1
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
2
|
Firinci B, Caglar O, Karadeniz E, Ahiskalioglu A, Demirci T, Aydin MD. Mysterious effects of olfactory pathway lesions on intestinal immunodeficiency targeting Peyer's patches: The first experimental study. Med Hypotheses 2019; 125:31-36. [PMID: 30902148 DOI: 10.1016/j.mehy.2019.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although olfaction has been considered as important neuroimmunomodulatory foundation, there is no satisfying analytical information between neurohistomorphological features olfactory networks and intestinal immune system hardwares. We studied if the olfactory bulb lesions (OBL) may rely on histopathological features of intestinal lymphatic Peyer's patches in an animal model. METHODS Thirty-two rats were grouped as control (Group I, n = 8), SHAM (Group II, n = 7) and OBL (Group III, n = 17) respectively; and followed eight weeks and animals were decapitated. The olfactory bulbs and intestines were extracted. Specimens stained with hematoxylin/eosin and GFAP methods and analyzed Stereologically to evaluate volume loss of olfactory bulbs and Peyer's patches volumes (PV) of intestines per cubic millimeter and compared with each other's statistically. RESULTS The mean olfactory bulbs volumes were estimated as 3.65 ± 0.32/mm3 in group I, 3.12 ± 0.20/mm3 in group II and 2.21 ± 0.15/mm3 in group III (p < 0.0005 Group III vs. I and II). The mean of PV were estimated as; (9 ± 2) × 106 µm3/cm3 in Group-I, (12 ± 3) × 106 µm3/cm3 in Group-II; and (23 ± 4) × 106 µm3/cm3 in group-III (p < 0.005 Group II vs. I, p < 0.0005 Group III vs. I-II). CONCLUSIONS OBL could rely on intestinal immunodeficiency causing by olfaction loss induced denervation injury of Peyer's patches.
Collapse
Affiliation(s)
- Binali Firinci
- Ataturk University, Medical Faculty, Department of Pediatric Surgery, Erzurum, Turkey
| | - Ozgur Caglar
- Ataturk University, Medical Faculty, Department of Pediatric Surgery, Erzurum, Turkey
| | - Erdem Karadeniz
- Ataturk University, Medical Faculty, Department of General Surgery, Erzurum, Turkey
| | - Ali Ahiskalioglu
- Ataturk University, Medical Faculty, Department of Anesthesiology and Reanimation, Erzurum, Turkey
| | - Tuba Demirci
- Ataturk University, Medical Faculty, Department of Histology, Erzurum, Turkey
| | - Mehmet Dumlu Aydin
- Ataturk University, Medical Faculty, Department of Neurosurgery, Erzurum, Turkey.
| |
Collapse
|
3
|
McGovern G, Martin S, Jeffrey M, Dexter G, Hawkins SAC, Bellworthy SJ, Thurston L, Algar L, González L. Minimum Effective Dose of Cattle and Sheep BSE for Oral Sheep Infection. PLoS One 2016; 11:e0151440. [PMID: 26968011 PMCID: PMC4788145 DOI: 10.1371/journal.pone.0151440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/29/2016] [Indexed: 11/18/2022] Open
Abstract
The minimum dose required to cause infection of Romney and Suffolk sheep of the ARQ/ARQ or ARQ/ARR prion protein gene genotypes following oral inoculation with Romney or Suffolk a sheep Bovine spongiform encephalopathy (BSE)-derived or cattle BSE-derived agent was investigated using doses ranging from 0.0005g to 5g. ARQ/ARQ sheep which were methionine (M) / threonine (T) heterozygous or T/T homozygous at codon 112 of the Prnp gene, dosed ARQ/ARR sheep and undosed controls did not show any evidence of infection. Within groups of susceptible sheep, the minimum effective oral dose of BSE was found to be 0.05g, with higher attack rates following inoculation with the 5g dose. Surprisingly, this study found no effect of dose on survival time suggesting a possible lack of homogeneity within the inoculum. All clinical BSE cases showed PrPd accumulation in brain; however, following cattle BSE inoculation, LRS involvement within Romney recipients was found to be significantly lower than within the Suffolk sheep inoculated group which is in agreement with previous reports.
