1
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Feng Z, Lu H, Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front Cell Infect Microbiol 2024; 14:1339501. [PMID: 38404288 PMCID: PMC10884116 DOI: 10.3389/fcimb.2024.1339501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
In the last twenty years, there has been a significant increase in invasive fungal infections, which has corresponded with the expanding population of individuals with compromised immune systems. As a result, the mortality rate linked to these infections remains unacceptably high. The currently available antifungal drugs, such as azoles, polyenes, and echinocandins, face limitations in terms of their diversity, the escalating resistance of fungi and the occurrence of significant adverse effects. Consequently, there is an urgent need to develop new antifungal medications. Vaccines and antibodies present a promising avenue for addressing fungal infections due to their targeted antifungal properties and ability to modulate the immune response. This review investigates the structure and function of cell wall proteins, secreted proteins, and functional proteins within C. albicans. Furthermore, it seeks to analyze the current advancements and challenges in macromolecular drugs to identify new targets for the effective management of candidiasis.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Jeenkeawpieam J, Rodjan P, Roytrakul S, Pruksaphon K, Mitsuwan W, Tanthanathipchai N, Boonkaewwan C, Tedja I, Pongpom M. Antifungal activity of protein hydrolysates from Thai Phatthalung Sangyod rice (Oryza sativa L.) seeds. Vet World 2023; 16:1018-1028. [PMID: 37576760 PMCID: PMC10420720 DOI: 10.14202/vetworld.2023.1018-1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Fungal zoonoses are an economic and public health concern because they can cause various degrees of morbidity and mortality in animals and humans. To combat this issue, alternative natural antifungals, such as products derived from rice protein hydrolysates or rice antifungal protein/peptide are being considered because they are highly bioactive and exhibit various functional properties. Thailand is a leading rice producer and exporter. Among the various cultivated rice varieties, Sangyod rice (Oryza sativa L.) is exclusively indigenous to Thailand's Phatthalung province; it has a Thai geographical indication tag. Here, we investigated whether the Phatthalung Sangyod rice seeds have bioactive antifungal peptides. Materials and Methods Antifungal activity in four Sangyod rice seed extracts (SYPs) - namely, (1) the crude lysate, SYP1; (2) the heat-treated lysate, SYP2; (3) the heat- and pepsin digested lysate, SYP3; and (4) the heat- and proteinase K-digested lysate, SYP4 - was analyzed. Protein concentrations in these SYPs were determined using the Bradford assay. The total phenolic compound content was determined using the modified Folin-Ciocalteu method in a 96-well microplate. Then, the SYP protein pattern was determined using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Subsequently, using the agar well diffusion method, the antifungal properties of these SYPs were tested against ten medically important pathogenic fungi. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration values were determined for the active SYPs - SYP2-4. Finally, the clinical safety of SYP4 was determined using a hemolytic assay (using canine red blood cells [RBCs]). Results The crude lysate SYP1 did not show antifungal activity against any of the ten tested pathogenic fungi. Surprisingly, hydrolysates SYP2, SYP3, and SYP4 displayed antifungal properties against the ten tested pathogenic fungi. Thus, heat and enzymatic hydrolysis seem to transform the bioactivity of the crude protein extract - SYP1. Further, SYP4 shows the most effective antifungal activity. It completely inhibited Cryptococcus neoformans, Talaromyces marneffei yeast phase, Trichophyton mentagrophytes, and Trichophyton rubrum. A partial inhibitory action on Candida albicans and Microsporum gypseum was possessed while showing the least activity to C. neoformans. SYP4 was nontoxic to canine RBCs. Hemolysis of canine RBCs was undetectable at 1 × MIC and 2 × MIC concentrations; therefore, it can be safely used in further applications. Conclusion These results indicate that heat and proteinase K hydrolyzed SYP is a very potent antifungal preparation against animal and human fungal pathogens and it can be used in future pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Juthatip Jeenkeawpieam
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prawit Rodjan
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani 12120, Thailand
| | - Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | | | - Chaiwat Boonkaewwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Irma Tedja
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Xu R, Tang J, Hadianamrei R, Liu S, Lv S, You R, Pan F, Zhang P, Wang N, Cai Z, Zhao X. Antifungal activity of designed α-helical antimicrobial peptides. Biomater Sci 2023; 11:2845-2859. [PMID: 36857655 DOI: 10.1039/d2bm01797k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Antimicrobial resistance (AMR) has become a major global health concern prompting the quest for new antibiotics with higher efficiency and less proneness to drug resistance. Antimicrobial peptides (AMPs) offer such properties and have therefore gained increasing attention as a new generation of antibiotics to overcome AMR. In an attempt to develop new highly selective and highly efficient antifungal peptides, a sequence (named At1) originating from the natural AMP Ponericin-W1 was used as a lead sequence for rational design of a series of short cationic antifungal peptides named At2-At12. The charge, hydrophobicity, and terminal amino acids of the peptides were modified in a systematic way to investigate the effect of such structural changes on the biological activity of the peptides. Among all the designed peptides, three peptides (coded as At3, At5 and At10) exhibited high antifungal activity without any significant hemolytic activity in human red blood cells. The higher selectivity of these peptides for fungal cells over human cells was further confirmed in cocultures of Candida albicans and human foreskin fibroblasts. These three peptides lacked any hydrophilic residues in their hydrophobic domain, contained lysine residues in their hydrophilic region and had an overall charge of 7+. They also had a higher helical content in microbial membrane mimicking DPPG SUVs than the rest of the peptides. The fungi did not develop any resistance to the designed antifungal peptides even after 25 generations indicating low AMR. At5 was also used in vivo for the treatment of wounds infected with Candida albicans in mice and showed superiority over fluconazole for treating infection and accelerating wound healing. There was an interplay between the hydrophobicity and positive charge density to determine the antifungal activity of the peptides. The results from this study suggest this class of antifungal peptides as promising candidates for antifungal drugs with high efficiency, high biocompatibility and low propensity for drug resistance.
