B.)
| |
Collapse
|
15
|
Ulewicz-Magulska B, Wesolowski M. Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants (Basel) 2023; 12:2039. [PMID: 38136159 PMCID: PMC10740862 DOI: 10.3390/antiox12122039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Plant products, especially medicinal herbs and spices, have been used for centuries as a remedy to support human health and improve the flavor of food. Therefore, the purpose of this study was to identify plant species distinguished by their high content of phenolic compounds and high antioxidant activity using advanced multivariate statistical techniques such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). To realize the purpose of the study, the total phenolic (TPC) and flavonoids (FC) content, antioxidant activity (TAC) and Fe(II) ion chelating capacity (FIC) of medicinal herbs and spices from plants belonging to three botanical families, Lamiaceae, Apiaceae and Asteraceae were determined. The interpretation of the obtained data revealed that the studied samples are localized in the PCA and HCA plots according to their TPC, FC, TAC and FIC values. Chemometric analysis confirmed that medicinal herbs and spices from plants belonging to the Lamiaceae family are richer sources of phenolic compounds and exhibit stronger antioxidant activity than those raw materials from plants in the Apiaceae family. In addition, no significant differences were found in terms of TPC, FC, TAC and FIC values between medicinal herbs and spices from the same plant species, i.e., oregano (Origanum vulgare), common thyme (Thymus vulgaris), rosemary (Rosmarinus officinalis), caraway (Carum carvi) and lovage (Levisticum officinale). A close relationship between antioxidant properties and contents of phenolic compounds was also confirmed.
Collapse
Affiliation(s)
| | - Marek Wesolowski
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| |
Collapse
|
16
|
Solangi M, Khan KM, Ji X, Özil M, Baltaş N, Salar U, Khan A, Haq ZU, Meghwar H, Taha M. Indole-pyridine carbonitriles: multicomponent reaction synthesis and bio-evaluation as potential hits against diabetes mellitus. Future Med Chem 2023; 15:1943-1965. [PMID: 37929570 DOI: 10.4155/fmc-2023-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Background: Diabetes mellitus is a significant health disorder; therefore, researchers should focus on discovering new drug candidates. Methods: A series of indole-pyridine carbonitrile derivatives, 1-34, were synthesized through a one-pot multicomponent reaction and evaluated for antidiabetic and antioxidant potential. Results: In this library, 12 derivatives - 1, 2, 4, 5, 7, 8, 10-12, 14, 15 and 31 - exhibited potent inhibitory activities against α-glucosidase and α-amylase enzymes, in comparison to acarbose (IC50 = 14.50 ± 0.11 μM). Furthermore, kinetics, absorption, distribution, metabolism, excretion and toxicity and molecular docking studies were used to interpret the type of inhibition, binding energies and interactions of ligands with target enzymes. Conclusion: These results indicate that the compounds may be promising hits for controlling diabetes mellitus and its related complications.
Collapse
Affiliation(s)
- Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Pakistan Academy of Sciences, 3 Constitution Avenue, Sector G-5/2, Islamabad, Pakistan
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Alamgir Khan
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaheer Ul Haq
- Dr. Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Herchand Meghwar
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, PO Box 31441, Dammam, Saudi Arabia
| |
Collapse
|
17
|
Gyimah L, Asante-Kwatia E, Adjei S, Owusu FA, Darko F, Tabiri E, Mensah AY. Pharmacognostic characterization, wound healing and toxicity assessment of the stem bark of Xylia evansii Hutch (Leguminosae). Heliyon 2023; 9:e21692. [PMID: 37954382 PMCID: PMC10638049 DOI: 10.1016/j.heliyon.2023.e21692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Xylia evansii is widely used in traditional medicine to stop bleeding gums and treat wounds. This study was undertaken to assess the wound healing activity and toxicity profile of the stem bark methanol extract of X. evansii (XES). Wound healing activity was determined by the dermal excision model in rats. The free radical scavenging capacity, antioxidant activity, total phenolic and flavonoid contents were evaluated by the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, total antioxidant capacity (TAC), aluminum chloride colorimetric and Folin Ciocalteu methods respectively. Acute and sub-acute oral toxicity assessment was performed following the Organization for Economic Co-operation and Development guidelines. Significant (p < 0.05) dose-dependent wound healing effect, similar to that of 1 % silver sulphadiazine was elicit by the 10, 15 and 20 %w/w XES ointments. The highest effect was demonstrated by XES 20 %w/w which resulted in 98.3 % wound surface closure by day 9 of treatment (p < 0.0001). The total phenolic and flavonoid contents were determined to be 381.2 ± 12.57 mg/g gallic acid equivalent (GAE) and 460 ± 29.07 mg/g quercetin equivalent respectively. XES exhibited remarkable free radical scavenging effect (IC50 = 68.13 ± 1.87 μg/mL) and had a total antioxidant capacity of 279.2 ± 32.08 mg/g GAE. The LD50 of XES was estimated to be > 5000 mg/kg. In sub-acute toxicity, 28 days treatment with XES (250, 500, 1000 mg/kg body weight) did not result in any significant (p > 0.05) change in the body weight or weight of the heart, lung, spleen, liver and kidneys. The haematological and biochemical profiles of XES-treated rats were not significantly (p > 0.05) affected after 4-weeks treatment with XES, except for platelet count which increased significantly (p < 0.0001) in a non-dose-dependent manner. Histopathological examination did not reveal any toxic effect to liver cells, however at 1000 mg/kg XES, slight abnormalities were identified in the glomeruli. Microscopy of the powdered stem bark displayed calcium oxalate crystals, pitted vessels and lignified fibres. Tannins, flavonoids, coumarins, saponins, triterpenes and alkaloids were identified in the bark. This is the first report on the wound healing potential and safety profile of X. evansii, giving scientific credence to its use in traditional medicine.
