1
|
Onkhonova G, Gudymo A, Kosenko M, Marchenko V, Ryzhikov A. Quantitative measurement of influenza virus transmission in animal model: an overview of current state. Biophys Rev 2023; 15:1359-1366. [PMID: 37975001 PMCID: PMC10643727 DOI: 10.1007/s12551-023-01113-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Influenza virus transmission is a crucial factor in understanding the spread of the virus within populations and developing effective control strategies. Studying the transmission patterns of influenza virus allows for better risk assessment and prediction of disease outbreaks. By monitoring the spread of the virus and identifying high-risk populations and geographic areas, it is possible to allocate resources more effectively, implement timely interventions, and provide targeted healthcare interventions to diminish the burden of influenza virus on vulnerable populations. Theoretical models of virus transmission are used to study and simulate of influenza virus spread within populations. These models aim to capture the complex dynamics of transmission, including factors such as population size, contact patterns, infectiousness, and susceptibility. Animal models serve as valuable tools for studying the dynamics of influenza virus transmission. This article presents a brief overview of existing research on the qualitative and quantitative study of influenza virus transmission in animal models. We discuss the methodologies employed, key insights gained from these studies, and their relevance.
Collapse
Affiliation(s)
- Galina Onkhonova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Andrei Gudymo
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Maksim Kosenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Vasiliy Marchenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
2
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
3
|
Caceres CJ, Seibert B, Cargnin Faccin F, Cardenas‐Garcia S, Rajao DS, Perez DR. Influenza antivirals and animal models. FEBS Open Bio 2022; 12:1142-1165. [PMID: 35451200 PMCID: PMC9157400 DOI: 10.1002/2211-5463.13416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza. FDA-approved antiviral drugs currently include adamantanes (rimantadine and amantadine), neuraminidase inhibitors (NAI; peramivir, zanamivir, and oseltamivir), and the PA endonuclease inhibitor (baloxavir). Mutations associated with antiviral resistance are common and highlight the need for further improvement and development of novel anti-influenza drugs. A summary is provided for the current knowledge of the approved influenza antivirals and antivirals strategies under evaluation in clinical trials. Preclinical evaluations of novel compounds effective against influenza in different animal models are also discussed.
Collapse
Affiliation(s)
- C. Joaquin Caceres
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Brittany Seibert
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Flavio Cargnin Faccin
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Daniela S. Rajao
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Daniel R. Perez
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
4
|
Park MS, Kim JI, Bae JY, Park MS. Animal models for the risk assessment of viral pandemic potential. Lab Anim Res 2020; 36:11. [PMID: 32337177 PMCID: PMC7175453 DOI: 10.1186/s42826-020-00040-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pandemics affect human lives severely and globally. Experience predicts that there will be a pandemic for sure although the time is unknown. When a viral epidemic breaks out, assessing its pandemic risk is an important part of the process that characterizes genomic property, viral pathogenicity, transmission in animal model, and so forth. In this review, we intend to figure out how a pandemic may occur by looking into the past influenza pandemic events. We discuss interpretations of the experimental evidences resulted from animal model studies and extend implications of viral pandemic potentials and ingredients to emerging viral epidemics. Focusing on the pandemic potential of viral infectious diseases, we suggest what should be assessed to prevent global catastrophes from influenza virus, Middle East respiratory syndrome coronavirus, dengue and Zika viruses.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| |
Collapse
|
5
|
Sheean ME, Malikova E, Duarte D, Capovilla G, Fregonese L, Hofer MP, Magrelli A, Mariz S, Mendez-Hermida F, Nistico R, Leest T, Sipsas NV, Tsigkos S, Vitezic D, Larsson K, Sepodes B, Stoyanova-Beninska V. Nonclinical data supporting orphan medicinal product designations in the area of rare infectious diseases. Drug Discov Today 2019; 25:274-291. [PMID: 31704277 DOI: 10.1016/j.drudis.2019.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023]
Abstract
This review provides an overview of nonclinical in vivo models that can be used to support orphan designation in selected rare infectious diseases in Europe, with the aim to inform and stimulate the planning of nonclinical development in this area of often neglected diseases.