Collapse
Affiliation(s)
- Ruicheng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Jing Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.,School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Suyu Liu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Rongrong You
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Fang Pan
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Peng Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Nan Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China. .,Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
5
|
Aaghaz S, Sharma K, Maurya IK, Rudramurthy SM, Singh S, Kumar V, Tikoo K, Jain R. Synthetic amino acids-based short amphipathic peptides exhibit antifungal activity by targeting cell membrane disruption. Drug Dev Res 2023; 84:514-526. [PMID: 36757096 DOI: 10.1002/ddr.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
Availability of a limited number of antifungal drugs created a necessity to develop new antifungals with distinct mode of action. Investigation on a new series of peptides led us to identify Boc-His-Trp-His[1-(4-tert-butylphenyl)] (10g) as the most promising inhibitor exhibiting IC50 value of 4.4 µg/mL against Cryptococcus neoformans. Analog 10g exhibit high selectivity to fungal cells and was nonhemolytic and noncytotoxic at its minimum inhibitory concentration. 10g produced fungicidal effect on growing cryptococcal cells and displayed synergistic effect with amphotericin B. Overall cationic character of 10g resulted in interaction with negatively charged fungal membrane while hydrophobicity enhanced penetration inside the cryptococcal cells causing hole(s) formation and disruption to the membrane as evident by the scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy analyses. Flow cytometric investigation revealed rapid death of fungal cells by apopotic pathway.
Collapse
Affiliation(s)
- Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Indresh K Maurya
- Center of Infectious Diseases, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India.,Center of Infectious Diseases, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| |
Collapse
|
6
|
Selective Induction of Intrinsic Apoptosis in Retinoblastoma Cells by Novel Cationic Antimicrobial Dodecapeptides. Pharmaceutics 2022; 14:pharmaceutics14112507. [PMID: 36432697 PMCID: PMC9694048 DOI: 10.3390/pharmaceutics14112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Host defense peptides represent an important component of innate immunity. In this work, we report the anticancer properties of a panel of hyper-charged wholly cationic antimicrobial dodecapeptides (CAPs) containing multiple canonical forms of lysine and arginine residues. These CAPs displayed excellent bactericidal activities against a broad range of pathogenic bacteria by dissipating the cytoplasmic membrane potential. Specifically, we identified two CAPs, named HC3 and HC5, that effectively killed a significant number of retinoblastoma (WERI-Rb1) cells (p ≤ 0.01). These two CAPs caused the shrinkage of WERI-Rb1 tumor spheroids (p ≤ 0.01), induced intrinsic apoptosis in WERI-Rb1 cells via activation of caspase 9 and caspase 3, cleaved the PARP protein, and triggered off the phosphorylation of p53 and γH2A.X. Combining HC3 or HC5 with the standard chemotherapeutic drug topotecan showed synergistic anti-cancer activities. Overall, these results suggest that HC3 and HC5 can be exploited as potential therapeutic agents in retinoblastoma as monotherapy or as adjunctive therapy to enhance the effectiveness of currently used treatment modalities.
Collapse
|
7
|
Naiel MAE, Abd El-Hack ME, Patra AK. The Role of Antimicrobial Peptides (AMPs) in Aquaculture Farming. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:215-234. [DOI: 10.2174/9789815049015122010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Antimicrobial peptides (AMPs) are the vital constituents that stimulate the
innate immune defense system against pathogens and perform several biological
activities, which provide the first defensive line against infectious diseases. Owing to
their unique structure, they can be utilized as a therapeutic strategy for infectious
diseases in fishes. Several kinds of AMPs are reported in fishes with broad-spectrum
antimicrobial properties. Besides, the bacterial cells cannot develop resistance strains
against these cationic compounds with low molecular weight. Thus, AMPs may be
considered an alternative to antibiotics to prevent or control infectious diseases in
aquaculture. It is essential to provide sufficient knowledge about the mode of action of
AMPs against fish pathogenic agents and their future applications.
Collapse
Affiliation(s)
| | | | - Amlan Kumar Patra
- West Bengal University of Animal and Fishery Sciences,Department of Animal Nutrition,Kolkata,India
| |
Collapse
|
8
|
Pratt EJ, Mancera-Andrade EI, Bicker KL. Synthesis and Characterization of Derivatives of the Antifungal Peptoid RMG8-8. ACS OMEGA 2022; 7:36663-36671. [PMID: 36278036 PMCID: PMC9583092 DOI: 10.1021/acsomega.2c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cryptococcal meningitis, caused by the fungal pathogen Cryptococcus neoformans, is a devastating disease with a mortality rate of over 80%. Due to the increasing prevalence of resistance to antifungals and the high mammalian toxicity of current treatments, the development of new antifungal therapies is vital. In an effort to improve the biological properties of a previously discovered antifungal peptoid, termed RMG8-8, an iterative structure-activity relationship study was conducted. This three-round study sought to optimize the structure of RMG8-8 by focusing on three main structural components: the lipophilic tail, aliphatic side chains, and aromatic side chains. In addition to antifungal testing against C. neoformans, cytotoxicity testing was also performed on all derivatives against human liver cells, and select promising compounds were tested for hemolytic activity against human red blood cells. A number of derivatives containing unique aliphatic or aromatic side chains had antifungal activity similar to RMG8-8 (MIC = 1.56 μg/mL), but all of these compounds were more toxic than RMG8-8. While no derivative was improved across all biological tests, modest improvements were made to the hemolytic activity with compound 9, containing isobutyl side chains in positions 2 and 5, compared to RMG8-8 (HC10 = 130 and 75 μg/mL, respectively). While this study did not yield a dramatically optimized RMG8-8 derivative, this result was not totally unexpected given the remarkable selectivity of this compound from discovery. Nonetheless, this study is an important step in the development of RMG8-8 as a viable antifungal therapeutic.