Collapse
Affiliation(s)
- Lord Gyimah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evelyn Asante-Kwatia
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Silas Adjei
- Department of Herbal Medicine, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frederick Akuffo Owusu
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fanny Darko
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ernest Tabiri
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Abraham Yeboah Mensah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
18
|
Ma L, Dong R, Peng J, Tian X, Fang D, Xu S. Comparison of the effect of extraction methods on waste cotton (Gossypium hirsutum L.) flowers: metabolic profile, bioactive components, antioxidant, and α-amylase inhibition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6463-6472. [PMID: 37218075 DOI: 10.1002/jsfa.12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Waste cotton flowers, as a by-product of cotton cultivation, are enriched with bioactive substances that render them a promising natural source of health-promoting benefits. In this study, ultrasound-assisted extraction (UAE), subcritical water extraction (SWE), and conventional extraction (CE) approaches were applied to extract bioactive compounds from waste cotton flowers, and the metabolic profiles, bioactive components, antioxidants, and α-amylase inhibition of different extractions were systematically analyzed and compared. RESULTS It was observed that UAE and CE extracts had similar metabolic profiles compared with SWE. The flavonoids and amino acids and derivatives were more prone to be extracted by UAE and CE, whereas phenolic acids tended to accumulate in SWE extract. The UAE extract had the highest amounts of total polyphenols (214.07 mg gallic acid equivalents per gram dry weight) and flavonoids (33.23 mg rutin equivalents per gram dry weight) as well as the strongest inhibition on oxidation (IC50 = 10.80 μg mL-1 ) and α-amylase activity (IC50 = 0.62 mg mL-1 ), indicating that chemical composition was closely related to biological activity. Additionally, microstructures and thermal behaviors of the extracts were investigated and highlighted the ability of UAE. CONCLUSION Overall, it can be concluded that UAE is an efficient, green, and economical extraction method to produce bioactive compounds from cotton flowers, and the UAE extracts could be used in food and medicine industries because of their high antioxidant and α-amylase inhibitory activity. This study provides a scientific basis for the development and comprehensive utilization of cotton by-products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Ruidan Dong
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xinquan Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Dan Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shuangjiao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| |
Collapse
|
19
|
Ivanova AV, Markina MG. Portable Device for Potentiometric Determination of Antioxidant Capacity. SENSORS (BASEL, SWITZERLAND) 2023; 23:7845. [PMID: 37765901 PMCID: PMC10536404 DOI: 10.3390/s23187845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
For the first time, a prototype of a portable device for the potentiometric determination of antioxidant capacity based on a new measurement principle is proposed. A feature of the approach is the use of an electrochemical microcell with separated spaces and two identical electrodes with immobilized reagents. An antioxidant solution is introduced into one half-cell, and the antioxidants interact with the reagents. The other half-cell contains only reagents. The potential difference between the electrodes is due to the change in the ratio of the oxidized and reduced form of the reagents, which occurs as a result of the reaction with the antioxidants in one of the half-cells and is related to their concentration. The range of linearity of the microcell with immobilized reagents is 40-4000 μM-eq, and the limit of detection is 20 μM-eq. The device was successfully tested in the analysis of standard antioxidant solutions. The recoveries were (92-113)%, and the relative standard deviation did not exceed 15%. A good correlation was found between the data obtained by the approach and the potentiometric method in a macrocell for fruit juice analysis. Pearson's coefficient for the obtained experimental data was 0.9955. The proposed portable device is promising and can be used in field conditions.
Collapse
Affiliation(s)
- Alla V. Ivanova
- Chemical Technological Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 19, Mira Str., 620002 Ekaterinburg, Russia;
| | | |
Collapse
|
20
|
Averina OV, Kovtun AS, Mavletova DA, Ziganshin RH, Danilenko VN, Mihaylova D, Blazheva D, Slavchev A, Brazkova M, Ibrahim SA, Krastanov A. Oxidative Stress Response of Probiotic Strain Bifidobacterium longum subsp. longum GT15. Foods 2023; 12:3356. [PMID: 37761064 PMCID: PMC10530004 DOI: 10.3390/foods12183356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Bifidobacterium is a predominant and important genus in the bacterial population of the human gut microbiota. Despite the increasing number of studies on the beneficial functionality of bifidobacteria for human health, knowledge about their antioxidant potential is still insufficient. Several in vivo and in vitro studies of Bifidobacterium strains and their cellular components have shown good antioxidant capacity that provided a certain protection of their own and the host's cells. Our work presents the data of transcriptomic, proteomic, and metabolomic analyses of the growing and stationary culture of the probiotic strain B. longum subsp. longum GT15 after exposure to hydrogen peroxide for 2 h and oxygen for 2 and 4 h. The results of the analysis of the sequenced genome of B. longum GT15 showed the presence of 16 gene-encoding proteins with known antioxidant functions. The results of the full transcriptomic analysis demonstrated a more than two-fold increase of levels of transcripts for eleven genes, encoding proteins with antioxidant functions. Proteomic data analysis showed an increased level of more than two times for glutaredoxin and thioredoxin after the exposure to oxygen, which indicates that the thioredoxin-dependent antioxidant system may be the major redox homeostasis system in B. longum bacteria. We also found that the levels of proteins presumably involved in global stress, amino acid metabolism, nucleotide and carbohydrate metabolism, and transport had significantly increased in response to oxidative stress. The metabolic fingerprint analysis also showed good discrimination between cells responding to oxidative stress and the untreated controls. Our results provide a greater understanding of the mechanism of oxidative stress response in B. longum and the factors that contribute to its survival in functional food products.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Aleksey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Dilara A. Mavletova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.S.K.); (D.A.M.); (V.N.D.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (A.K.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.B.); (A.S.)
| | - Aleksandar Slavchev
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.B.); (A.S.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (A.K.)
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC 27411-1064, USA;
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (D.M.); (A.K.)
| |
Collapse
|
21
|
Gerasimova E, Salimgareeva E, Magasumova D, Ivanova A. Kinetic Potentiometry as a Method for Studying the Interactions of Antioxidants with Peroxyl Radicals. Antioxidants (Basel) 2023; 12:1608. [PMID: 37627605 PMCID: PMC10451547 DOI: 10.3390/antiox12081608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This work presents a new method using kinetic potentiometry to study the thermodynamic and kinetic parameters of the reactions of antioxidants with peroxyl radicals. The rate constants of the reaction of antioxidants with radicals have been determined, and the groups of "fast" and "slow" antioxidants have been conventionally distinguished. Fast antioxidants include ascorbic, uric, gallic, chlorogenic, caffeic acids, glutathione, L-cysteine, and catechol with constant values from (1.05-9.25) × 103 M·s-1; "slow" antioxidants are α-tocopherol (in aqueous media), ionol, 2,6-ditretbutylphenol, and compounds of the azoloazine series, modified with polyphenolic fragments, with constant values from (4.00-8.50) × 102 M·s-1. It is shown that the value of the rate constant is directly related to the type of kinetic dependence of the potential recorded when an antioxidant is introduced into the solution of the radical initiator. It is shown that the method with the determination of the induction period is difficult in the study of "slow" antioxidants. It has been established that the area above the curve of the kinetic dependence Exp(∆E) is directly related to the amount of inhibited peroxyl radicals and can be used to assess the inhibitory properties of an antioxidant from a thermodynamic point of view. "Fixed time method" and "Initial rate method" were used. Positive correlations between the described method have been established. The utility of the parameter of the area above the curve of the kinetic dependence Exp(∆E) in the study of objects of complex composition is shown.