Collapse
Affiliation(s)
- Gillian McGovern
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, United Kingdom
| | - Stuart Martin
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, United Kingdom
| | - Martin Jeffrey
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, United Kingdom
| | - Glenda Dexter
- APHA-Weybridge, Addlestone, Surrey, KT15 3NB, United Kingdom
| | | | | | - Lisa Thurston
- APHA-Weybridge, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Lynne Algar
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, United Kingdom
| | - Lorenzo González
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
McGovern G, Martin S, Jeffrey M, Bellworthy SJ, Spiropoulos J, Green R, Lockey R, Vickery CM, Thurston L, Dexter G, Hawkins SAC, González L. Influence of breed and genotype on the onset and distribution of infectivity and disease-associated prion protein in sheep following oral infection with the bovine spongiform encephalopathy agent. J Comp Pathol 2014; 152:28-40. [PMID: 25435510 DOI: 10.1016/j.jcpa.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/29/2014] [Accepted: 09/30/2014] [Indexed: 11/20/2022]
Abstract
The onset and distribution of infectivity and disease-specific prion protein (PrP(d)) accumulation was studied in Romney and Suffolk sheep of the ARQ/ARQ, ARQ/ARR and ARR/ARR prion protein gene (Prnp) genotypes (where A stands for alanine, R for arginine and Q for glutamine at codons 136, 154 and 171 of PrP), following experimental oral infection with cattle-derived bovine spongiform encephalopathy (BSE) agent. Groups of sheep were killed at regular intervals and a wide range of tissues taken for mouse bioassay or immunohistochemistry (IHC), or both. Bioassay results for infectivity were mostly coincident with those of PrP(d) detection by IHC both in terms of tissues and time post infection. Neither PrP(d) nor infectivity was detected in any tissues of BSE-dosed ARQ/ARR or ARR/ARR sheep or of undosed controls. Moreover, four ARQ/ARQ Suffolk sheep, which were methionine (M)/threonine heterozygous at codon 112 of the Prnp gene, did not show any biological or immunohistochemical evidence of infection, while those homozygous for methionine (MARQ/MARQ) did. In MARQ/MARQ sheep of both breeds, initial PrP(d) accumulation was identified in lymphoreticular system (LRS) tissues followed by the central nervous system (CNS) and enteric nervous system (ENS) and finally by the autonomic nervous system and peripheral nervous system and other organs. Detection of infectivity closely mimicked this sequence. No PrP(d) was observed in the ENS prior to its accumulation in the CNS, suggesting that ENS involvement occurred simultaneously to that of, or followed centrifugal spread from, the CNS. The distribution of PrP(d) within the ENS further suggested a progressive spread from the ileal plexus to other ENS segments via neuronal connections of the gut wall. Differences between the two breeds were noted in terms of involvement of LRS and ENS tissues, with Romney sheep showing a more delayed and less consistent PrP(d) accumulation than Suffolk sheep in such tissues. Whether this accounted for the slight delay (∼5 months) in the appearance of clinical signs in Romney sheep is debatable since by the last scheduled kill before animals reached clinical end point, both breeds showed widespread accumulation and similar magnitudes of PrP(d) accumulation in the brain.
Collapse
Affiliation(s)
- G McGovern
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Penicuik, Midlothian, UK.