Collapse
|
9
|
Shrimp Antimicrobial Peptides: A Multitude of Possibilities. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Bansal S, Vu K, Liu R, Ajena Y, Xiao W, Menon SM, Bennett A, Gelli A, Lam KS. Discovery and Characterization of a Potent Antifungal Peptide through One-Bead, One-Compound Combinatorial Library Screening. ACS Infect Dis 2022; 8:1291-1302. [PMID: 35700987 DOI: 10.1021/acsinfecdis.2c00019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work describes the discovery of a bead-bound membrane-active peptide (MAP), LBF127, that selectively binds fungal giant unilamellar vesicles (GUVs) over mammalian GUVs. LBF127 was re-synthesized in solution form and demonstrated to have antifungal activity with limited hemolytic activity and cytotoxicity against mammalian cells. Through systematic structure-activity relationship studies, including N- and C-terminal truncation, alanine-walk, and d-amino acid substitution, an optimized peptide, K-oLBF127, with higher potency, less hemolytic activity, and cytotoxicity emerged. Compared to the parent peptide, K-oLBF127 is shorter by three amino acids and has a lysine at the N-terminus to confer an additional positive charge. K-oLBF127 was found to have improved selectivity toward the fungal membrane over mammalian membranes by 2-fold compared to LBF127. Further characterizations revealed that, while K-oLBF127 exhibits a spectrum of antifungal activity similar to that of the original peptide, it has lower hemolytic activity and cytotoxicity against mammalian cells. Mice infected with Cryptococcus neoformans and treated with K-oLBF127 (16 mg/kg) for 48 h had significantly lower lung fungal burden compared to untreated animals, consistent with K-oLBF127 being active in vivo. Our study demonstrates the success of the one-bead, one-compound high-throughput strategy and sequential screening at identifying MAPs with strong antifungal activities.
Collapse
Affiliation(s)
- Shivani Bansal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kiem Vu
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California 95616, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
| | - Yousif Ajena
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
| | - Suvidha M Menon
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California 95616, United States
| | - Amelia Bennett
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California 95616, United States
| | - Angie Gelli
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California 95616, United States
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
11
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
12
|
Ramazi S, Mohammadi N, Allahverdi A, Khalili E, Abdolmaleki P. A review on antimicrobial peptides databases and the computational tools. Database (Oxford) 2022; 2022:baac011. [PMID: 35305010 PMCID: PMC9216472 DOI: 10.1093/database/baac011] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/29/2022]
Abstract
Antimicrobial Peptides (AMPs) have been considered as potential alternatives for infection therapeutics since antibiotic resistance has been raised as a global problem. The AMPs are a group of natural peptides that play a crucial role in the immune system in various organisms AMPs have features such as a short length and efficiency against microbes. Importantly, they have represented low toxicity in mammals which makes them potential candidates for peptide-based drugs. Nevertheless, the discovery of AMPs is accompanied by several issues which are associated with labour-intensive and time-consuming wet-lab experiments. During the last decades, numerous studies have been conducted on the investigation of AMPs, either natural or synthetic type, and relevant data are recently available in many databases. Through the advancement of computational methods, a great number of AMP data are obtained from publicly accessible databanks, which are valuable resources for mining patterns to design new models for AMP prediction. However, due to the current flaws in assessing computational methods, more interrogations are warranted for accurate evaluation/analysis. Considering the diversity of AMPs and newly reported ones, an improvement in Machine Learning algorithms are crucial. In this review, we aim to provide valuable information about different types of AMPs, their mechanism of action and a landscape of current databases and computational tools as resources to collect AMPs and beneficial tools for the prediction and design of a computational model for new active AMPs.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| | - Neda Mohammadi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Hemmat Highway, Tehran 1449614535, Iran
- Institute of Pharmacology and Toxicology, University of Bonn, Biomedical Center, Venusberg Campus 1, Bonn 53127, Germany
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| | - Elham Khalili
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| |
Collapse
|
13
|
Zhang J, Gong H, Liao M, Li Z, Schweins R, Penny J, Lu JR. How do terminal modifications of short designed IIKK peptide amphiphiles affect their antifungal activity and biocompatibility? J Colloid Interface Sci 2022; 608:193-206. [PMID: 34626966 DOI: 10.1016/j.jcis.2021.09.170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
HYPOTHESIS The widespread and prolonged use of antifungal antibiotics has led to the rapid emergence of multidrug resistant Candida species that compromise current treatments. Natural and synthetic antimicrobial peptides (AMPs) offer potential alternatives but require further development to overcome some of their current drawbacks. AMPs kill pathogenic fungi by permeabilising their membranes but it remains unclear how AMPs can be designed to maximise their antifungal potency whilst minimising their toxicity to host cells. EXPERIMENTS We have designed a group of short (IIKK)3 AMPs via selective terminal modifications ending up with different amphiphilicities. Their antifungal performance was assessed by minimum inhibition concentration (MICs) and dynamic killing to 4 Candida strains and Cryptococcus neoformans, and the minimum biofilm-eradicating concentrations to kill 95% of the C. albicans biofilms (BEC95). Different antifungal actions were interpreted on the basis of structural disruptions of the AMPs to small unilamellar vesicles from fluorescence leakage, Zeta potential, small angle neutron scattering (SANS) and molecular dynamics simulations (MD). FINDING AMPs possess high antifungal activities against the Candida species and Cryptococcus neoformans; some of them displayed faster dynamic killing than antibiotics like amphotericin B. G(IIKK)3I-NH2 and (IIKK)3II-NH2 were particularly potent against not only planktonic microbes but also fungal biofilms with low cytotoxicity to host cells. It was found that their high selectivity and fast action were well correlated to their fast membrane lysis, evident from data measured from Zeta potential measurements, SANS and MD, and also consistent with the previously observed antibacterial and anticancer performance. These studies demonstrate the important role of colloid and interface science in further developing short, potent and biocompatible AMPs towards clinical treatments via structure design and optimization.