Collapse
Affiliation(s)
| | | | | | - Alla Ivanova
- Analytical Chemistry Department, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia; (E.G.); (E.S.); (D.M.)
| |
Collapse
|
22
|
Yu S, Kim S, Kim J, Kim JW, Kim SY, Yeom B, Kim H, Choi WII, Sung D. Highly Water-Dispersed and Stable Deinoxanthin Nanocapsule for Effective Antioxidant and Anti-Inflammatory Activity. Int J Nanomedicine 2023; 18:4555-4565. [PMID: 37581101 PMCID: PMC10423574 DOI: 10.2147/ijn.s401808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/05/2023] [Indexed: 08/16/2023] Open
Abstract
Introduction Deinoxanthin (DX), a carotenoid, has excellent antioxidant and anti-inflammatory properties. However, owing to its lipophilicity, it is unfavorably dispersed in water and has low stability, limiting its application in cosmetics, food, and pharmaceuticals. Therefore, it is necessary to study nanoparticles to increase the loading capacity and stability of DX. Methods In this study, DX-loaded nanocapsules (DX@NCs) were prepared by nanoprecipitation by loading DX into nanocapsules. The size, polydispersity index, surface charge, and morphology of DX@NCs were confirmed through dynamic light scattering and transmission electron microscopy. The loading content and loading efficiency of DX in DX@NCs were analyzed using high-performance liquid chromatography. The antioxidant activity of DX@NCs was evaluated by DPPH assay and in vitro ROS. The biocompatibility of DX@NCs was evaluated using an in vitro MTT assay. In vitro NO analysis was performed to determine the effective anti-inflammatory efficacy of DX@NCs. Results DX@NCs exhibited increased stability and antioxidant efficacy owing to the improved water solubility of DX. The in situ and in vitro antioxidant activity of DX@NCs was higher than that of unloaded DX. In addition, it showed a strong anti-inflammatory effect by regulating the NO level in an in vitro cell model. Conclusion This study presents a nanocarrier to improve the water-soluble dispersion and stability of DX. These results demonstrate that DX@NC is a carrier with excellent stability and has a high potential for use in cosmetic and pharmaceutical applications owing to its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sohyeon Yu
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jisu Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji-Woong Kim
- Materials Science Research Institute, LABIO Co., Ltd, Seoul, 08501, Republic of Korea
| | - Su Young Kim
- Materials Science Research Institute, LABIO Co., Ltd, Seoul, 08501, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gyeongbuk, 39177, Republic of Korea
| | - Won I I Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| |
Collapse
|
23
|
Semwogerere F, Chikwanha OC, Katiyatiya CLF, Marufu MC, Mapiye C. Bioavailability of bioactive phytochemicals in selected tissues and excreta from goats fed hempseed cake (Cannabis sativa L.) finisher diets. Trop Anim Health Prod 2023; 55:262. [PMID: 37407730 PMCID: PMC10322766 DOI: 10.1007/s11250-023-03676-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Hempseeds are rich in bioactive phytochemicals, yet little is known about their bioavailability in tissues and excreta of animals fed hemp seed cake. The study evaluated the bioactive phytochemicals and their antioxidant activity in the blood, liver, meat, feces, and urine from goats fed finishing diets containing graded inclusions of hempseed cake (HSC). Twenty-five wether goats (26.8 ± 2.9 kg) of 4-5 months were randomly allocated to five experimental diets containing increasing levels of HSC (0, 25, 50, 75, 100 g/kg DM) substituted for soybean meal (SBM) as the main protein source. Goats were allowed for period of 21 days for adaptation, and blood, fecal, and urine samples were collected on the 28th day of the experiment. The liver and right longissimus thoracis et lumborum were respectively collected at 60 min and 24 h after slaughter. Linear increases (P ≤ 0.05) in blood, liver, and urine magnesium; fecal manganese; and fecal copper were observed with increasing HSC inclusion in the diet. Liver and fecal selenium exhibited a decreasing linear trend (P ≤ 0.05) with HSC increment in diets. Diet did not affect (P > 0.05) meat and urine mineral contents, except urine magnesium. The 2,2-diphenyl-1-picrylhydrazyl, and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) of the blood, liver, and meat linearly increased (P ≤ 0.05) with dietary inclusion of HSC. Blood and liver ferric reducing antioxidant power quadratically increased (P ≤ 0.05) with HSC inclusion reaching a maximum at 50 g/kg dry matter. Current results suggest that inclusion of HSC up to 100 g/kg substituting SBM in goat diets can improve bioavailability of bioactive phytochemicals in the blood, liver, and meat.
Collapse
Affiliation(s)
- Farouk Semwogerere
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Obert C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Chenaimoyo L F Katiyatiya
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Munyaradzi C Marufu
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
24
|
Kavčič H, Jug U, Mavri J, Umek N. Antioxidant activity of lidocaine, bupivacaine, and ropivacaine in aqueous and lipophilic environments: an experimental and computational study. Front Chem 2023; 11:1208843. [PMID: 37408557 PMCID: PMC10318152 DOI: 10.3389/fchem.2023.1208843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction: Local anesthetics are widely recognized pharmaceutical compounds with various clinical effects. Recent research indicates that they positively impact the antioxidant system and they may function as free radical scavengers. We hypothesize that their scavenging activity is influenced by the lipophilicity of the environment. Methods: We assessed the free radical scavenging capacity of three local anesthetics (lidocaine, bupivacaine, and ropivacaine) using ABTS, DPPH, and FRAP antioxidant assays. We also employed quantum chemistry methods to find the most probable reaction mechanism. The experiments were conducted in an aqueous environment simulating extracellular fluid or cytosol, and in a lipophilic environment (n-octanol) simulating cellular membranes or myelin sheets. Results: All local anesthetics demonstrated ABTS˙+ radical scavenging activity, with lidocaine being the most effective. Compared to Vitamin C, lidocaine exhibited a 200-fold higher half-maximal inhibitory concentration. The most thermodynamically favorable and only possible reaction mechanism involved hydrogen atom transfer between the free radical and the -C-H vicinal to the carbonyl group. We found that the antioxidant activity of all tested local anesthetics was negligible in lipophilic environments, which was further confirmed by quantum chemical calculations. Conclusion: Local anesthetics exhibit modest free radical scavenging activity in aqueous environments, with lidocaine demonstrating the highest activity. However, their antioxidant activity in lipophilic environments, such as cellular membranes, myelin sheets, and adipose tissue, appears to be negligible. Our results thus show that free radical scavenging activity is influenced by the lipophilicity of the environment.
Collapse
Affiliation(s)
- H. Kavčič
- Clinical Department for Anesthesiology and Surgical Intensive Therapy, University Medical Center Ljubljana, Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - U. Jug
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - J. Mavri
- Laboratory of Computational Biochemistry and Drug Design, National Institute of Chemistry, Ljubljana, Slovenia
| | - N. Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Visan S, Soritau O, Tatomir C, Baldasici O, Balacescu L, Balacescu O, Muntean P, Gherasim C, Pintea A. The Bioactive Properties of Carotenoids from Lipophilic Sea buckthorn Extract ( Hippophae rhamnoides L.) in Breast Cancer Cell Lines. Molecules 2023; 28:molecules28114486. [PMID: 37298962 DOI: 10.3390/molecules28114486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In women, breast cancer is the most commonly diagnosed cancer (11.7% of total cases) and the leading cause of cancer death (6.9%) worldwide. Bioactive dietary components such as Sea buckthorn berries are known for their high carotenoid content, which has been shown to possess anti-cancer properties. Considering the limited number of studies investigating the bioactive properties of carotenoids in breast cancer, the aim of this study was to investigate the antiproliferative, antioxidant, and proapoptotic properties of saponified lipophilic Sea buckthorn berries extract (LSBE) in two breast cancer cell lines with different phenotypes: T47D (ER+, PR+, HER2-) and BT-549 (ER-, PR-, HER2-). The antiproliferative effects of LSBE were evaluated by an Alamar Blue assay, the extracellular antioxidant capacity was evaluated through DPPH, ABTS, and FRAP assays, the intracellular antioxidant capacity was evaluated through a DCFDA assay, and the apoptosis rate was assessed by flow cytometry. LSBE inhibited the proliferation of breast cancer cells in a concentration-dependent manner, with a mean IC50 of 16 µM. LSBE has proven to be a good antioxidant both at the intracellular level, due to its ability to significantly decrease the ROS levels in both cell lines (p = 0.0279 for T47D, and p = 0.0188 for BT-549), and at the extracellular level, where the ABTS and DPPH inhibition vried between 3.38-56.8%, respectively 5.68-68.65%, and 35.6 mg/L equivalent ascorbic acid/g LSBE were recorded. Based on the results from the antioxidant assays, LSBE was found to have good antioxidant activity due to its rich carotenoid content. The flow cytometry results revealed that LSBE treatment induced significant alterations in late-stage apoptotic cells represented by 80.29% of T47D cells (p = 0.0119), and 40.6% of BT-549 cells (p = 0.0137). Considering the antiproliferative, antioxidant, and proapoptotic properties of the carotenoids from LSBE on breast cancer cells, further studies should investigate whether these bioactive dietary compounds could be used as nutraceuticals in breast cancer therapy.
