1
|
Rha AK, Kan SH, Andrade-Heckman P, Christensen CL, Harb JF, Wang RY. Base editing of the GLB1 gene is therapeutic in GM1 gangliosidosis patient-derived cells. Mol Genet Metab 2024; 143:108568. [PMID: 39303319 DOI: 10.1016/j.ymgme.2024.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
GM1 gangliosidosis is an autosomal recessive neurodegenerative lysosomal storage disease caused by pathogenic variants in the GLB1 gene, limiting the production of active lysosomal β-galactosidase. Phenotypic heterogeneity is due in part to variant type, location within GLB1, and the amount of residual enzyme activity; in the most severe form, death occurs in infancy. With no FDA approved therapeutics, development of efficacious strategies for the disease is pivotal. CRISPR/Cas based approaches have revolutionized precision medicine and have been indispensable to the development of treatments for several monogenic disorders with bespoke strategies central to current research pipelines. We used CRISPR/Cas-adenine base editing to correct the GLB1 c.380G>A (p.Cys127Tyr) variant in patient-derived dermal fibroblasts compound heterozygous with the GLB1 c.481T>G (p.Trp161Gly) pathogenic variant. Nucleofection of plasmids encoding the target sgRNA and ABEmax restored the canonical guanine (32.2 ± 2.2 % of the target allele) and synthesis of active β-galactosidase. Analysis of cellular markers of pathology revealed normalization of both primary glycoconjugate storage and lysosomal pathology. Furthermore, analysis of off-target sites nominated by the in silico tools Cas-OFFinder and/or CRISTA revealed no significant editing or indels. This study supports the use of CRISPR/Cas-based approaches for the treatment of GM1 gangliosidosis, and provides foundational data for future translational studies.
Collapse
Affiliation(s)
- Allisandra K Rha
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Shih-Hsin Kan
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Perla Andrade-Heckman
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Chloe L Christensen
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Jerry F Harb
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County Specialists, Orange, CA 92868, United States; Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, CA 92697, United States.
| |
Collapse
|
2
|
Cocostîrc V, Paștiu AI, Pusta DL. An Overview of Canine Inherited Neurological Disorders with Known Causal Variants. Animals (Basel) 2023; 13:3568. [PMID: 38003185 PMCID: PMC10668755 DOI: 10.3390/ani13223568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hereditary neurological conditions documented in dogs encompass congenital, neonatal, and late-onset disorders, along with both progressive and non-progressive forms. In order to identify the causal variant of a disease, the main two approaches are genome-wide investigations and candidate gene investigation. Online Mendelian Inheritance in Animals currently lists 418 Mendelian disorders specific to dogs, of which 355 have their likely causal genetic variant identified. This review aims to summarize the current knowledge on the canine nervous system phenes and their genetic causal variant. It has been noted that the majority of these diseases have an autosomal recessive pattern of inheritance. Additionally, the dog breeds that are more prone to develop such diseases are the Golden Retriever, in which six inherited neurological disorders with a known causal variant have been documented, and the Belgian Shepherd, in which five such disorders have been documented. DNA tests can play a vital role in effectively managing and ultimately eradicating inherited diseases.
Collapse
Affiliation(s)
- Vlad Cocostîrc
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.I.P.); (D.L.P.)