Collapse
Affiliation(s)
- Jing Zhang
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Mingrui Liao
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Zongyi Li
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Ralf Schweins
- Institut Laue-Langevin, DS/LSS, 71 Avenue des Martyrs, CS-20156, 38042 Grenoble, France
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Jian R Lu
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
14
|
Vanzolini T, Bruschi M, Rinaldi AC, Magnani M, Fraternale A. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms. Int J Mol Sci 2022; 23:545. [PMID: 35008974 PMCID: PMC8745555 DOI: 10.3390/ijms23010545] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the great strides in healthcare during the last century, some challenges still remained unanswered. The development of multi-drug resistant bacteria, the alarming growth of fungal infections, the emerging/re-emerging of viral diseases are yet a worldwide threat. Since the discovery of natural antimicrobial peptides able to broadly hit several pathogens, peptide-based therapeutics have been under the lenses of the researchers. This review aims to focus on synthetic peptides and elucidate their multifaceted mechanisms of action as antiviral, antibacterial and antifungal agents. Antimicrobial peptides generally affect highly preserved structures, e.g., the phospholipid membrane via pore formation or other constitutive targets like peptidoglycans in Gram-negative and Gram-positive bacteria, and glucan in the fungal cell wall. Additionally, some peptides are particularly active on biofilm destabilizing the microbial communities. They can also act intracellularly, e.g., on protein biosynthesis or DNA replication. Their intracellular properties are extended upon viral infection since peptides can influence several steps along the virus life cycle starting from viral receptor-cell interaction to the budding. Besides their mode of action, improvements in manufacturing to increase their half-life and performances are also taken into consideration together with advantages and impairments in the clinical usage. Thus far, the progress of new synthetic peptide-based approaches is making them a promising tool to counteract emerging infections.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy;
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| |
Collapse
|
15
|
Amirova M, Bagirova S, Azizova U, Guliyeva S. The Main Directions of Antimicrobial Peptides Use and Synthesis Overview. Health (London) 2022. [DOI: 10.4236/health.2022.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Dohn R, Xie B, Back R, Selewa A, Eckart H, Rao RP, Basu A. mDrop-Seq: Massively Parallel Single-Cell RNA-Seq of Saccharomyces cerevisiae and Candida albicans. Vaccines (Basel) 2021; 10:vaccines10010030. [PMID: 35062691 PMCID: PMC8779198 DOI: 10.3390/vaccines10010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Advances in high-throughput single-cell RNA sequencing (scRNA-seq) have been limited by technical challenges such as tough cell walls and low RNA quantity that prevent transcriptomic profiling of microbial species at throughput. We present microbial Drop-seq or mDrop-seq, a high-throughput scRNA-seq technique that is demonstrated on two yeast species, Saccharomyces cerevisiae, a popular model organism, and Candida albicans, a common opportunistic pathogen. We benchmarked mDrop-seq for sensitivity and specificity and used it to profile 35,109 S. cerevisiae cells to detect variation in mRNA levels between them. As a proof of concept, we quantified expression differences in heat shock S. cerevisiae using mDrop-seq. We detected differential activation of stress response genes within a seemingly homogenous population of S. cerevisiae under heat shock. We also applied mDrop-seq to C. albicans cells, a polymorphic and clinically relevant species of yeast with a thicker cell wall compared to S. cerevisiae. Single-cell transcriptomes in 39,705 C. albicans cells were characterized using mDrop-seq under different conditions, including exposure to fluconazole, a common anti-fungal drug. We noted differential regulation in stress response and drug target pathways between C. albicans cells, changes in cell cycle patterns and marked increases in histone activity when treated with fluconazole. We demonstrate mDrop-seq to be an affordable and scalable technique that can quantify the variability in gene expression in different yeast species. We hope that mDrop-seq will lead to a better understanding of genetic variation in pathogens in response to stimuli and find immediate applications in investigating drug resistance, infection outcome and developing new drugs and treatment strategies.
Collapse
Affiliation(s)
- Ryan Dohn
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Rebecca Back
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Alan Selewa
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA
| | - Heather Eckart
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Reeta Prusty Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Case NT, Duah K, Larsen B, Wong CJ, Gingras AC, O'Meara TR, Robbins N, Veri AO, Whitesell L, Cowen LE. The macrophage-derived protein PTMA induces filamentation of the human fungal pathogen Candida albicans. Cell Rep 2021; 36:109584. [PMID: 34433036 PMCID: PMC8454912 DOI: 10.1016/j.celrep.2021.109584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022] Open
Abstract
Evasion of killing by immune cells is crucial for fungal survival in the host. For the human fungal pathogen Candida albicans, internalization by macrophages induces a transition from yeast to filaments that promotes macrophage death and fungal escape. Nutrient deprivation, alkaline pH, and oxidative stress have been implicated as triggers of intraphagosomal filamentation; however, the impact of other host-derived factors remained unknown. Here, we show that lysates prepared from macrophage-like cell lines and primary macrophages robustly induce C. albicans filamentation. Enzymatic treatment of lysate implicates a phosphorylated protein, and bioactivity-guided fractionation coupled to mass spectrometry identifies the immunomodulatory phosphoprotein PTMA as a candidate trigger of C. albicans filamentation. Immunoneutralization of PTMA within lysate abolishes its activity, strongly supporting PTMA as a filament-inducing component of macrophage lysate. Adding to the known repertoire of physical factors, this work implicates a host protein in the induction of C. albicans filamentation within immune cells. The human fungal pathogen Candida albicans filaments within host macrophages, enabling its escape. Case et al. demonstrate that lysates prepared from macrophage-like cell lines and primary macrophages induce C. albicans filamentation and implicate the immunomodulatory protein prothymosin alpha (PTMA) as a trigger of filamentation produced by host immune cells.