Collapse
Affiliation(s)
- Simona Visan
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Olga Soritau
- Department of Cell Biology and Radiobiology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Corina Tatomir
- Department of Cell Biology and Radiobiology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Oana Baldasici
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
| | - Patricia Muntean
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cristina Gherasim
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adela Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Jankov M, Ristivojević P, Cvijetić I, Milojković-Opsenica D. Assessing radical scavenging capacity of Sempervivum tectorum L. leaf extracts: An integrated high-performance thin-layer chromatography/in silico/chemometrics approach. J Chromatogr A 2023; 1703:464082. [PMID: 37269574 DOI: 10.1016/j.chroma.2023.464082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
High-Performance Thin-Layer Chromatography (HPTLC)-radical scavenging capacity (RSC) assays are standard techniques for the separation and identification of antioxidants from complex mixtures. HPTLC coupled with DPPH· visualization of chromatograms allows for the detection of individual antioxidants. However, other HPTLC-RSC assays that recognize compounds exhibiting different mechanisms of radical-scavenging activity are rarely reported. In this study, we developed an integrated approach that combines five HPTLC-RSC assays, principal component analysis (PCA) and quantum chemical calculations to assess the antioxidant capacity of Sempervivum tectorum L. leaf extracts. Two HPTLC assays - potassium hexacyanoferrate(III) total reducing power assay (TRP) and total antioxidant capacity by phosphomolybdenum method (TAC) - were developed for the first time. The method supports a more in-depth study of the RSC of natural products, as it compares the radical scavenging fingerprints of S. tectorum leaf extracts and recognizes differences in their individual bioactive constituents. Kaempferol, kaempferol 3-O-glucoside, quercetin 3-O-glucoside, caffeic acid, and gallic acid were identified as the compounds that discriminate HPTLC-RSC assays according to their mechanism of action and capture the similarities between 20 S. tectorum samples. Additionally, DFT calculations on M06-2X/6-31+G(d,p) level were applied to map thermodynamic feasibility of hydrogen atom transfer (HAT) and single electron transfer (SET) mechanisms of the identified compounds. Based on experimental and theoretical results, a combination of HPTLC-ABTS and HPTLC-TAC assays were proposed as the optimal method for mapping the antioxidants from S. tectorum. This study represents a step forward in identifying and quantifying individual antioxidants from complex food and natural product matrices in a more rational manner.
Collapse
Affiliation(s)
- Milica Jankov
- Innovation Centre of the Faculty of Chemistry Ltd., Studentski Trg 12-16, Belgrade 11158, Serbia
| | - Petar Ristivojević
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, Belgrade 11158, Serbia
| | - Ilija Cvijetić
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, Belgrade 11158, Serbia
| | | |
Collapse
|
27
|
Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review. Molecules 2023; 28:molecules28052308. [PMID: 36903553 PMCID: PMC10004803 DOI: 10.3390/molecules28052308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Medicinal plants are an important source of bioactive compounds with a wide spectrum of practically useful properties. Various types of antioxidants synthesized in plants are the reasons for their application in medicine, phytotherapy, and aromatherapy. Therefore, reliable, simple, cost-effective, eco-friendly, and rapid methods for the evaluation of antioxidant properties of medicinal plants and products on their basis are required. Electrochemical methods based on electron transfer reactions are promising tools to solve this problem. Total antioxidant parameters and individual antioxidant quantification can be achieved using suitable electrochemical techniques. The analytical capabilities of constant-current coulometry, potentiometry, various types of voltammetry, and chrono methods in the evaluation of total antioxidant parameters of medicinal plants and plant-derived products are presented. The advantages and limitations of methods in comparison to each other and traditional spectroscopic methods are discussed. The possibility to use electrochemical detection of the antioxidants via reactions with oxidants or radicals (N- and O-centered) in solution, with stable radicals immobilized on the electrode surface, via oxidation of antioxidants on a suitable electrode, allows the study of various mechanisms of antioxidant actions occurring in living systems. Attention is also paid to the individual or simultaneous electrochemical determination of antioxidants in medicinal plants using chemically modified electrodes.
Collapse
|
28
|
Berlic M, Jug U, Battelino T, Levart A, Dimitrovska I, Albreht A, Korošec M. Antioxidant-rich foods and nutritional value in daily kindergarten menu: A randomized controlled evaluation executed in Slovenia. Food Chem 2023; 404:134566. [DOI: 10.1016/j.foodchem.2022.134566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
29
|
A novel electrochemical micro-titration method for quantitative evaluation of the DPPH free radical scavenging capacity of caffeic acid. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Abstract
In this report, the stoichiometric ratio (R) for the interaction of diphenylpicrylhydrazyl (DPPH) radicals with the antioxidant was employed as an evaluation index for the DPPH radical scavenging activity of antioxidants. This evaluation index was related only to the stoichiometric relationship of DPPH radicals with the antioxidant and had no relationship with the initial DPPH amount and the sample volume, which could offer a solution to the problem of poor comparability of EC50 values under different conditions. A novel electrochemical micro-titration method was proposed for the determination of the stoichiometric ratio (R) for the interaction of DPPH radicals with the antioxidant. This electrochemical micro-titration model was verified using caffeic acid as the DPPH radical scavenger, with the stoichiometric ratio (R) of DPPH radicals to caffeic acid determined to be in the range of 2.003–2.046. The calculated EC50 values were 0.513, 1.011, and 1.981 × 10–5 mol/L for 2.10, 4.05, and 8.02 × 10–7 moL of added DPPH radicals, respectively. The proposed method showed no differences from the conventional method, but had better precision and reliability, and used a smaller amount of sample.