| | | | | |
Collapse
|
3
|
Moura E, Tasqueti UI, Mangrich-Rocha RMV, Filho JRE, de Farias MR, Pimpão CT. Inborn Errors of Metabolism in Dogs: Historical, Metabolic, Genetic, and Clinical Aspects. Top Companion Anim Med 2022; 51:100731. [DOI: 10.1016/j.tcam.2022.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
4
|
Huang B, Zdora I, de Buhr N, Eikelberg D, Baumgärtner W, Leitzen E. Phenotypical changes of satellite glial cells in a murine model of G M1 -gangliosidosis. J Cell Mol Med 2021; 26:527-539. [PMID: 34877779 PMCID: PMC8743646 DOI: 10.1111/jcmm.17113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRG) react in response to various injuries in the nervous system. This study investigates reactive changes within SGCs in a murine model for GM1‐gangliosidosis (GM1). DRG of homozygous β‐galactosidase‐knockout mice and homozygous C57BL/6 wild‐type mice were investigated performing immunostaining on formalin‐fixed, paraffin‐embedded tissue. A marked upregulation of glial fibrillary acidic protein (GFAP), the progenitor marker nestin and Ki67 within SGCs of diseased mice, starting after 4 months at the earliest GFAP, along with intracytoplasmic accumulation of ganglioside within neurons and deterioration of clinical signs was identified. Interestingly, nestin‐positive SGCs were detected after 8 months only. No changes regarding inwardly rectifying potassium channel 4.1, 2, 3‐cyclic nucleotide 3‐phosphodiesterase, Sox2, doublecortin, periaxin and caspase3 were observed in SGCs. Iba1 was only detected in close vicinity of SGCs indicating infiltrating or tissue‐resident macrophages. These results indicate that SGCs of DRG show phenotypical changes during the course of GM1, characterized by GFAP upregulation, proliferation and expression of a neural progenitor marker at a late time point. This points towards an important role of SGCs during neurodegenerative disorders and supports that SGCs represent a multipotent glial precursor cell line with high plasticity and functionality.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Rha AK, Maguire AS, Martin DR. GM1 Gangliosidosis: Mechanisms and Management. Appl Clin Genet 2021; 14:209-233. [PMID: 33859490 PMCID: PMC8044076 DOI: 10.2147/tacg.s206076] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme β-galactosidase (β-gal). Mutation of the GLB1 gene, which codes for β-gal, prevents cleavage of the terminal β-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.
Collapse
Affiliation(s)
- Allisandra K Rha
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| |
Collapse
|
6
|
Eikelberg D, Lehmbecker A, Brogden G, Tongtako W, Hahn K, Habierski A, Hennermann JB, Naim HY, Felmy F, Baumgärtner W, Gerhauser I. Axonopathy and Reduction of Membrane Resistance: Key Features in a New Murine Model of Human G M1-Gangliosidosis. J Clin Med 2020; 9:jcm9041004. [PMID: 32252429 PMCID: PMC7230899 DOI: 10.3390/jcm9041004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
GM1-gangliosidosis is caused by a reduced activity of β-galactosidase (Glb1), resulting in intralysosomal accumulations of GM1. The aim of this study was to reveal the pathogenic mechanisms of GM1-gangliosidosis in a new Glb1 knockout mouse model. Glb1−/− mice were analyzed clinically, histologically, immunohistochemically, electrophysiologically and biochemically. Morphological lesions in the central nervous system were already observed in two-month-old mice, whereas functional deficits, including ataxia and tremor, did not start before 3.5-months of age. This was most likely due to a reduced membrane resistance as a compensatory mechanism. Swollen neurons exhibited intralysosomal storage of lipids extending into axons and amyloid precursor protein positive spheroids. Additionally, axons showed a higher kinesin and lower dynein immunoreactivity compared to wildtype controls. Glb1−/− mice also demonstrated loss of phosphorylated neurofilament positive axons and a mild increase in non-phosphorylated neurofilament positive axons. Moreover, marked astrogliosis and microgliosis were found, but no demyelination. In addition to the main storage material GM1, GA1, sphingomyelin, phosphatidylcholine and phosphatidylserine were elevated in the brain. In summary, the current Glb1−/− mice exhibit a so far undescribed axonopathy and a reduced membrane resistance to compensate the functional effects of structural changes. They can be used for detailed examinations of axon–glial interactions and therapy trials of lysosomal storage diseases.