Collapse
Affiliation(s)
- Maria E Sheean
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands; Max-Delbrück Center for Molecular Medicine in Helmholz Association, Berlin, Germany.
| | - Eva Malikova
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; State Institute for Drug Control, Bratislava, Slovak Republic; Comenius University, Department of Pharmacology and Toxicology, Bratislava, Slovak Republic
| | - Dinah Duarte
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; INFARMED - Autoridade Nacional do Medicamento, Lisbon, Portugal
| | - Giuseppe Capovilla
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; C. Poma Hospital, Mantova, Italy; Fondazione Poliambulanza, Brescia, Italy
| | - Laura Fregonese
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Matthias P Hofer
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Armando Magrelli
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Segundo Mariz
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Fernando Mendez-Hermida
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Robert Nistico
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Malta Medicines Authority, San Ġwann, Malta
| | - Tim Leest
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; The Federal Agency for Medicines and Health Products, Brussels, Belgium
| | - Nikolaos V Sipsas
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Tsigkos
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Dinko Vitezic
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; University of Rijeka Medical School and University Hospital Centre Rijeka, Rijeka, Croatia
| | - Kristina Larsson
- Orphan Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Bruno Sepodes
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; INFARMED - Autoridade Nacional do Medicamento, Lisbon, Portugal; Universidade de Lisboa - Faculdade de Farmácia, Lisbon, Portugal
| | - Violeta Stoyanova-Beninska
- Committee of Orphan Medicinal Products, European Medicines Agency, Amsterdam, The Netherlands; Medicines Evaluation Board, Utrecht, The Netherlands
| |
Collapse
|
6
|
Abstract
INTRODUCTION Influenza continues to be a major public health concern. Antivirals play an important role in limiting the burden of disease and preventing infection and/or transmission. The developments of such agents are heavily dependent on pre-clinical evaluation where animal models are used to answer questions that cannot be easily addressed in human clinical trials. There are numerous animal models available to study the potential benefits of influenza antivirals but each animal model has its own pros and cons. Areas covered: In this review, the authors describe the advantages and disadvantages of using mice, ferrets, guinea pigs, cotton rats, golden hamsters and non-human primates to evaluate influenza therapeutics. Expert opinion: Animals used for evaluating influenza therapeutics differ in their susceptibility to influenza virus infection, their ability to display clinical signs of illness following viral infection and in their practical requirements such as housing. Therefore, defining the scientific question being asked and the data output required will assist in selecting the most appropriate animal model.
Collapse
Affiliation(s)
- Edin J Mifsud
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Celeste Mk Tai
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Aeron C Hurt
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b Department of Microbiology and Immunology , University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
7
|
Richard M, Fouchier RAM. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol Rev 2016; 40:68-85. [PMID: 26385895 PMCID: PMC5006288 DOI: 10.1093/femsre/fuv039] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/13/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022] Open
Abstract
Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
8
|
Veselenak RL, Miller AL, Milligan GN, Bourne N, Pyles RB. Development and utilization of a custom PCR array workflow: analysis of gene expression in mycoplasma genitalium and guinea pig (Cavia porcellus). Mol Biotechnol 2015; 57:172-83. [PMID: 25358686 PMCID: PMC4298676 DOI: 10.1007/s12033-014-9813-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transcriptome analysis is a powerful tool for evaluating molecular pathways central to maturation of specific biological processes and disease states. Recently, PCR-based arrays have supplemented microarray and RNA-seq methodologies for studying changes in gene expression levels. PCR arrays are a more cost efficient alternative, however commercially available assemblies are generally limited to only a few more widely researched species (e.g., rat, human, and mouse). Consequently, the investigation of emerging or under-studied species is hindered until such assays are created. To address this need, we present data documenting the success of a developed workflow with enhanced potential to create and validate novel RT-PCR arrays for underrepresented species with whole or partial genome annotation. Utilizing this enhanced workflow, we have achieved a success rate of 80 % for first-round designs for over 400 primer pairs. Of these, ~160 distinct targets were sequence confirmed. Proof of concept studies using two unique arrays, one targeting the pathogenic bacterium Mycoplasma genitalium and the other specific for the guinea pig (Cavia porcellus), allowed us to identify significant (P < 0.05) changes in mRNA expression validated by subsequent qPCR. This flexible and adaptable platform provides a valuable and cost-effective alternative for gene expression analysis.