Collapse
Affiliation(s)
- Nicola T Case
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kwamaa Duah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
18
|
Riciluca KCT, Oliveira UC, Mendonça RZ, Bozelli Junior JC, Schreier S, da Silva Junior PI. Rondonin: antimicrobial properties and mechanism of action. FEBS Open Bio 2021; 11:2541-2559. [PMID: 34254458 PMCID: PMC8409319 DOI: 10.1002/2211-5463.13253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/13/2021] [Accepted: 07/12/2021] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases are among the major causes of death in the human population. A wide variety of organisms produce antimicrobial peptides (AMPs) as part of their first line of defense. A peptide from Acanthoscurria rondoniae plasma, rondonin—with antifungal activity, a molecular mass of 1236 Da and primary sequence IIIQYEGHKH—was previously studied (UniProt accession number B3EWP8). It showed identity with the C terminus of subunit ‘D’ of the hemocyanin of the Aphonopelma hentzi spider. This result led us to propose a new pathway of the immune system of arachnids that suggests a new function to hemocyanin: production of antimicrobial peptides. Rondonin does not interact with model membranes and was able to bind to yeast nucleic acids but not bacteria. It was not cytotoxic against mammalian cells. The antifungal activity of rondonin is pH‐dependent and peaks at pH ˜ 4–5. The peptide presents synergism with gomesin (spider hemocyte antimicrobial peptide—UniProtKB—P82358) against human yeast pathogens, suggesting a new potential alternative treatment option. Antiviral activity was detected against RNA viruses, measles, H1N1, and encephalomyocarditis. This is the first report of an arthropod hemocyanin fragment with activity against human viruses. Currently, it is vital to invest in the search for natural and synthetic antimicrobial compounds that, above all, present alternative mechanisms of action to first‐choice antimicrobials.
Collapse
Affiliation(s)
- Katie C T Riciluca
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Post-Graduation Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, Brazil
| | - Ursula C Oliveira
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | | | - José C Bozelli Junior
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil.,Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Pedro I da Silva Junior
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, Laboratory for Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Post-Graduation Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, Brazil
| |
Collapse
|
19
|
Tyagi A, Roy S, Singh S, Semwal M, Shasany AK, Sharma A, Provazník I. PhytoAFP: In Silico Approaches for Designing Plant-Derived Antifungal Peptides. Antibiotics (Basel) 2021; 10:antibiotics10070815. [PMID: 34356736 PMCID: PMC8300835 DOI: 10.3390/antibiotics10070815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Emerging infectious diseases (EID) are serious problems caused by fungi in humans and plant species. They are a severe threat to food security worldwide. In our current work, we have developed a support vector machine (SVM)-based model that attempts to design and predict therapeutic plant-derived antifungal peptides (PhytoAFP). The residue composition analysis shows the preference of C, G, K, R, and S amino acids. Position preference analysis shows that residues G, K, R, and A dominate the N-terminal. Similarly, residues N, S, C, and G prefer the C-terminal. Motif analysis reveals the presence of motifs like NYVF, NYVFP, YVFP, NYVFPA, and VFPA. We have developed two models using various input functions such as mono-, di-, and tripeptide composition, as well as binary, hybrid, and physiochemical properties, based on methods that are applied to the main data set. The TPC-based monopeptide composition model achieved more accuracy, 94.4%, with a Matthews correlation coefficient (MCC) of 0.89. Correspondingly, the second-best model based on dipeptides achieved an accuracy of 94.28% under the MCC 0.89 of the training dataset.
Collapse
Affiliation(s)
- Atul Tyagi
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 61600 Brno, Czech Republic; (A.T.); (S.R.)
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 61600 Brno, Czech Republic; (A.T.); (S.R.)
| | - Sanjay Singh
- Biotechnology Division, CSIR—Central Institute of Medicinal and Aromatic Plants, P.O.—CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, Uttar Pradesh, India; (S.S.); (M.S.); (A.K.S.); (A.S.)
| | - Manoj Semwal
- Biotechnology Division, CSIR—Central Institute of Medicinal and Aromatic Plants, P.O.—CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, Uttar Pradesh, India; (S.S.); (M.S.); (A.K.S.); (A.S.)
| | - Ajit K. Shasany
- Biotechnology Division, CSIR—Central Institute of Medicinal and Aromatic Plants, P.O.—CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, Uttar Pradesh, India; (S.S.); (M.S.); (A.K.S.); (A.S.)
| | - Ashok Sharma
- Biotechnology Division, CSIR—Central Institute of Medicinal and Aromatic Plants, P.O.—CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, Uttar Pradesh, India; (S.S.); (M.S.); (A.K.S.); (A.S.)
| | - Ivo Provazník
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 61600 Brno, Czech Republic; (A.T.); (S.R.)
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 62500 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
20
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
21
|
Sharma KK, Ravi R, Maurya IK, Kapadia A, Khan SI, Kumar V, Tikoo K, Jain R. Modified histidine containing amphipathic ultrashort antifungal peptide, His[2-p-(n-butyl)phenyl]-Trp-Arg-OMe exhibits potent anticryptococcal activity. Eur J Med Chem 2021; 223:113635. [PMID: 34147743 DOI: 10.1016/j.ejmech.2021.113635] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
In pursuit of ultrashort peptide-based antifungals, a new structural class, His(2-aryl)-Trp-Arg is reported. Structural changes were investigated on His-Trp-Arg scaffold to demonstrate the impact of charge and lipophilic character on the biological activity. The presence and size of the aryl moiety on imidazole of histidine modulated overall amphiphilic character, and biological activity. Peptides exhibited IC50 of 0.37-9.66 μg/mL against C. neoformans. Peptide 14f [His(2-p-(n-butyl)phenyl)-Trp-Arg-OMe] exhibited two-fold potency (IC50 = 0.37 μg/mL, MIC = 0.63 μg/mL) related to amphotericin B, without any cytotoxic effects up to 10 μg/mL. Peptide 14f act by nuclear fragmentation, membranes permeabilization, disruption and pore formations in the microbial cells as determined by the mechanistic studies employing Trp-quenching, CLSM, SEM, and HR-TEM. The amalgamation of short sequence, presence of appropriate aryl group on l-histidine, potent anticryptococcal activity, no cytotoxicity, and detailed mechanistic studies directed to the identification of 14f as a new antifungal structural lead.