Collapse
Affiliation(s)
- Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (G.B.); (H.Y.N.)
| | - Witchaya Tongtako
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
- c/o Faculty of Veterinary Science, Prince of Sonkla University, 5 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand
| | - Kerstin Hahn
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Andre Habierski
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Julia B. Hennermann
- Villa Metabolica, University of Mainz, Langenbeckstraße 2, D-55131 Mainz, Germany;
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (G.B.); (H.Y.N.)
| | - Felix Felmy
- Department for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
- Correspondence:
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| |
Collapse
|
7
|
Przybilla MJ, Ou L, Tăbăran AF, Jiang X, Sidhu R, Kell PJ, Ory DS, O'Sullivan MG, Whitley CB. Comprehensive behavioral and biochemical outcomes of novel murine models of GM1-gangliosidosis and Morquio syndrome type B. Mol Genet Metab 2019; 126:139-150. [PMID: 30528226 DOI: 10.1016/j.ymgme.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Deficiencies in the lysosomal hydrolase β-galactosidase (β-gal) lead to two distinct diseases: the skeletal disease Morquio syndrome type B, and the neurodegenerative disease GM1-gangliosidosis. Utilizing CRISPR-Cas9 genome editing, the mouse β-gal encoding gene, Glb1, was targeted to generate both models of β-gal deficiency in a single experiment. For Morquio syndrome type B, the common human missense mutation W273L (position 274 in mice) was introduced into the Glb1 gene (Glb1W274L), while for GM1-gangliosidosis, a 20 bp mutation was generated to remove the catalytic nucleophile of β-gal (β-gal-/-). Glb1W274L mice showed a significant reduction in β-gal enzyme activity (8.4-13.3% of wildtype), but displayed no marked phenotype after one year. In contrast, β-gal-/- mice were devoid of β-gal enzyme activity (≤1% of wildtype), resulting in ganglioside accumulation and severe cellular vacuolation throughout the central nervous system (CNS). β-gal-/- mice also displayed severe neuromotor and neurocognitive dysfunction, and as the disease progressed, the mice became emaciated and succumbed to the disease by 10 months of age. Overall, in addition to generating a novel murine model that phenotypically resembles GM1-gangliosidosis, the first model of β-galactosidase deficiency with residual enzyme activity has been developed.
Collapse
Affiliation(s)
- Michael J Przybilla
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, United States
| | - Li Ou
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Alexandru-Flaviu Tăbăran
- Comparative Pathology Shared Resource, Masonic Cancer Center and College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Pamela J Kell
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - M Gerard O'Sullivan
- Comparative Pathology Shared Resource, Masonic Cancer Center and College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
8
|
Stassen QEM, Grinwis GCM, van Rhijn NC, Beukers M, Verhoeven-Duif NM, Leegwater PAJ. Focal epilepsy with fear-related behavior as primary presentation in Boerboel dogs. J Vet Intern Med 2018; 33:694-700. [PMID: 30580458 PMCID: PMC6430876 DOI: 10.1111/jvim.15346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/05/2018] [Indexed: 11/27/2022] Open
Abstract
Background Focal seizures with fear as a primary ictal manifestation, their diagnostic challenges, and impact on quality of life are well described in human medicine. Reports focusing on ictal fear‐like behavior in animals are scarce. Objective To describe the clinical and histopathological characteristics of a novel focal epilepsy in Boerboel dogs. Animals Five client‐owned Boerboel littermates presented for evaluation of sudden episodes of severe fear‐related behavior. Methods Clinical examination, complete blood cell count, routine blood biochemistry, and urinalysis were performed in all dogs. Magnetic resonance imaging (MRI) scans of the brain were performed in 3 affected Boerboels. In addition, in 2 affected Boerboels, metabolic screening, cerebrospinal fluid (CSF) analysis, and necropsy were performed. Results Onset of signs was 3 months of age in all affected Boerboels. All Boerboels howled loudly, had an extremely fearful facial expression and trembled during seizures. All affected Boerboels also had autonomic or motor signs. Results of laboratory investigations, diagnostic imaging, and metabolic screening were generally unremarkable. Histopathology showed moderate numbers of single large vacuoles in the perikaryon of neurons throughout the brain, specifically in the deeper cerebral cortical regions. Family history, pedigree analysis, and the homogenous phenotype were suggestive of autosomal recessive inheritance. Conclusions and Clinical Importance The observed paroxysmal fear‐related behavior represents a newly recognized hereditary focal epilepsy in dogs with distinctive clinical and histopathologic features. Veterinarians should be aware that sudden episodes of unusual behavior can represent focal epilepsy.