Collapse
|
30
|
Giraldo-Silva L, Ferreira B, Rosa E, Dias ACP. Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030543. [PMID: 36771630 PMCID: PMC9919935 DOI: 10.3390/plants12030543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/12/2023]
Abstract
The use of Opuntia ficus-indica fruits in the agro-food sector is increasing for a multiplicity of players. This renewed interest is, in part, due to its organoleptic characteristics, nutritional value and health benefits. Furthermore, industries from different sectors intend to make use of its vast array of metabolites to be used in different fields. This trend represents an economic growth opportunity for several partners who could find new opportunities exploring non-conventional fruits, and such is the case for Opuntia ficus-indica. O. ficus-indica originates from Mexico, belongs to the Cactaceae family and is commonly known as opuntia, prickly pear or cactus pear. The species produces flowers, cladodes and fruits that are consumed either in raw or in processed products. Recent publications described that consumption of the fruit improves human health, exhibiting antioxidant activity and other relevant pharmacological activities through enzymatic and non-enzymatic mechanisms. Thus, we provide a systematic, scientific and rational review for researchers, consumers and other relevant stakeholders regarding the chemical composition and biological activities of O. ficus-indica fruits.
Collapse
Affiliation(s)
- Luis Giraldo-Silva
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Bárbara Ferreira
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Alberto C. P. Dias
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
31
|
Abalone visceral peptides containing Cys and Tyr exhibit strong in vitro antioxidant activity and cytoprotective effects against oxidative damage. Food Chem X 2023; 17:100582. [PMID: 36845506 PMCID: PMC9944499 DOI: 10.1016/j.fochx.2023.100582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The in vitro antioxidation and cytoprotection of abalone visceral peptides against oxidative damage were investigated. Results show that the DPPH· scavenging activities of the 16 chemically synthesized peptides were significantly and positively correlated with their reducing power. Their scavenging activities against ABTS·+ were positively correlated with their ability to inhibit linoleic acid oxidation. Only Cys containing peptides exhibited good DPPH· scavenging activity, while only Tyr containing peptides showed significant ABTS·+ scavenging activity. In the cytoprotection assay, all four representative peptides significantly increased the viability of H2O2-damaged LO2 cells and the activities of GSH-Px, CAT, and SOD, and all decreased MDA levels and LDH leakage, in which the Cys-containing peptides were more effective at increasing the activities of antioxidant enzymes, while the Tyr-containing peptides were more effective at decreasing MDA levels and LDH leakage. Abalone visceral peptides containing both Cys and Tyr exhibit strong in vitro and cellular antioxidation.
Collapse
|
32
|
Kim S, Yu S, Kim J, Khaliq NU, Choi WI, Kim H, Sung D. Facile Fabrication of α-Bisabolol Nanoparticles with Improved Antioxidant and Antibacterial Effects. Antioxidants (Basel) 2023; 12:antiox12010207. [PMID: 36671070 PMCID: PMC9854552 DOI: 10.3390/antiox12010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Bioactive compounds are widely used in the bio-industry because of their antioxidant and antibacterial activities. Because of excessive oxidative stress, which causes various diseases in humans, and because preservatives used in bioproducts cause allergies and contact dermatitis, it is important to use natural bioactive compounds in bioproducts to minimize oxidative stress. α-bisabolol (ABS) is a natural compound with both antioxidant and antibacterial properties. However, its water-insolubility makes its utilization in bioproducts difficult. In this study, ABS-loaded polyglyceryl-4 caprate nanoparticles (ABS@NPs) with improved aqueous stability and ABS loading were fabricated using an encapsulation method. The long-term stability of the ABS@NPs was analyzed with dynamic light scattering and methylene blue-staining to determine the optimized ABS concentration in ABS@NPs (10 wt%). The ABS@NPs exhibited excellent antioxidant activity, according to the 2,2-diphenyl-1-picrylhydrazyl assay and in vitro reactive oxygen species generation in NIH-3T3 fibroblast cells, and an outstanding antibacterial effect, as determined using the Staphylococcus aureus colony-counting method. Furthermore, we evaluated the biocompatibility of the ABS@NPs in vitro. This study suggests that ABS@NPs with improved antioxidant and antibacterial properties can be used to treat diseases related to various oxidative stresses and can be applied in many fields, such as pharmaceuticals, cosmetics, and foods.
Collapse
Affiliation(s)
- Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Yu
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jisu Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
- Correspondence: (H.K.); (D.S.); Tel.: +82-54-478-7830 (H.K.); +82-43-913-1511 (D.S.); Fax: +82-54-478-7859 (H.K.); +82-43-913-1597 (D.S.)
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Correspondence: (H.K.); (D.S.); Tel.: +82-54-478-7830 (H.K.); +82-43-913-1511 (D.S.); Fax: +82-54-478-7859 (H.K.); +82-43-913-1597 (D.S.)
| |
Collapse
|
33
|
SWE ZM, CHUMPHON T, PANGJIT K, PROMSAI S. Use of pigmented rice as carrier and stingless bee honey as prebiotic to formulate novel synbiotic products mixed with three strains of probiotic bacteria. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Saran PROMSAI
- Kasetsart University, Thailand; Kasetsart University, Thailand
| |
Collapse
|
34
|
Panda S, Dhara S, Singh A, Dey S, Kumar Lahiri G. Metal-coordinated azoaromatics: Strategies for sequential azo-reduction, isomerization and application potential. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Saleem F, Khan KM, Ullah N, Özil M, Baltaş N, Hameed S, Salar U, Wadood A, Rehman AU, Kumar M, Taha M, Haider SM. Bioevaluation of synthetic pyridones as dual inhibitors of α-amylase and α-glucosidase enzymes and potential antioxidants. Arch Pharm (Weinheim) 2023; 356:e2200400. [PMID: 36284484 DOI: 10.1002/ardp.202200400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Herein, a library of novel pyridone derivatives 1-34 was designed, synthesized, and evaluated for α-amylase and α-glucosidase inhibitory as well as antioxidant activities. Pyridone derivatives 1-34 were synthesized via a one-pot multi-component reaction of variously substituted aromatic aldehydes, acetophenone, ethyl cyanoacetate, and ammonium acetate in absolute ethanol. Synthetic compounds 1-34 were structurally characterized by different spectroscopic techniques. Most of the tested compounds showed more promising inhibition potential than the standard acarbose (IC50 = 14.87 ± 0.16 µM) but compounds 13 and 12 were found to be the most potent compounds with IC50 values of 9.20 ± 0.14 µM and 3.05 ± 0.18 µM against α-amylase and α-glucosidase enzymes, respectively. Compounds 1-34 also displayed moderate antioxidant potential in the range of IC50 = 96.50 ± 0.45 to 189.98 ± 1.00 µM in comparison to the control butylated hydroxytoluene (BHT) (IC50 = 66.50 ± 0.36 µM), in DPPH radical scavenging activities. Additionally, all synthetic derivatives were subjected to a molecular docking study to investigate the interaction details of compounds 1-34 (ligands) with the active site of enzymes (receptors). These results indicate that the newly synthesized pyridone class may serve as promising lead candidates for controlling diabetes mellitus and as antioxidants.