Collapse
Affiliation(s)
- Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Ravikant Ravi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Indresh Kumar Maurya
- Department of Microbial Technology, Panjab University, Sector 25, Chandigarh 160 014, India
| | - Akshay Kapadia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar 160 062, Punjab India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar 160 062, Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India.
| |
Collapse
|
22
|
Liu Y, Sameen DE, Ahmed S, Dai J, Qin W. Antimicrobial peptides and their application in food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Matejuk A, Vandenbark AA, Offner H. Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Front Neurol 2021; 12:672455. [PMID: 34135852 PMCID: PMC8200536 DOI: 10.3389/fneur.2021.672455] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The immune system's role is much more than merely recognizing self vs. non-self and involves maintaining homeostasis and integrity of the organism starting from early development to ensure proper organ function later in life. Unlike other systems, the central nervous system (CNS) is separated from the peripheral immune machinery that, for decades, has been envisioned almost entirely as detrimental to the nervous system. New research changes this view and shows that blood-borne immune cells (both adaptive and innate) can provide homeostatic support to the CNS via neuroimmune communication. Neurodegeneration is mostly viewed through the lens of the resident brain immune populations with little attention to peripheral circulation. For example, cognition declines with impairment of peripheral adaptive immunity but not with the removal of microglia. Therapeutic failures of agents targeting the neuroinflammation framework (inhibiting immune response), especially in neurodegenerative disorders, call for a reconsideration of immune response contributions. It is crucial to understand cross-talk between the CNS and the immune system in health and disease to decipher neurodestructive and neuroprotective immune mechanisms for more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
24
|
Antifungal Activity and Molecular Mechanisms of Partial Purified Antifungal Proteins from Rhinacanthus nasutus against Talaromyces marneffei. J Fungi (Basel) 2020; 6:jof6040333. [PMID: 33287246 PMCID: PMC7761713 DOI: 10.3390/jof6040333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
Antifungal proteins (AFPs) are able to inhibit a wide spectrum of fungi without significant toxicity to the hosts. This study examined the antifungal activity of AFPs isolated from a Thai medicinal plant, Rhinacanthus nasutus, against the human pathogenic fungus Talaromycesmarneffei. This dimorphic fungus causes systemic infections in immunocompromised individuals and is endemic in Southeast Asian countries. The R. nasutus crude protein extract inhibited the growth of T. marneffei. The anti-T. marneffei activity was completely lost when treated with proteinase K and pepsin, indicating that the antifungal activity was dependent on a protein component. The total protein extract from R. nasutus was partially purified by size fractionation to ≤10, 10–30, and ≥30 kDa fractions and tested for the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). All fractions showed anti-T. marneffei activity with the MIC and MFC values of 32 to 128 μg/mL and >128 μg/mL, respectively. In order to determine the mechanism of inhibition, all fractions were tested with T. marneffei mutant strains affected in G-protein signaling and cell wall integrity pathways. The anti-T. marneffei activity of the 10–30 kDa fraction was abrogated by deletion of gasA and gasC, the genes encoding alpha subunits of heterotrimeric G-proteins, indicating that the inhibitory effect is related to intracellular signaling through G-proteins. The work demonstrates that antifungal proteins isolated from R. nasutus represent sources for novel drug development.
Collapse
|
25
|
Investigation of potential antibiofilm properties of Antimicrobial Peptide (AMP) from Linckia laevigata against Candida albicans: An in vitro and in vivo study. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 2020; 260:118407. [PMID: 32931796 PMCID: PMC7486823 DOI: 10.1016/j.lfs.2020.118407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The severe infection is becoming a significant health problem which threaten the lives of patients and the safety and economy of society. In the way of finding new strategy, antimicrobial peptides (AMPs) - an important part of host defense family, emerged with tremendous potential. Up to date, huge numbers of AMPs has been investigated from both natural and synthetic sources showing not only the ability to kill microbial pathogens but also propose other benefits such as wound healing, anti-tumor, immune modulation. In this review, we describe the involvements of AMPs in biological systems and discuss the opportunity in developing AMPs for clinical applications. In the detail, their properties in antibacterial activity is followed by their application in some infection diseases and cancer. The key discussions are the approaches to improve biological activities of AMPs either by modifying chemical structure or incorporating into delivery systems. The new applications and perspectives for the future of AMPs would open the new era of their development.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tung Truong Thanh
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
27
|
|
28
|
NoPv1: a synthetic antimicrobial peptide aptamer targeting the causal agents of grapevine downy mildew and potato late blight. Sci Rep 2020; 10:17574. [PMID: 33067553 PMCID: PMC7567880 DOI: 10.1038/s41598-020-73027-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 01/14/2023] Open
Abstract
Grapevine (Vitis vinifera L.) is a crop of major economic importance. However, grapevine yield is guaranteed by the massive use of pesticides to counteract pathogen infections. Under temperate-humid climate conditions, downy mildew is a primary threat for viticulture. Downy mildew is caused by the biotrophic oomycete Plasmopara viticola Berl. & de Toni, which can attack grapevine green tissues. In lack of treatments and with favourable weather conditions, downy mildew can devastate up to 75% of grape cultivation in one season and weaken newly born shoots, causing serious economic losses. Nevertheless, the repeated and massive use of some fungicides can lead to environmental pollution, negative impact on non-targeted organisms, development of resistance, residual toxicity and can foster human health concerns. In this manuscript, we provide an innovative approach to obtain specific pathogen protection for plants. By using the yeast two-hybrid approach and the P. viticola cellulose synthase 2 (PvCesA2), as target enzyme, we screened a combinatorial 8 amino acid peptide library with the aim to identify interacting peptides, potentially able to inhibit PvCesa2. Here, we demonstrate that the NoPv1 peptide aptamer prevents P. viticola germ tube formation and grapevine leaf infection without affecting the growth of non-target organisms and without being toxic for human cells. Furthermore, NoPv1 is also able to counteract Phytophthora infestans growth, the causal agent of late blight in potato and tomato, possibly as a consequence of the high amino acid sequence similarity between P. viticola and P. infestans cellulose synthase enzymes.