Collapse
Affiliation(s)
- Quirine E M Stassen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nieke C van Rhijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martjin Beukers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics and Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Heinecke KA, Luoma A, d'Azzo A, Kirschner DA, Seyfried TN. Myelin abnormalities in the optic and sciatic nerves in mice with GM1-gangliosidosis. ASN Neuro 2015; 7:7/1/1759091415568913. [PMID: 25694553 PMCID: PMC4342369 DOI: 10.1177/1759091415568913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GM1-gangliosidosis is a glycosphingolipid lysosomal storage disease involving accumulation of GM1 and its asialo form (GA1) primarily in the brain. Thin-layer chromatography and X-ray diffraction were used to analyze the lipid content/composition and the myelin structure of the optic and sciatic nerves from 7- and 10-month old β-galactosidase (β-gal) +/? and β-gal −/− mice, a model of GM1gangliosidosis. Optic nerve weight was lower in the β-gal −/− mice than in unaffected β-gal +/? mice, but no difference was seen in sciatic nerve weight. The levels of GM1 and GA1 were significantly increased in both the optic nerve and sciatic nerve of the β-gal −/− mice. The content of myelin-enriched cerebrosides, sulfatides, and plasmalogen ethanolamines was significantly lower in optic nerve of β-gal −/− mice than in β-gal +/? mice; however, cholesteryl esters were enriched in the β-gal −/− mice. No major abnormalities in these lipids were detected in the sciatic nerve of the β-gal −/− mice. The abnormalities in GM1 and myelin lipids in optic nerve of β-gal −/− mice correlated with a reduction in the relative amount of myelin and periodicity in fresh nerve. By contrast, the relative amount of myelin and periodicity in the sciatic nerves from control and β-gal −/− mice were indistinguishable, suggesting minimal pathological involvement in sciatic nerve. Our results indicate that the greater neurochemical pathology observed in the optic nerve than in the sciatic nerve of β-gal −/− mice is likely due to the greater glycolipid storage in optic nerve.
Collapse
Affiliation(s)
| | - Adrienne Luoma
- Department of Biology, Boston College, Chestnut Hill, MA, USA Department of Biochemistry and Molecular Biology, Committee on Immunology, University of Chicago, IL, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
10
|
Herder V, Kummrow M, Leeb T, Sewell AC, Hansmann F, Lehmbecker A, Wohlsein P, Baumgärtner W. Polycystic kidneys and GM2 gangliosidosis-like disease in neonatal springboks (Antidorcas marsupialis). Vet Pathol 2014; 52:543-52. [PMID: 25232033 DOI: 10.1177/0300985814549210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Clinical, gross, histopathologic, electron microscopic findings and enzymatic analysis of 4 captive, juvenile springboks (Antidorcas marsupialis) showing both polycystic kidneys and a storage disease are described. Springbok offspring (4 of 34; 12%) were affected by either one or both disorders in a German zoo within a period of 5 years (2008-2013). Macroscopic findings included bilaterally severely enlarged kidneys displaying numerous cysts in 4 animals and superior brachygnathism in 2 animals. Histopathologically, kidneys of 4 animals displayed cystic dilation of the renal tubules. In addition, abundant cytoplasmic vacuoles with a diameter ranging from 2 to 10 μm in neurons of the central and peripheral nervous system, hepatocytes, thyroid follicular epithelial cells, pancreatic islets of Langerhans and renal tubular cells were found in 2 springbok neonates indicative of an additional storage disease. Ultrastructurally, round electron-lucent vacuoles, up to 4 μm in diameter, were present in neurons. Enzymatic analysis of liver and kidney tissue of 1 affected springbok revealed a reduced activity of total hexosaminidase (Hex) with relatively increased HexA activity at the same level of total Hex, suggesting a hexosaminidase defect. Pedigree analysis suggested a monogenic autosomal recessive inheritance for both diseases. In summary, related springboks showed 2 different changes resembling both polycystic kidney and a GM2 gangliosidosis similar to the human Sandhoff disease. Whether the simultaneous occurrence of these 2 entities represents an incidental finding or has a genetic link needs to be investigated in future studies.