Collapse
Affiliation(s)
- Ronald L Veselenak
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | | | | | | | | |
Collapse
|
9
|
Animal models for influenza virus transmission studies: a historical perspective. Curr Opin Virol 2015; 13:101-8. [PMID: 26126082 DOI: 10.1016/j.coviro.2015.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Animal models are used to simulate, under experimental conditions, the complex interactions among host, virus, and environment that affect the person-to-person spread of influenza viruses. The three species that have been most frequently employed, both past and present, as influenza virus transmission models-ferrets, mice, and guinea pigs-have each provided unique insights into the factors governing the efficiency with which these viruses pass from an infected host to a susceptible one. This review will highlight a few of these noteworthy discoveries, with a particular focus on the historical contexts in which each model was developed and the advantages and disadvantages of each species with regard to the study of influenza virus transmission among mammals.
Collapse
|
10
|
Abstract
The ability of an influenza virus to transmit efficiently from human-to-human is a major factor in determining the epidemiological impact of that strain. The use of a relevant animal model to identify viral determinants of transmission, as well as host and environmental factors affecting transmission efficiency, is therefore critical for public health. The characterization of newly emerging influenza viruses in terms of their potential to transmit in a mammalian host is furthermore an important part of pandemic risk assessment. For these reasons, a guinea pig model of influenza virus transmission was developed in 2006. The guinea pig provides an important alternative to preexisting models for influenza. Most influenza viruses do not readily transmit among mice. Ferrets, while highly relevant, are expensive and can be difficult to obtain in high numbers. Moreover, it is generally accepted that efforts to accurately model human disease are strengthened by the use of multiple animal species. Herein, we provide an overview of influenza virus infectivity, growth, and transmission in the guinea pig and highlight knowledge gained on the topic of influenza virus transmission using the guinea pig model.
Collapse
Affiliation(s)
- Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
11
|
Wiersma LCM, Vogelzang-van Trierum SE, van Amerongen G, van Run P, Nieuwkoop NJ, Ladwig M, Banneke S, Schaefer H, Kuiken T, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Pathogenesis of infection with 2009 pandemic H1N1 influenza virus in isogenic guinea pigs after intranasal or intratracheal inoculation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:643-50. [PMID: 25555619 DOI: 10.1016/j.ajpath.2014.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023]
Abstract
To elucidate the pathogenesis and transmission of influenza virus, the ferret model is typically used. To investigate protective immune responses, the use of inbred mouse strains has proven invaluable. Here, we describe a study with isogenic guinea pigs, which would uniquely combine the advantages of the mouse and ferret models for influenza virus infection. Strain 2 isogenic guinea pigs were inoculated with H1N1pdm09 influenza virus A/Netherlands/602/09 by the intranasal or intratracheal route. Viral replication kinetics were assessed by determining virus titers in nasal swabs and respiratory tissues, which were also used to assess histopathologic changes and the number of infected cells. In all guinea pigs, virus titers peaked in nasal secretions at day 2 after inoculation. Intranasal inoculation resulted in higher virus excretion via the nose and higher virus titers in the nasal turbinates than intratracheal inoculation. After intranasal inoculation, infectious virus was recovered only from nasal epithelium; after intratracheal inoculation, it was recovered also from trachea, lung, and cerebrum. Histopathologic changes corresponded with virus antigen distribution, being largely limited to nasal epithelium for intranasally infected guinea pigs and more widespread in the respiratory tract for intratracheally infected guinea pigs. In summary, isogenic guinea pigs show promise as a model to investigate the role of humoral and cell-mediated immunities to influenza and their effect on virus transmission.