Collapse
|
29
|
Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020; 130:110550. [DOI: 10.1016/j.biopha.2020.110550] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
30
|
Lactoferrin-Derived Peptide Lactofungin Is Potently Synergistic with Amphotericin B. Antimicrob Agents Chemother 2020; 64:AAC.00842-20. [PMID: 32690642 DOI: 10.1128/aac.00842-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/11/2020] [Indexed: 01/10/2023] Open
Abstract
Lactoferrin (LF) is an iron-binding glycoprotein with broad-spectrum antimicrobial activity. Previously, we discovered that LF synergistically enhanced the antifungal efficacy of amphotericin B (AMB) across a variety of yeast species and subsequently hypothesized that this synergy was enhanced by the presence of small peptides derived from the whole LF molecule. In this study, LF was digested with pepsin under a range of conditions. The resulting hydrolysates exhibited enhanced synergy with AMB compared to its synergy with undigested LF. Samples were analyzed using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, and 14 peptides were identified. The sequences of these peptides were predicted by matching their molecular weights to those of a virtual digest with pepsin. The relative intensities of predicted peptides in each hydrolysate were compared with the activity of the hydrolysate, and the structural and physicochemical properties of the peptides were assessed. From this, a 30-residue peptide was selected for synthesis and dubbed lactofungin (LFG). Pure LFG was highly synergistic with AMB, outperforming native LF in all fungal species tested. With potential for further structural and chemical improvements, LFG is an excellent lead for development as an antifungal adjuvant.
Collapse
|
31
|
Alexander AJT, Muñoz A, Marcos JF, Read ND. Calcium homeostasis plays important roles in the internalization and activities of the small synthetic antifungal peptide PAF26. Mol Microbiol 2020; 114:521-535. [PMID: 32898933 DOI: 10.1111/mmi.14532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/01/2020] [Accepted: 05/17/2020] [Indexed: 01/22/2023]
Abstract
Fungal diseases are responsible for the deaths of over 1.5 million people worldwide annually. Antifungal peptides represent a useful source of antifungals with novel mechanisms-of-action, and potentially provide new methods of overcoming resistance. Here we investigate the mode-of-action of the small, rationally designed synthetic antifungal peptide PAF26 using the model fungus Neurospora crassa. Here we show that the cell killing activity of PAF26 is dependent on extracellular Ca2+ and the presence of fully functioning fungal Ca2+ homeostatic/signaling machinery. In a screen of mutants with deletions in Ca2+ -signaling machinery, we identified three mutants more tolerant to PAF26. The Ca2+ ATPase NCA-2 was found to be involved in the initial interaction of PAF26 with the cell envelope. The vacuolar Ca2+ channel YVC-1 was shown to be essential for its accumulation and concentration within the vacuolar system. The Ca2+ channel CCH-1 was found to be required to prevent the translocation of PAF26 across the plasma membrane. In the wild type, Ca2+ removal from the medium resulted in the peptide remaining trapped in small vesicles as in the Δyvc-1 mutant. It is, therefore, apparent that cell killing by PAF26 is complex and unusually dependent on extracellular Ca2+ and components of the Ca2+ -regulatory machinery.
Collapse
Affiliation(s)
- Akira J T Alexander
- Institute of Infection, Immunity & Inflammation, The University of Glasgow, Glasgow, Scotland
| | - Alberto Muñoz
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA) , Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Nick D Read
- Manchester Fungal Infection Group, Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Paduszynska MA, Greber KE, Paduszynski W, Sawicki W, Kamysz W. Activity of Temporin A and Short Lipopeptides Combined with Gentamicin against Biofilm Formed by Staphylococcus aureus and Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:E566. [PMID: 32887236 PMCID: PMC7560174 DOI: 10.3390/antibiotics9090566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
The formation of biofilms on biomaterials causes biofilm-associated infections. Available treatments often fail to fight the microorganisms in the biofilm, creating serious risks for patient well-being and life. Due to their significant antibiofilm activities, antimicrobial peptides are being intensively investigated in this regard. A promising approach is a combination therapy that aims to increase the efficacy and broaden the spectrum of antibiotics. The main goal of this study was to evaluate the antimicrobial efficacy of temporin A and the short lipopeptides (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 in combination with gentamicin against biofilm formed by Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA). Peptides were synthesized with solid-phase temperature-assisted synthesis methodology. The minimum inhibitory concentrations (MICs), fractional inhibitory concentrations (FICs), minimum biofilm eradication concentrations (MBECs), and the influence of combinations of compounds with gentamicin on bacterial biofilm were determined for reference strains of SA (ATCC 25923) and PA (ATCC 9027). The peptides exhibited significant potential to enhance the antibacterial activity of gentamicin against SA biofilm, but there was no synergy in activity against planktonic cells. The antibiotic applied alone demonstrated strong activity against planktonic cells and poor effectiveness against SA biofilm. Biofilm formed by PA was much more sensitive to gentamicin, but some positive influences of supplementation with peptides were noticed. The results of the performed experiments suggest that the potential application of peptides as adjuvant agents in the treatment of biofilm-associated infections should be studied further.
Collapse
Affiliation(s)
- Malgorzata Anna Paduszynska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland;
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | | | - Wieslaw Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland;
| |
Collapse
|
33
|
Ma L, Wei S, Ye X, Xu P, Chen H, Liu Z, Zhou C. Antifungal activity of peptide MSI-1 against Cryptococcus neoformans infection in vitro and in murine cryptococcal meningoencephalitis. Peptides 2020; 130:170334. [PMID: 32504765 DOI: 10.1016/j.peptides.2020.170334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 01/26/2023]
Abstract
The development of novel antifungal agents with high efficacy, low drug tolerance and few side effects is urgent. MSI-1 (GIWKFLKKAKKFWK-NH2), a cationic antimicrobial peptide, may be an attractive antifungal agent because of its structural characteristics, perfect stability against pH and high-temperature/salt, low toxicity towards mammalian cells and low potential for emergence of drug tolerance. In this study, the antifungal activity of MSI-1 in vitro and in a murine model of cryptococcal meningoencephalitis was evaluated. Zeta potential assay, flow cytometry, fluorescence microscope, transmission electron microscopy and microscale thermophoresis were performed to clarify the mechanisms underlying MSI-1 against C. neoformans. The results showed that MSI-1 exerted effective anti-cryptococcal activity in vitro, with MICs of 8-16 μg/mL and MFCs of 8-32 μg/mL, and in a C neoformans-infected mouse model, with significantly improved animal survival, decreased production of pro-inflammatory cytokines and alleviated lung injury, because the potent and rapid fungicidal activity of MSI-1 could effectively eliminate fungal counts in mouse organs. We confirmed that the positively charged peptide bound to C. neoformans by electrostatic attraction after interacting with glucuronoxylomannan (the primary component of C. neoformans capsule). Subsequently, MSI-1 increased the membrane fluidity of fungal cells and the cell membrane permeability, causing destabilized membrane integrity and leading to the final death of fungi. Collectively, MSI-1 possessed potent anti-cryptococcal activity via its notable membrane disruption effect and may be a potential candidate for use in antifungal infection induced by C. neoformans, especially azole-resistant cryptococcus.