Collapse
Affiliation(s)
- V Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany Center for Systems Neuroscience, Hannover, Germany
| | - M Kummrow
- Erlebnis-Zoo Hannover, Hannover, Germany
| | - T Leeb
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
| | - A C Sewell
- Department of Pediatrics, University Hospital Frankfurt, Frankfurt, Germany
| | - F Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany Center for Systems Neuroscience, Hannover, Germany
| | - A Lehmbecker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany Center for Systems Neuroscience, Hannover, Germany
| | - P Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
11
|
Zigdon H, Meshcheriakova A, Futerman AH. From sheep to mice to cells: Tools for the study of the sphingolipidoses. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1189-99. [DOI: 10.1016/j.bbalip.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
12
|
Hasegawa D, Yamato O, Nakamoto Y, Ozawa T, Yabuki A, Itamoto K, Kuwabara T, Fujita M, Takahashi K, Mizoguchi S, Orima H. Serial MRI features of canine GM1 gangliosidosis: a possible imaging biomarker for diagnosis and progression of the disease. ScientificWorldJournal 2012; 2012:250197. [PMID: 22536126 PMCID: PMC3334264 DOI: 10.1100/2012/250197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/20/2011] [Indexed: 11/17/2022] Open
Abstract
GM1 gangliosidosis is a fatal neurodegenerative lysosomal storage disease caused by an autosomal recessively inherited deficiency of β-galactosidase activity. Effective therapies need to be developed to treat the disease. In Shiba Inu dogs, one of the canine GM1 gangliosidosis models, neurological signs of the disease, including ataxia, start at approximately 5 months of age and progress until the terminal stage at 12 to 15 months of age. In the present study, serial MR images were taken of an affected dog from a model colony of GM1 gangliosidosis and 4 sporadic clinical cases demonstrating the same mutation in order to characterize the MRI features of this canine GM1 gangliosidosis. By 2 months of age at the latest and persisting until the terminal stage of the disease, the MR findings consistently displayed diffuse hyperintensity in the white matter of the entire cerebrum on T2-weighted images. In addition, brain atrophy manifested at 9 months of age and progressed thereafter. Although a definitive diagnosis depends on biochemical and genetic analyses, these MR characteristics could serve as a diagnostic marker in suspect animals with or without neurological signs. Furthermore, serial changes in MR images could be used as a biomarker to noninvasively monitor the efficacy of newly developed therapeutic strategies.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Division of Veterinary Radiology, Department of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ben-David O, Pewzner-Jung Y, Brenner O, Laviad EL, Kogot-Levin A, Weissberg I, Biton IE, Pienik R, Wang E, Kelly S, Alroy J, Raas-Rothschild A, Friedman A, Brügger B, Merrill AH, Futerman AH. Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J Biol Chem 2011; 286:30022-33. [PMID: 21705317 PMCID: PMC3191043 DOI: 10.1074/jbc.m111.261206] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/22/2011] [Indexed: 01/08/2023] Open
Abstract
Sphingolipids (SLs) act as signaling molecules and as structural components in both neuronal cells and myelin. We now characterize the biochemical, histological, and behavioral abnormalities in the brain of a mouse lacking very long acyl (C22-C24) chain SLs. This mouse, which is defective in the ability to synthesize C22-C24-SLs due to ablation of ceramide synthase 2, has reduced levels of galactosylceramide (GalCer), a major component of myelin, and in particular reduced levels of non-hydroxy-C22-C24-GalCer and 2-hydroxy-C22-C24- GalCer. Noteworthy brain lesions develop with a time course consistent with a vital role for C22-C24-GalCer in myelin stability. Myelin degeneration and detachment was observed as was abnormal motor behavior originating from a subcortical region. Additional abnormalities included bilateral and symmetrical vacuolization and gliosis in specific brain areas, which corresponded to some extent to the pattern of ceramide synthase 2 expression, with astrogliosis considerably more pronounced than microglial activation. Unexpectedly, unidentified storage materials were detected in lysosomes of astrocytes, reminiscent of the accumulation that occurs in lysosomal storage disorders. Together, our data demonstrate a key role in the brain for SLs containing very long acyl chains and in particular GalCer with a reduction in their levels leading to distinctive morphological abnormalities in defined brain regions.