| | - S Martin
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Penicuik, Midlothian, UK
| | - M Jeffrey
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Penicuik, Midlothian, UK
| | - S J Bellworthy
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Addlestone, Surrey, UK
| | - J Spiropoulos
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Addlestone, Surrey, UK
| | - R Green
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Addlestone, Surrey, UK
| | - R Lockey
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Addlestone, Surrey, UK
| | - C M Vickery
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Addlestone, Surrey, UK
| | - L Thurston
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Addlestone, Surrey, UK
| | - G Dexter
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Addlestone, Surrey, UK
| | - S A C Hawkins
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Addlestone, Surrey, UK
| | - L González
- Animal Health and Veterinary Laboratories Agency (AHVLA-Lasswade), Penicuik, Midlothian, UK
| |
Collapse
|
5
|
Close interactions between sympathetic neural fibres and follicular dendritic cells network are not altered in Peyer's patches and spleen of C57BL/6 mice during the preclinical stage of 139A scrapie infection. J Neuroimmunol 2014; 272:1-9. [PMID: 24841625 DOI: 10.1016/j.jneuroim.2014.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/31/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
During preclinical stage of prion diseases, secondary lymphoid organs seem to play an important role in prion amplification prior the invasion of the associated peripheral nervous system. In mice, it was shown that the relative positioning of follicular dendritic cells (FDC) and sympathetic nervous system (SNS) affects the velocity of neuroinvasion following scrapie inoculation. In this study, we checked if scrapie infection, by oral or intraperitoneal route, could influence this neuroimmune interface between FDC and tyrosine hydroxylase (TH) positive neural fibres within Peyer's patches (PP) and spleen of the C57BL/6 mouse strain. We concluded that, in vivo, scrapie 139A and ME7 strains do not modify FDC-SNS neuroimmune interface. However, age seems to alter this neuroimmune interface and thus could influence the neuroinvasion in prion pathogenesis.
Collapse
|
6
|
Neuroimmune connections in ovine pharyngeal tonsil: potential site for prion neuroinvasion. Cell Tissue Res 2012; 348:167-76. [PMID: 22427064 DOI: 10.1007/s00441-012-1376-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Recent studies have established the involvement of nasal-associated lymphoid tissues, mainly the pharyngeal tonsil, in prion pathogenesis. However, the mechanisms of the associated neuroinvasion are still debated. To determine potential sites for prion neuroinvasion inside the ovine pharyngeal tonsil, the topography of heavy (200 kDa) and light (70 kDa) neurofilaments and of glial fibrillar acidic protein has been semi-quantitatively analysed inside the various compartments of the tonsil. The results show that the most innervated areas are the interfollicular area and the connective tissue located beneath the respiratory epithelium. The existence of rare synapses between follicular dendritic cells and nerve fibres inside the germinal centre indicates that this mechanism of neuroinvasion is possible but, since germinal centres of lymphoid follicles are poorly innervated, other routes of neuroinvasion are likely. The host PRNP genotype does not influence the pattern of innervation in these various tonsil compartments, unlike ageing during which an increase of nerve endings occurs in a zone of high trafficking cells beneath the respiratory epithelium. A minimal age-related increase of innervation inside the lymphoid follicles has also been observed. An increase in nerve fibre density around the lymphoid follicles, in an area rich in mobile cells such as macrophages and dendritic cells capable of capturing and conveying pathogen prion protein (PrPd), might ensure more efficient infectivity, not in the early phase but in the advanced phase of lymphoinvasion after the amplification of PrPd; alternatively, this area might even act as a direct site of entry during neuroinvasion.
Collapse
|
7
|
Age-related features of expression of cell renewal factors in the intestinal Peyer's patches. Bull Exp Biol Med 2012; 150:465-7. [PMID: 22268044 DOI: 10.1007/s10517-011-1169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immunohistochemical study with markers of proapoptotic protein P53 and proliferation protein Ki-67 revealed an age-related decrease in proliferative activity of lymphocyte in the intestinal Peyer's patches and an increase in the ratio of apoptotic cells in humans. These changes aggravate atrophy and involution of the intestinal epithelium during aging.
Collapse
|
8
|
Dorban G, Antoine N, Defaweux V. [When prions use the systems of communication between the immune system and the peripheral nervous system]. Med Sci (Paris) 2010; 26:610-4. [PMID: 20619163 DOI: 10.1051/medsci/2010266-7610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion disease pathogenesis has been largely studied since the inter-species transmissibility of the infectious protein (PrPSc), the oral uptake as natural route of infection and the exceptional implication in a problem of public health were highlighted. Two sequential preclinical stages are observed before the development of irreversible and fatal lesions in the central nervous system: the lymphoinvasion and the neuroinvasion. The first is characterized by the accumulation of PrPSc within lymphoid tissues and the second by PrPSc scattering the peripheral nervous system towards the central nervous system. The mechanisms involved in the communication between the immune and the peripheral nervous system are still debated. Recent studies even suggest that neuroinvasion can occur through the hematogenous route, independently of the peripheral nervous system. This review analyses (i) the role of immune cells, implicated in prion pathogenesis: dendritic cells as PrPSc vehicle, follicular dendritic cells as PrPSc accumulator and nerve fibres as PrPSc driver and (ii) the respective relations they maintain with peripheral nerve fibres to migrate to the brain.