Collapse
Affiliation(s)
| | | | - Geert van Amerongen
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Peter van Run
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Nella J Nieuwkoop
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Mechtild Ladwig
- Department of Experimental Toxicology and Centre for Documentation and Evaluation of Alternatives to Animal Experiments, the Federal Institute for Risk Assessment, Berlin, Germany
| | - Stefanie Banneke
- Department of Experimental Toxicology and Centre for Documentation and Evaluation of Alternatives to Animal Experiments, the Federal Institute for Risk Assessment, Berlin, Germany
| | - Hubert Schaefer
- Experimental Immunology, the Robert Koch Institute, Berlin, Germany
| | - Thijs Kuiken
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Viroscience Laboratory, Erasmus Medical Centre, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Thangavel RR, Bouvier NM. Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 2014; 410:60-79. [PMID: 24709389 PMCID: PMC4163064 DOI: 10.1016/j.jim.2014.03.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/24/2022]
Abstract
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research - mice, ferrets, and guinea pigs - and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Rajagowthamee R Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
13
|
Gabbard JD, Dlugolenski D, Van Riel D, Marshall N, Galloway SE, Howerth EW, Campbell PJ, Jones C, Johnson S, Byrd-Leotis L, Steinhauer DA, Kuiken T, Tompkins SM, Tripp R, Lowen AC, Steel J. Novel H7N9 influenza virus shows low infectious dose, high growth rate, and efficient contact transmission in the guinea pig model. J Virol 2014; 88:1502-12. [PMID: 24227867 PMCID: PMC3911619 DOI: 10.1128/jvi.02959-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022] Open
Abstract
The zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or transmission in mammals. We report here that, in the guinea pig model, a human isolate of novel H7N9 influenza virus, A/Anhui/1/2013 (An/13), is highly dissimilar to an H7N1 avian isolate and instead behaves similarly to a human seasonal strain in several respects. An/13 was found to have a low 50% infectious dose, grow to high titers in the upper respiratory tract, and transmit efficiently among cocaged guinea pigs. The pH of fusion of the hemagglutinin (HA) and the binding of virus to fixed guinea pig tissues were also examined. The An/13 HA displayed a relatively elevated pH of fusion characteristic of many avian strains, and An/13 resembled avian viruses in terms of attachment to tissues. One important difference was seen between An/13 and both the H3N2 human and the H7N1 avian viruses: when inoculated intranasally at a high dose, only the An/13 virus led to productive infection of the lower respiratory tract of guinea pigs. In sum, An/13 was found to retain fusion and attachment properties of an avian influenza virus but displayed robust growth and contact transmission in the guinea pig model atypical of avian strains and indicative of mammalian adaptation.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Female
- Guinea Pigs
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H7N1 Subtype/genetics
- Influenza A Virus, H7N1 Subtype/physiology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/growth & development
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Influenza A Virus, H7N9 Subtype/physiology
- Influenza, Human/transmission
- Influenza, Human/virology
- Virulence
Collapse
Affiliation(s)
- Jon D. Gabbard
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Daniel Dlugolenski
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Debby Van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nicolle Marshall
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Summer E. Galloway
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Patricia J. Campbell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cheryl Jones
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Scott Johnson
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Lauren Byrd-Leotis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David A. Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Ralph Tripp
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
14
|
van den Brand JMA, Haagmans BL, van Riel D, Osterhaus ADME, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 2014; 151:83-112. [PMID: 24581932 PMCID: PMC7094469 DOI: 10.1016/j.jcpa.2014.01.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/04/2013] [Accepted: 01/06/2014] [Indexed: 02/08/2023]
Abstract
Respiratory viruses that emerge in the human population may cause high morbidity and mortality, as well as concern about pandemic spread. Examples are severe acute respiratory syndrome coronavirus (SARS-CoV) and novel variants of influenza A virus, such as H5N1 and pandemic H1N1. Different animal models are used to develop therapeutic and preventive measures against such viruses, but it is not clear which are most suitable. Therefore, this review compares animal models of SARS and influenza, with an emphasis on non-human primates, ferrets and cats. Firstly, the pathology and pathogenesis of SARS and influenza are compared. Both diseases are similar in that they affect mainly the respiratory tract and cause inflammation and necrosis centred on the pulmonary alveoli and bronchioles. Important differences are the presence of multinucleated giant cells and intra-alveolar fibrosis in SARS and more fulminant necrotizing and haemorrhagic pneumonia in H5N1 influenza. Secondly, the pathology and pathogenesis of SARS and influenza in man and experimental animals are compared. Host species, host age, route of inoculation, location of sampling and timing of sampling are important to design an animal model that most closely mimics human disease. The design of appropriate animal models requires an accurate pathological description of human cases, as well as a good understanding of the effect of experimental variables on disease outcome.