Collapse
Affiliation(s)
| | | | - Ori Brenner
- Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Aviram Kogot-Levin
- Department of Human Genetics and Metabolic Diseases, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Itai Weissberg
- Department of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Inbal E. Biton
- Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reut Pienik
- From the Departments of Biological Chemistry and
| | - Elaine Wang
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Samuel Kelly
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Joseph Alroy
- Department of Pathology, Tufts University Schools of Medicine and Veterinary Medicine and Tufts Medical Center, Boston, Massachusetts 01536, and
| | - Annick Raas-Rothschild
- Department of Human Genetics and Metabolic Diseases, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Alon Friedman
- Department of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Alfred H. Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | | |
Collapse
|
14
|
|
15
|
Kreutzer R, Kreutzer M, Sewell AC, Techangamsuwan S, Leeb T, Baumgärtner W. Impact of beta-galactosidase mutations on the expression of the canine lysosomal multienzyme complex. Biochim Biophys Acta Mol Basis Dis 2009; 1792:982-7. [PMID: 19607915 DOI: 10.1016/j.bbadis.2009.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 01/09/2023]
Abstract
beta-galactosidase (GLB1) forms a functional lysosomal multienzyme complex with lysosomal protective protein (PPCA) and neuraminidase 1 (NEU1) which is important for its intracellular processing and activity. Mutations in the beta-galactosidase gene cause the lysosomal storage disease G(M1)-gangliosidosis. In order to identify additional molecular changes associated with the presence of beta-galactosidase mutations, the expression of canine lysosomal multienzyme complex components in GLB1(+/+), GLB1(+/-) and GLB1(-/-) fibroblasts was investigated by quantitative RT-PCR, Western blot and enzymatic assays. Quantitative RT-PCR revealed differential regulation of total beta-galactosidase, beta-galactosidase variants and protective protein for beta-galactosidase gene (PPGB) in GLB1(+/-) and GLB1(-/-) compared to GLB1(+/+) fibroblasts. Furthermore, it was shown that PPGB levels gradually increased with the number of mutant beta-galactosidase alleles while no change in the NEU1 expression was observed. This is the first study that simultaneously examine the effect of GLB1(+/+), GLB1(+/-) and GLB1(-/-) genotypes on the expression of lysosomal multienzyme complex components. The findings reveal a possible adaptive process in GLB1 homozygous mutant and heterozygous individuals that could facilitate the design of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Robert Kreutzer
- Department of Pathology, University of Veterinary Medicine, Hannover, Bünteweg 17, D-30559, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Kreutzer R, Kreutzer M, Leeb T, Baumgärtner W. Rapid and accurate GM1-gangliosidosis diagnosis using a parentage testing microsatellite. Mol Cell Probes 2008; 22:252-4. [DOI: 10.1016/j.mcp.2008.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/30/2008] [Accepted: 05/07/2008] [Indexed: 11/25/2022]
|
17
|
Kreutzer R, Kreutzer M, Pröpsting MJ, Sewell AC, Leeb T, Naim HY, Baumgärtner W. Insights into post-translational processing of beta-galactosidase in an animal model resembling late infantile human G-gangliosidosis. J Cell Mol Med 2007; 12:1661-71. [PMID: 18088383 PMCID: PMC3918082 DOI: 10.1111/j.1582-4934.2007.00204.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
GM1-gangliosidosis is a lysosomal storage disorder caused by a deficiency of ß-galactosidase activity. Human GM1-gangliosidosis has been classified into three forms according to the age of clinical onset and specific biochemical parameters. In the present study, a canine model for type II late infantile human GM1-gangliosidosis was investigated ‘in vitro’ in detail. For a better understanding of the molecular pathogenesis underlying GM1-gangliosidosis the study focused on the analysis of the molecular events and subsequent intracellular protein trafficking of β-galactosidase. In the canine model the genetic defect results in exclusion or inclusion of exon 15 in the mRNA transcripts and to translation of two mutant precursor proteins. Intracellular localization, processing and enzymatic activity of these mutant proteins were investigated. The obtained results suggested that the β-galactosidase C-terminus encoded by exons 15 and 16 is necessary for correct C-terminal proteolytic processing and enzyme activity but does not affect the correct routing to the lysosomes. Both mutant protein precursors are enzymatically inactive, but are transported to the lysosomes clearly indicating that the amino acid sequences encoded by exons 15 and 16 are necessary for correct folding and association with protective protein/cathepsin A, whereas the routing to the lysosomes is not influenced. Thus, the investigated canine model is an appropriate animal model for the human late infantile form and represents a versatile system to test gene therapeutic approaches for human and canine GM1-gangliosidosis.