Collapse
Affiliation(s)
- Gauthier Dorban
- Faculté des sciences, de la technologie et de la communication, Université du Luxembourg, Luxembourg, Luxembourg
| | | | | |
Collapse
|
9
|
Sisó S, González L, Jeffrey M. Neuroinvasion in prion diseases: the roles of ascending neural infection and blood dissemination. Interdiscip Perspect Infect Dis 2010; 2010:747892. [PMID: 20652006 PMCID: PMC2905956 DOI: 10.1155/2010/747892] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/08/2010] [Indexed: 01/27/2023] Open
Abstract
Prion disorders are infectious, neurodegenerative diseases that affect humans and animals. Susceptibility to some prion diseases such as kuru or the new variant of Creutzfeldt-Jakob disease in humans and scrapie in sheep and goats is influenced by polymorphisms of the coding region of the prion protein gene, while other prion disorders such as fatal familial insomnia, familial Creutzfeldt-Jakob disease, or Gerstmann-Straussler-Scheinker disease in humans have an underlying inherited genetic basis. Several prion strains have been demonstrated experimentally in rodents and sheep. The progression and pathogenesis of disease is influenced by both genetic differences in the prion protein and prion strain. Some prion diseases only affect the central nervous system whereas others involve the peripheral organs prior to neuroinvasion. Many experiments undertaken in different species and using different prion strains have postulated common pathways of neuroinvasion. It is suggested that prions access the autonomic nerves innervating peripheral organs and tissues to finally reach the central nervous system. We review here published data supporting this view and additional data suggesting that neuroinvasion may concurrently or independently involve the blood vascular system.
Collapse
Affiliation(s)
- Sílvia Sisó
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Lorenzo González
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
10
|
McGovern G, Mabbott N, Jeffrey M. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice. PLoS One 2009; 4:e8186. [PMID: 19997557 PMCID: PMC2785472 DOI: 10.1371/journal.pone.0008186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/15/2009] [Indexed: 12/01/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrPd) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrPd accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrPd plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrPd accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrPd. Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrPd accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function.
Collapse
Affiliation(s)
- Gillian McGovern
- Veterinary Laboratories Agency (Lasswade), Penicuik, Midlothian, United Kingdom.
| | | | | |
Collapse
|
11
|
Marruchella G, Ligios C, Baffoni M, Cancedda MG, Demontis F, Donatucci G, Chiocchetti R, Clavenzani P, Lalatta-Costerbosa G, Di Guardo G. Ileal tract and Peyer's patch innervation in scrapie-free versus scrapie-affected ovines. Arch Virol 2009; 154:709-14. [PMID: 19330284 DOI: 10.1007/s00705-009-0361-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/09/2009] [Indexed: 12/28/2022]
Abstract
Ileal Peyer's patches (PPs) are involved early during sheep scrapie infection. This study qualitatively and semi-quantitatively evaluated ileal tract and PP innervation in 29 Sarda ovines of different age, PrP genotype and scrapie status. A prominent network of fibres was detected within PPs, mainly located in interfollicular lymphoid and stromal components. Intrafollicular fibres were rarely observed, with no apparent differences between scrapie-free and scrapie-affected animals, or among ovines carrying different PrP genotypes. In adult sheep, independent of their scrapie status, nerve fibres could be detected infrequently, close to the follicle-associated epithelium. Fibres were also detected within newly formed follicles and intrafollicular microgranulomas.
Collapse
Affiliation(s)
- G Marruchella
- Department of Comparative Biomedical Sciences, University of Teramo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|