Collapse
Affiliation(s)
- Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Mukesh Kumar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Syed Moazzam Haider
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
36
|
Martins GR, Mattos MMG, Nascimento FM, Brum FL, Mohana-Borges R, Figueiredo NG, Neto DFM, Domont GB, Nogueira FCS, de Paiva Campos FDA, Sant'Ana da Silva A. Phenolic Profile and Antioxidant Properties in Extracts of Developing Açaí ( Euterpe oleracea Mart.) Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16218-16228. [PMID: 36530137 DOI: 10.1021/acs.jafc.2c07028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We investigated changes in the phenolic profile and antioxidant properties in the extracts of developing seeds of açaí (Euterpe oleracea). Four developmental stages were evaluated, with earlier stages displaying higher antioxidant activity and polyphenols content, while mass spectrometry analysis identified procyanidins (PCs) as the major components of the extracts in all stages. B-type PCs varied from dimers to decamers, with A-type linkages in a smaller number. Extracted PCs decreased in average length from 20.5 to 10.1 along seed development. PC composition indicated that (-)-epicatechin corresponded to over 95% of extension units in all stages, while (+)-catechin presence as the starter unit increased from 42 to 78.8% during seed development. This variation was correlated to the abundance of key enzymes for PC biosynthesis during seed development. This study is the first to report PC content and composition variations during açaí seed development, which can contribute to studies on the plant's physiology and biotechnological applications.
Collapse
Affiliation(s)
- Gabriel R Martins
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Mariana M G Mattos
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Fabiane Marques Nascimento
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
| | - Felipe L Brum
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
- Centro de Espectrometria de Massas de Biomoléculas (CEMBIO), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro21941-902, Brazil
| | - Ronaldo Mohana-Borges
- Centro de Espectrometria de Massas de Biomoléculas (CEMBIO), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro21941-902, Brazil
| | - Natália Guimarães Figueiredo
- Laboratório de Tabaco e Derivados (LATAB), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 216, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
| | - Domingos F M Neto
- Departamento de Fitotecnia, Universidade Federal do Ceará, Fortaleza, Ceará60356-900, Brazil
| | - Gilberto Barbosa Domont
- Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-901, Brazil
- Laboratório de Proteômica/LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-901, Brazil
| | - Fábio César Sousa Nogueira
- Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-901, Brazil
- Laboratório de Proteômica/LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-901, Brazil
| | | | - Ayla Sant'Ana da Silva
- Laboratório de Biocatálise (LABIC), Instituto Nacional de Tecnologia, Av. Venezuela, 82, Room 302, Rio de Janeiro, Rio de Janeiro20081-312, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| |
Collapse
|
37
|
Quinty V, Colas C, Nasreddine R, Nehmé R, Piot C, Draye M, Destandau E, Da Silva D, Chatel G. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum. PLANTS (BASEL, SWITZERLAND) 2022; 12:83. [PMID: 36616211 PMCID: PMC9823685 DOI: 10.3390/plants12010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Polygonum cuspidatum (P. cuspidatum) is among the world's most problematic invasive plant species with negative ecological, socio-economic and security consequences. Management operations in areas invaded systematically generate a large quantity of plant waste, most often without outlets. Using this plant material could constitute a new alternative treatment for sustainable management. P. cuspidatum is well known to have numerous biological properties, containing notably stilbenes, quinones, flavonoids and phenolic acids. The present work proposes a reliable strategy using powerful techniques for the screening and the evaluation of the dermo-cosmetic potential of its aerial parts (AP) and root parts (RP). To the best of our knowledge, only antioxidant and anti-tyrosinase activities were previously evaluated on P. cuspidatum among the targets studied (superoxide dismutase, hyaluronidase, elastase, collagenase and tyrosinase). The results revealed strong antioxidant and anti-collagenase activities, moderate anti-hyaluronidase activity, while weak anti-elastase and anti-tyrosinase activities were observed for ethanolic extracts. Different standards selected and screened on the same targets made it possible to correlate the observed residual activities of produced extracts of P. cuspidatum from Savoie Mont Blanc and their chemical compositions. A structure-activity study was thus conducted on main molecular families, widely represented in the genus Polygonum.
Collapse
Affiliation(s)
- Vanille Quinty
- EDYTEM, CNRS, Univ. Savoie Mont Blanc, 73000 Chambéry, France
| | - Cyril Colas
- ICOA, CNRS—UMR 7311 BP 6759, Univ. Orléans, CEDEX 2, 45067 Orléans, France
- CBM, CNRS—UPR 4301, Univ. Orléans, CEDEX 2, 45071 Orléans, France
| | - Rouba Nasreddine
- ICOA, CNRS—UMR 7311 BP 6759, Univ. Orléans, CEDEX 2, 45067 Orléans, France
| | - Reine Nehmé
- ICOA, CNRS—UMR 7311 BP 6759, Univ. Orléans, CEDEX 2, 45067 Orléans, France
| | - Christine Piot
- EDYTEM, CNRS, Univ. Savoie Mont Blanc, 73000 Chambéry, France
| | - Micheline Draye
- EDYTEM, CNRS, Univ. Savoie Mont Blanc, 73000 Chambéry, France
| | - Emilie Destandau
- ICOA, CNRS—UMR 7311 BP 6759, Univ. Orléans, CEDEX 2, 45067 Orléans, France
| | - David Da Silva
- ICOA, CNRS—UMR 7311 BP 6759, Univ. Orléans, CEDEX 2, 45067 Orléans, France
| | - Gregory Chatel
- EDYTEM, CNRS, Univ. Savoie Mont Blanc, 73000 Chambéry, France
| |
Collapse
|
38
|
Salimgareeva E, Igdisanova D, Gordeeva D, Yarkova E, Matern A, Gerasimova E, Ivanova A. Portable potentiometric device for determining the antioxidant capacity. CHIMICA TECHNO ACTA 2022. [DOI: 10.15826/chimtech.2023.10.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
At present, the development of portable devices for the express assessment of the content of biologically active objects, such as antioxidants, is one of the relevant technological problems of modern chemistry, medicine, and engineering. The main advantages of such devices are the simplicity and rapidity of analysis, small volumes of analyte, as well as miniaturization of equipment, making it possible to carry out the on-site analysis and, thus, to take a step towards the personalized medicine. The potentiometric method using the K3[Fe(CN)6]/K4[Fe(CN)6] system, which in the laboratory-scale version proved to be the most accurate, reproducible, and express, was the basis for the developed prototypes of portable devices. In this study, two versions of prototypes of the portable device are proposed, namely, the open microcell with the 0.2 ml volume and the microfluidic device with flow control. The correctness of the antioxidant capacity (AOC) determination in both systems was confirmed by comparing the results of the "introduced-found" method on model solutions of antioxidants and their mixtures with the AOC results obtained in a standard laboratory electrochemical cell. The relative standard deviation did not exceed 10%. The AOC of some beverage industry was determined using the microfluidic device. The correlation coefficient of the results, obtained in the microfluidic device and the laboratory cell, was 0.90, which indicates good data convergence and the possibility of using the potentiometric method implemented in the microfluidic device to assess the AOC of multicomponent objects.