Collapse
Affiliation(s)
- R Kreutzer
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sewell AC, Haskins ME, Giger U. Inherited metabolic disease in companion animals: searching for nature's mistakes. Vet J 2007; 174:252-9. [PMID: 17085062 PMCID: PMC3132193 DOI: 10.1016/j.tvjl.2006.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/18/2006] [Accepted: 08/27/2006] [Indexed: 11/27/2022]
Abstract
Inborn errors of metabolism are caused by genetic defects in intermediary metabolic pathways. Although long considered to be the domain of human paediatric medicine, they are also recognised with increasing frequency in companion animals. The diagnosis of diseased animals can be achieved by searching for abnormal metabolites in body fluids, although such screening programmes have, until now, not been widely available to the small animal clinician. A comprehensive battery of analytical tools exists for screening for inborn metabolic diseases in humans which can be applied to animals and serve not only for the diagnosis of affected patients but also to detect asymptomatic carriers and further our understanding of metabolic pathways in dogs and cats. Moreover, naturally occurring animal models of inherited metabolic diseases provide a unique opportunity to study the biochemical and molecular pathogenesis of these disorders and to investigate possible therapeutic options.
Collapse
Affiliation(s)
- Adrian C Sewell
- Department of Paediatrics, University Children's Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
19
|
NIBE K, KITA C, MOROZUMI M, AWAMURA Y, TAMURA S, OKUNO S, KOBAYASHI T, UCHIDA K. Clinicopathological Features of Canine Neuroaxonal Dystrophy and Cerebellar Cortical Abiotrophy in Papillon and Papillon-related Dogs. J Vet Med Sci 2007; 69:1047-52. [DOI: 10.1292/jvms.69.1047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kazumi NIBE
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki
| | - Chiaki KITA
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki
| | | | | | | | | | | | - Kazuyuki UCHIDA
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki
| |
Collapse
|
20
|
Erol I, Alehan F, Pourbagher MA, Canan O, Vefa Yildirim S. Neuroimaging findings in infantile GM1 gangliosidosis. Eur J Paediatr Neurol 2006; 10:245-8. [PMID: 17052929 DOI: 10.1016/j.ejpn.2006.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 07/12/2006] [Accepted: 08/22/2006] [Indexed: 11/21/2022]
Abstract
GM1 gangliosidosis is an autosomal recessive glycosphingolipid storage disease caused by defects in the enzyme beta-galactosidase. Three clinical forms (infantile-, juvenile-, and adult-onset) of the disease are recognized. Patients with infantile GM1 gangliosidosis present at birth or shortly thereafter with somatic and bony changes, followed by severe neurological deterioration ultimately leading to death within the first 2 years of life. We present the brain CT, MRI and MR spectroscopy (MRS) findings in a 17-month-old Turkish girl with infantile GM1 gangliosidosis. Neuroimaging findings in patients with infantile GM1 gangliosidosis have been reported only in a few cases. In this study, MRS of the thalamus was performed to study the metabolic changes in GM1 gangliosidosis. We showed a a decreased NAA/Cr ration and an increased Cho/Cr ratio. To our knowledge, this is the first report of magnetic resonance spectroscopy findings in type-1 GM1 gangliosidosis.