Collapse
Affiliation(s)
- J M A van den Brand
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - B L Haagmans
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - D van Riel
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - T Kuiken
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Belser JA, Tumpey TM. H5N1 pathogenesis studies in mammalian models. Virus Res 2013; 178:168-85. [PMID: 23458998 DOI: 10.1016/j.virusres.2013.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/14/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
H5N1 influenza viruses are capable of causing severe disease and death in humans, and represent a potential pandemic subtype should they acquire a transmissible phenotype. Due to the expanding host and geographic range of this virus subtype, there is an urgent need to better understand the contribution of both virus and host responses following H5N1 virus infection to prevent and control human disease. The use of mammalian models, notably the mouse and ferret, has enabled the detailed study of both complex virus-host interactions as well as the contribution of individual viral proteins and point mutations which influence virulence. In this review, we describe the behavior of H5N1 viruses which exhibit high and low virulence in numerous mammalian species, and highlight the contribution of inoculation route to virus pathogenicity. The involvement of host responses as studied in both inbred and outbred mammalian models is discussed. The roles of individual viral gene products and molecular determinants which modulate the severity of H5N1 disease in vivo are presented. This research contributes not only to our understanding of influenza virus pathogenesis, but also identifies novel preventative and therapeutic targets to mitigate the disease burden caused by avian influenza viruses.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | | |
Collapse
|
16
|
Abstract
Five well-established animal models in influenza research are discussed in a schematic fashion. Although there are clear parallels between these models, like viruses used, housing and handling conditions under biosafety conditions, routes of virus inoculation, sampling strategies, and necropsy techniques (mostly elaborated on in Subheading 4), each of these models involves specific differences in their practical applicability that need thorough assessment depending on the scientific question raised. In other words, there is no universal animal model for influenza and depending on the actual question to be answered the model and the experimental conditions should be carefully selected.
Collapse
|
17
|
Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses. PLoS One 2010; 5:e15537. [PMID: 21124850 PMCID: PMC2990763 DOI: 10.1371/journal.pone.0015537] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/07/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed. METHODOLOGY/PRINCIPAL FINDINGS We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1) 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1) 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung. CONCLUSIONS/SIGNIFICANCE We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses.
Collapse
|
18
|
Kuiken T, van den Brand J, van Riel D, Pantin-Jackwood M, Swayne DE. Comparative pathology of select agent influenza a virus infections. Vet Pathol 2010; 47:893-914. [PMID: 20682805 DOI: 10.1177/0300985810378651] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Influenza A virus infections may spread rapidly in human populations and cause variable mortality. Two of these influenza viruses have been designated as select agents: 1918 H1N1 virus and highly pathogenic avian influenza (HPAI) virus. Knowledge of the pathology of these virus infections in humans, other naturally infected species, and experimental animals is important to understand the pathogenesis of influenza, to design appropriate models for evaluation of medical countermeasures, and to make correct diagnoses. The most important complication of influenza in humans is viral pneumonia, which often occurs with or is followed by bacterial pneumonia. Viremia and extrarespiratory disease are uncommon. HPAI viruses, including HPAI H5N1 virus, cause severe systemic disease in galliform species as well as in anseriform species and bird species of other orders. HPAI H5N1 virus infection also causes severe disease in humans and several species of carnivores. Experimental animals are used to model different aspects of influenza in humans, including uncomplicated influenza, pneumonia, and virus transmission. The most commonly used experimental animal species are laboratory mouse, domestic ferret, and cynomolgus macaque. Experimental influenza virus infections are performed in various other species, including domestic pig, guinea pig, and domestic cat. Each of these species has advantages and disadvantages that need to be assessed before choosing the most appropriate model to reach a particular goal. Such animal models may be applied for the development of more effective antiviral drugs and vaccines to protect humans from the threat of these virus infections.
Collapse
Affiliation(s)
- T Kuiken
- Erasmus MC, Department of Virology, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Influenza virus infection of humans results in a respiratory disease that ranges in severity from sub-clinical infection to primary viral pneumonia that can result in death. The clinical effects of infection vary with the exposure history, age and immune status of the host, and also the virulence of the influenza strain. In humans, the virus is transmitted through either aerosol or contact-based transfer of infectious respiratory secretions. As is evidenced by most zoonotic influenza virus infections, not all strains that can infect humans are able to transmit from person-to-person. Animal models of influenza are essential to research efforts aimed at understanding the viral and host factors that contribute to the disease and transmission outcomes of influenza virus infection in humans. These models furthermore allow the pre-clinical testing of antiviral drugs and vaccines aimed at reducing morbidity and mortality in the population through amelioration of the virulence or transmissibility of influenza viruses. Mice, ferrets, guinea pigs, cotton rats, hamsters and macaques have all been used to study influenza viruses and therapeutics targeting them. Each model presents unique advantages and disadvantages, which will be discussed herein.