Collapse
|
39
|
Oxidative Stress and Antioxidants-A Critical Review on In Vitro Antioxidant Assays. Antioxidants (Basel) 2022; 11:antiox11122388. [PMID: 36552596 PMCID: PMC9774584 DOI: 10.3390/antiox11122388] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022] Open
Abstract
Antioxidants have been widely studied in the fields of biology, medicine, food, and nutrition sciences. There has been extensive work on developing assays for foods and biological systems. The scientific communities have well-accepted the effectiveness of endogenous antioxidants generated in the body. However, the health efficacy and the possible action of exogenous dietary antioxidants are still questionable. This may be attributed to several factors, including a lack of basic understanding of the interaction of exogenous antioxidants in the body, the lack of agreement of the different antioxidant assays, and the lack of specificity of the assays, which leads to an inability to relate specific dietary antioxidants to health outcomes. Hence, there is significant doubt regarding the relationship between dietary antioxidants to human health. In this review, we documented the variations in the current methodologies, their mechanisms, and the highly varying values for six common food substrates (fruits, vegetables, processed foods, grains, legumes, milk, and dairy-related products). Finally, we discuss the strengths and weaknesses of the antioxidant assays and examine the challenges in correlating the antioxidant activity of foods to human health.
Collapse
|
40
|
Evaluation of Antioxidant Capacity (ABTS and CUPRAC) and Total Phenolic Content (Folin-Ciocalteu) Assays of Selected Fruit, Vegetables, and Spices. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:2581470. [PMID: 36506706 PMCID: PMC9729023 DOI: 10.1155/2022/2581470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022]
Abstract
Antioxidant (AOX) capacity assays are important analytical tools, used worldwide to measure the AOX capacities of various food commodities. Although numerous protocols have been published to ascertain AOX capacities, there are increasing concerns about the reliability of many of these assays. Poor correlation of results between various assays, as well as problems with reproducibility, consistency, and accuracy, is to blame. Published AOX assays also differ markedly from each other by employing different reaction conditions, using different extracting solvents, and applying dissimilar quantification methods. In this study, AOX capacities of a range of fruit, vegetables, and spices, commonly consumed and of commercial importance in Australia and worldwide, were measured in both hydrophilic and lipophilic solvents by using two different assay systems. As the polyphenolic compounds present in any sample matrix are the main contributors to its AOX properties, the commodities were also analysed for total phenolic content (TPC), again using both solvent systems. Analysis of the results from the current study with values from the published literature exposed the challenges that make direct comparison of any quantitative results difficult. However, a strong mutual correlation of our assay results facilitated a meaningful comparison of the data within the laboratory. Concurrent use of lipophilic and hydrophilic solvents made the results more reliable and understandable. Findings from this study will aid to address the existing challenges and bring a more rational basis to the AOX capacities. This unique analytical approach also provided a platform to build an internal reference database for the commonly consumed and commercially important food commodities with the potential to broaden the scope into a database for similar food matrices.
Collapse
|
41
|
Simultaneous extraction of lipids and minor lipids from microalga (Nannochloropsis gaditana) and rapeseed (Brassica napus) using supercritical carbon dioxide. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Analytical determination of antioxidant capacity of hop-derived compounds in beer using specific rapid assays (ORAC, FRAP) and ESR-spectroscopy. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThere is a relationship between antioxidant activity and ageing stability of beer. The high-throughput antioxidant capacity assays ORAC and FRAP, which rely on specific reaction mechanisms, are validated as an addition to the established ESR-ST method with a focus on hop-derived antioxidants. Beers were brewed with systematic variations in hop variety, hop product, and the hopping regime (late hopping) to achieve sample beers varying widely in the concentrations of hop-derived antioxidants (α- and iso-α-acids, phenolic compounds). A significant positive correlation between phenolic compounds and the ORAC- and FRAP-values (p < 0.01) was found. The effect of individual resinous substances and free phenolic acids and flavonoids on the antioxidant capacity of beer (ORAC, FRAP, and ESR-ST) was proven in spiking trials. We found a correlation between the occurrence of the o-di-OH-group and the ORAC- and FRAP-values of phenolic compounds. Phenolic compounds did not react as anti- or prooxidants in the radical generation (ESR-ST). Higher concentrations of unisomerized α-acids significantly reduced ESR-signal intensity but had no significant effect on ORAC- or FRAP-values. Beers brewed with late hop addition, which yielded higher concentrations of unisomerized α-acids and phenolic compounds, had higher ORAC, FRAP-values and a reduced ESR-signal intensity. These three methods rely on different reaction principles, and therefore, different groups of hop-derived compounds act as antioxidants in these assays. A combination of the two high-throughput methods (ORAC, FRAP) and ESR-ST is advantageous for the evaluation of the antioxidant capacity of beers varying in hop-derived compounds.
Collapse
|
43
|
Low KL, Idris A, Yusof NM. An optimized strategy for lutein production via microwave-assisted microalgae wet biomass extraction process. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Optimization of Extraction of Compound Flavonoids from Chinese Herbal Medicines Based on Quantification Theory and Evaluation of Their Antioxidant Activity. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9955690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plant-derived flavonoids have been attracting increasing research interest because of their multiple health promoting effects, where numerous investigations were carried out on the optimization of extraction and bioactivities. This study aims to optimize the extraction process of compound flavonoids (CFs) from Chinese herbal medicines and detect their antioxidant activity in vitro. CFs were extracted from the raw materials named “medicine food homology,” composed of hawthorn, lotus leaf, tartary buckwheat, cassia seed, Lycium barbarum, and Poria cocos in a mass ratio of 4 : 2 : 2 : 1.5 : 1 : 1. L9 (34) orthogonal design, level effect and engineering average estimation, and quantification theory were utilized to improve the extraction method of CFs, and the predictive model for CFs yield was constructed. The 2,2ʹ-diphenyl-1-picrylhydrazyl (DPPH), 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), hydroxyl radical scavenging rate, and reducing power of CFs were measured. The highest CFs yield was obtained under the following extraction condition: liquid-solid ratio of 35 : 1 mL/g, extraction temperature of 75°C, extraction duration of 75 min, and extraction mode enzyme-assisted extraction. The forecasted yield was 37.62%. The result was accurate and the established prediction equation was reliable (R = 0.95). The antioxidant activity of CFs was significantly positively correlated with the concentration from 0.05 to 0.4 mg/mL. The DPPH, ABTS, hydroxyl radical scavenging abilities, and the reducing power of CFs were 81.82 ± 1.75%, 49.35 ± 0.09%, 89.78 ± 0.66%, and 0.232 ± 0.001 at the concentration of 0.4 mg/mL, respectively. CFs could be exploited as natural antioxidants in pharmaceuticals and functional foods.