Collapse
Affiliation(s)
- Ilknur Erol
- Baskent University Faculty of Medicine, Department of Pediatrics, Neurology Division, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
21
|
Kreutzer R, Leeb T, Müller G, Moritz A, Baumgärtner W. A duplication in the canine beta-galactosidase gene GLB1 causes exon skipping and GM1-gangliosidosis in Alaskan huskies. Genetics 2005; 170:1857-61. [PMID: 15944348 PMCID: PMC1449761 DOI: 10.1534/genetics.105.042580] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GM(1)-gangliosidosis is a lysosomal storage disease that is inherited as an autosomal recessive disorder, predominantly caused by structural defects in the beta-galactosidase gene (GLB1). The molecular cause of GM(1)-gangliosidosis in Alaskan huskies was investigated and a novel 19-bp duplication in exon 15 of the GLB1 gene was identified. The duplication comprised positions +1688-+1706 of the GLB1 cDNA. It partially disrupted a potential exon splicing enhancer (ESE), leading to exon skipping in a fraction of the transcripts. Thus, the mutation caused the expression of two different mRNAs from the mutant allele. One transcript contained the complete exon 15 with the 19-bp duplication, while the other transcript lacked exon 15. In the transcript containing exon 15 with the 19-bp duplication a premature termination codon (PTC) appeared, but due to its localization in the last exon of canine GLB1, nonsense-mediated RNA decay (NMD) did not occur. As a consequence of these molecular events two different truncated GLB1 proteins are predicted to be expressed from the mutant GLB1 allele. In heterozygous carrier animals the wild-type allele produces sufficient amounts of the active enzyme to prevent clinical signs of disease. In affected homozygous dogs no functional GLB1 is synthesized and G(M1)-gangliosidosis occurs.
Collapse
Affiliation(s)
- Robert Kreutzer
- Department for Pathology, University of Veterinary Medicine, 30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
22
|
Yamato O, Masuoka Y, Yonemura M, Hatakeyama A, Satoh H, Kobayashi A, Nakayama M, Asano T, Shoda T, Yamasaki M, Ochiai K, Umemura T, Maede Y. Clinical and clinico-pathologic characteristics of Shiba dogs with a deficiency of lysosomal acid beta-galactosidase: a canine model of human GM1 gangliosidosis. J Vet Med Sci 2003; 65:213-7. [PMID: 12655116 DOI: 10.1292/jvms.65.213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to determine the clinical and clinico-pathologic characteristics of Shiba dogs with GM1 gangliosidosis, which is due to an autosomal recessively inherited deficiency of lysosomal acid beta-galactosidase activity. Clinical and clinico-pathological features were investigated in 10 homozygous Shiba dogs with GM1 gangliosidosis. The age at onset was 5 to 6 months and the dogs manifested progressive neurologic signs including loss of balance, intermittent lameness, ataxia, dysmetria and intention tremor of the head. The dogs were unable to stand by 10 months of age due to a progression of ataxia and spasticity in all limbs. Corneal clouding, a visual defect, generalized muscle rigospasticity, emotional disorder and a tendency to be lethargic were observed at 9 to 12 months. The dogs became lethargic from 13 months of age. The survival period seemed to be 14 to 15 months. As a clinico-pathologic feature, lymphocytes with abnormally large vacuoles were observed in peripheral blood (30 to 50% of total lymphocytes) through the lifetime of the dogs. The clinical and clinico-pathologic characteristics of this animal model are useful for not only the development and testing of potential methods of therapy, but also the diagnosis of affected homozygous Shiba dogs in veterinary clinics.
Collapse
Affiliation(s)
- Osamu Yamato
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|