Collapse
|
20
|
Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages. Med Microbiol Immunol 2010; 199:291-7. [PMID: 20386921 PMCID: PMC7087222 DOI: 10.1007/s00430-010-0155-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Indexed: 12/26/2022]
Abstract
Hypercytokinaemia is thought to contribute to highly pathogenic H5N1 influenza A virus disease. Glycyrrhizin is known to exert immunomodulatory and anti-inflammatory effects and therefore a candidate drug for the control of H5N1-induced pro-inflammatory gene expression. Here, the effects of an approved parenteral glycyrrhizin preparation were investigated on H5N1 virus replication, H5N1-induced pro-inflammatory responses, and H5N1-induced apoptosis in human monocyte-derived macrophages. Glycyrrhizin 100 μg/ml, a therapeutically achievable concentration, impaired H5N1-induced production of CXCL10, interleukin 6, and CCL5 and inhibited H5N1-induced apoptosis but did not interfere with H5N1 replication. Global inhibition of immune responses may result in the loss of control of virus replication by cytotoxic immune cells including natural killer cells and cytotoxic CD8(+) T-lymphocytes. Notably, glycyrrhizin concentrations that inhibited H5N1-induced pro-inflammatory gene expression did not affect cytolytic activity of natural killer cells. Since H5N1-induced hypercytokinaemia is considered to play an important role within H5N1 pathogenesis, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.
Collapse
|
21
|
Bodewes R, Rimmelzwaan GF, Osterhaus ADME. Animal models for the preclinical evaluation of candidate influenza vaccines. Expert Rev Vaccines 2010; 9:59-72. [PMID: 20021306 DOI: 10.1586/erv.09.148] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
At present, new influenza A (H1N1)2009 viruses of swine origin are responsible for the first influenza pandemic of the 21st Century. In addition, highly pathogenic avian influenza A/H5N1 viruses continue to cause outbreaks in poultry and, after zoonotic transmission, cause an ever-increasing number of human cases, of which 59% have a fatal clinical outcome. It is also feared that these viruses adapt to replication in humans and become transmissible from human to human. The development of effective vaccines against epidemic and (potentially) pandemic viruses is therefore considered a priority. In this review, we discuss animal models that are used for the preclinical evaluation of novel candidate influenza vaccines. In most cases, a tier of multiple animal models is used before the evaluation of vaccine candidates in clinical trials is considered. Commonly, vaccines are tested for safety and efficacy in mice, ferrets and/or macaques. The use of each of these species has its advantages and limitations, which are addressed here.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Virology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
22
|
Pathogenesis of 1918 pandemic and H5N1 influenza virus infections in a guinea pig model: antiviral potential of exogenous alpha interferon to reduce virus shedding. J Virol 2009; 83:2851-61. [PMID: 19144714 DOI: 10.1128/jvi.02174-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the increasing genetic diversity among these viruses and continued outbreaks in avian species underscore the need for more effective measures for the control and prevention of human H5N1 virus infection. Additional small animal models with which therapeutic approaches against virulent influenza viruses can be evaluated are needed. In this study, we used the guinea pig model to evaluate the relative virulence of selected avian and human influenza A viruses. We demonstrate that guinea pigs can be infected with avian and human influenza viruses, resulting in high titers of virus shedding in nasal washes for up to 5 days postinoculation (p.i.) and in lung tissue of inoculated animals. However, other physiologic indicators typically associated with virulent influenza virus strains were absent in this species. We evaluated the ability of intranasal treatment with human alpha interferon (alpha-IFN) to reduce lung and nasal wash titers in guinea pigs challenged with the reconstructed 1918 pandemic H1N1 virus or a contemporary H5N1 virus. IFN treatment initiated 1 day prior to challenge significantly reduced or prevented infection of guinea pigs by both viruses, as measured by virus titer determination and seroconversion. The expression of the antiviral Mx protein in lung tissue correlated with the reduction of virus titers. We propose that the guinea pig may serve as a useful small animal model for testing the efficacy of antiviral compounds and that alpha-IFN treatment may be a useful antiviral strategy against highly virulent strains with pandemic potential.
Collapse
|