Collapse
|
45
|
Hameed S, Khan KM, Salar U, Özil M, Baltaş N, Saleem F, Qureshi U, Taha M, Ul-Haq Z. Hydrazinyl thiazole linked indenoquinoxaline hybrids: Potential leads to treat hyperglycemia and oxidative stress; Multistep synthesis, α-amylase, α-glucosidase inhibitory and antioxidant activities. Int J Biol Macromol 2022; 221:1294-1312. [PMID: 36113601 DOI: 10.1016/j.ijbiomac.2022.09.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
A library of hydrazinyl thiazole-linked indenoquinoxaline hybrids 1-36 were synthesized via a multistep reaction scheme. All synthesized compounds were characterized by various spectroscopic techniques including EI-MS (electron ionization mass spectrometry) and 1H NMR (nuclear magnetic resonance spectroscopy). Compounds 1-36 were evaluated for their inhibitory potential against α-amylase, and α-glucosidase enzymes. Among thirty-six, compounds 2, 9, 10, 13, 15, 17, 21, 22, 31, and 36 showed excellent inhibition against α-amylase (IC50 = 0.3-76.6 μM) and α-glucosidase (IC50 = 1.1-92.2 μM). Results were compared to the standard acarbose (IC50 = 13.5 ± 0.2 μM). All compounds were also evaluated for their DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and compounds 2, 9, 10, 17, 21, 31, and 36 showed (SC50 = 7.58-125.86 μM) as compared to the standard ascorbic acid (SC50 = 21.50 ± 0.18 μM). Among this library, compounds 9 and 10 with a hydroxy group on the phenyl rings and thiosemicarbazide bearing intermediate 21 were identified as the most potent inhibitors against α-amylase, and α-glucosidase enzymes. The remaining compounds were found to be moderately active. The molecular docking studies were conducted to understand the binding mode of active inhibitors and kinetic studies of the active compounds followed competitive modes of inhibition.
Collapse
Affiliation(s)
- Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
46
|
Xiao L, Sun Y, Tsao R. Paradigm Shift in Phytochemicals Research: Evolution from Antioxidant Capacity to Anti-Inflammatory Effect and to Roles in Gut Health and Metabolic Syndrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8551-8568. [PMID: 35793510 DOI: 10.1021/acs.jafc.2c02326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food bioactive components, particularly phytochemicals with antioxidant capacity, have been extensively studied over the past two decades. However, as new analytical and molecular biological tools advance, antioxidants related research has undergone significant paradigm shifts. This review is a high-level overview of the evolution of phytochemical antioxidants research. Early research used chemical models to assess the antioxidant capacity of different phytochemicals, which provided important information about the health potential, but the results were overused and misinterpreted despite the lack of biological relevance (Antioxidants v1.0). This led to findings in the anti-inflammatory properties and modulatory effects of cell signaling of phytochemicals (Antioxidants v2.0). Recent advances in the role of diet in modulating gut microbiota have suggested a new phase of food bioactives research along the phytochemicals-gut microbiota-intestinal metabolites-low-grade inflammation-metabolic syndrome axis (Antioxidants v3.0). Polyphenols and carotenoids were discussed in-depth, and future research directions were also provided.
Collapse
Affiliation(s)
- Lihua Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
47
|
Tok F, Küçükal B, Baltaş N, Tatar Yılmaz G, Koçyiğit-Kaymakçıoğlu B. Synthesis of novel thiosemicarbazone derivatives as antidiabetic agent with enzyme kinetic studies and antioxidant activity. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2099857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Bahar Küçükal
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Gizem Tatar Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | | |
Collapse
|
48
|
Production of antioxidant pectin fractions, drying pretreatment methods and physicochemical properties: towards pisco grape pomace revalue. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
The Effect of Pre-Treatment of Arabica Coffee Beans with Cold Atmospheric Plasma, Microwave Radiation, Slow and Fast Freezing on Antioxidant Activity of Aqueous Coffee Extract. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermal and non-thermal technologies used in food processing should be not only effective in terms of decontamination and preservation but also minimize undesirable losses of natural bioactive compounds. Arabica (Coffea arabica) is the most cultivated variety of coffee, making it a valuable source of phytonutrients, including antioxidants. In the present study, green and roasted Arabica coffee beans were treated with slow freezing (SF), fast freezing (FF), microwave radiation (MWR) and cold atmospheric plasma (CAP). Moisture content (MC) of coffee beans and antioxidant activity (AOA) of aqueous extracts were measured. Green coffee showed a decrease in MC after MWR treatment, and roasted coffee showed an increase in MC after freezing. After SF and FF at −19 °C for 24 h, all extract samples showed an increase in AOA by 4.1–17.2%. MWR treatment at 800 W for 60 s was accompanied by an increase in the AOA of green coffee extracts by 5.7%, while the changes in the AOA of roasted coffee extracts were insignificant. Sequential combined treatments of SF + MWR and FF + MWR resulted in an additive/synergistic increase in the AOA of green/roasted coffee extracts, up to +23.0%. After CAP treatment with dielectric barrier discharge (DBD) parameters of 1 μs, 15 kV and 200 Hz for 5 and 15 min, green coffee showed a decrease in the extract AOA by 3.8% and 9.7%, respectively, while the changes in the AOA of roasted coffee extracts were insignificant. A high positive correlation (r = 0.89, p < 0.001) between AOA and MC was revealed. The results obtained indicate that SF, FF, MWR and combined treatments may be applied at the pre-extraction stage of coffee bean preparation in order to increase the yield of antioxidant extractives.
Collapse
|
50
|
Hrólfsdóttir AÞ, Arason S, Sveinsdóttir HI, Gudjónsdóttir M. Added Value of Ascophyllum nodosum Side Stream Utilization during Seaweed Meal Processing. Mar Drugs 2022; 20:340. [PMID: 35736143 PMCID: PMC9229640 DOI: 10.3390/md20060340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Ascophyllum nodosum contains many valuable compounds, including polyphenols, peptides, and carotenoids that have been shown to exhibit biological activities. These compounds are not a priority ingredient in seaweed meal products for the current users. Hence, the aim of the study was to investigate the chemical and bioactive characteristics of A. nodosum as affected by seasonal variation and evaluate the potential benefits of alternative processing and the utilization of side streams for product development. The analysis of raw materials, press liquid, and press cake from alternative processing and the commercial seaweed meal at different harvesting periods indicated that the chemical composition is linked to the reproductive state of the algae. Phenolic content and ORAC activity increased following the seaweed's fertile period, making alternative processing more promising in July and October compared to June. Several valuable ingredients were obtained in the press liquid, including polyphenols, which can be used in the development of new high-value bioactive products. The suggested alternative processing does not have a negative effect on the composition and quality of the current seaweed meal products. Hence, the extraction of valuable ingredients from the fresh biomass during the processing of seaweed meal could be a feasible option to increase the value and sustainability of seaweed processing.
Collapse
Affiliation(s)
- Anna Þóra Hrólfsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, Aragata 14, 102 Reykjavík, Iceland; (S.A.); (H.I.S.); (M.G.)
| | - Sigurjón Arason
- Faculty of Food Science and Nutrition, University of Iceland, Aragata 14, 102 Reykjavík, Iceland; (S.A.); (H.I.S.); (M.G.)
- Matís Ohf, Food and Biotech R&D, Vínlandsleid 12, 113 Reykjavík, Iceland
| | - Hildur Inga Sveinsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, Aragata 14, 102 Reykjavík, Iceland; (S.A.); (H.I.S.); (M.G.)
- Matís Ohf, Food and Biotech R&D, Vínlandsleid 12, 113 Reykjavík, Iceland
| | - María Gudjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, Aragata 14, 102 Reykjavík, Iceland; (S.A.); (H.I.S.); (M.G.)
- Matís Ohf, Food and Biotech R&D, Vínlandsleid 12, 113 Reykjavík, Iceland
| |
Collapse
|