Collapse
Affiliation(s)
- Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Shanshan Wei
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Pengfei Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Hailong Chen
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University 93 Ji Chuan Road, Taizhou 225300, PR China
| | - Zixiang Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| |
Collapse
|
34
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
35
|
Ballard E, Yucel R, Melchers WJG, Brown AJP, Verweij PE, Warris A. Antifungal Activity of Antimicrobial Peptides and Proteins against Aspergillus fumigatus. J Fungi (Basel) 2020; 6:jof6020065. [PMID: 32443413 PMCID: PMC7345740 DOI: 10.3390/jof6020065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial peptides and proteins (AMPs) provide an important line of defence against invading microorganisms. However, the activity of AMPs against the human fungal pathogen Aspergillus fumigatus remains poorly understood. Therefore, the aim of this study was to characterise the anti-Aspergillus activity of specific human AMPs, and to determine whether A. fumigatus can possess resistance to specific AMPs, as a result of in-host adaptation. AMPs were tested against a wide range of clinical isolates of various origins (including cystic fibrosis patients, as well as patients with chronic and acute aspergillosis). We also tested a series of isogenic A. fumigatus isolates obtained from a single patient over a period of 2 years. A range of environmental isolates, obtained from soil in Scotland, was also included. Firstly, the activity of specific peptides was assessed against hyphae using a measure of fungal metabolic activity. Secondly, the activity of specific peptides was assessed against germinating conidia, using imaging flow cytometry as a measure of hyphal growth. We showed that lysozyme and histones inhibited hyphal metabolic activity in all the A. fumigatus isolates tested in a dose-dependent fashion. In addition, imaging flow cytometry revealed that histones, β-defensin-1 and lactoferrin inhibited the germination of A. fumigatus conidia.
Collapse
Affiliation(s)
- Eloise Ballard
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Raif Yucel
- Iain Fraser Cytometry Centre (IFCC), Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Cytomics Centre, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK;
| | - Willem J. G. Melchers
- Centre for Expertise in Mycology and Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (W.J.G.M.); (P.E.V.)
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
- MRC Centre for Medical Mycology at the University of Exeter, Exeter 4EX 4QD, UK;
| | - Paul E. Verweij
- Centre for Expertise in Mycology and Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (W.J.G.M.); (P.E.V.)
| | - Adilia Warris
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
- MRC Centre for Medical Mycology at the University of Exeter, Exeter 4EX 4QD, UK;
- Correspondence: ; Tel.: +44-1392-727-593
| |
Collapse
|
36
|
Freitas e Silva KS, C. Silva L, Gonçales RA, Neves BJ, Soares CM, Pereira M. Setting New Routes for Antifungal Drug Discovery Against Pathogenic Fungi. Curr Pharm Des 2020; 26:1509-1520. [DOI: 10.2174/1381612826666200317125956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
:Fungal diseases are life-threatening to human health and responsible for millions of deaths around the world. Fungal pathogens lead to a high number of morbidity and mortality. Current antifungal treatment comprises drugs, such as azoles, echinocandins, and polyenes and the cure is not guaranteed. In addition, such drugs are related to severe side effects and the treatment lasts for an extended period. Thus, setting new routes for the discovery of effective and safe antifungal drugs should be a priority within the health care system. The discovery of alternative and efficient antifungal drugs showing fewer side effects is time-consuming and remains a challenge. Natural products can be a source of antifungals and used in combinatorial therapy. The most important natural products are antifungal peptides, antifungal lectins, antifungal plants, and fungi secondary metabolites. Several proteins, enzymes, and metabolic pathways could be targets for the discovery of efficient inhibitor compounds and recently, heat shock proteins, calcineurin, salinomycin, the trehalose biosynthetic pathway, and the glyoxylate cycle have been investigated in several fungal species. HSP protein inhibitors and echinocandins have been shown to have a fungicidal effect against azole-resistant fungi strains. Transcriptomic and proteomic approaches have advanced antifungal drug discovery and pointed to new important specific-pathogen targets. Certain enzymes, such as those from the glyoxylate cycle, have been a target of antifungal compounds in several fungi species. Natural and synthetic compounds inhibited the activity of such enzymes and reduced the ability of fungal cells to transit from mycelium to yeast, proving to be promisor antifungal agents. Finally, computational biology has developed effective approaches, setting new routes for early antifungal drug discovery since normal approaches take several years from discovery to clinical use. Thus, the development of new antifungal strategies might reduce the therapeutic time and increase the quality of life of patients.
Collapse
Affiliation(s)
- Kleber S. Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lívia C. Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Relber A. Gonçales
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno J. Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-510, Brazil
| | - Célia M.A. Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
37
|
Biswas K, Ilyas H, Datta A, Bhunia A. NMR Assisted Antimicrobial Peptide Designing: Structure Based Modifications and Functional Correlation of a Designed Peptide VG16KRKP. Curr Med Chem 2020; 27:1387-1404. [PMID: 31232231 DOI: 10.2174/0929867326666190624090817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Antimicrobial Peptides (AMPs), within their realm incorporate a diverse group of structurally and functionally varied peptides, playing crucial roles in innate immunity. Over the last few decades, the field of AMP has seen a huge upsurge, mainly owing to the generation of the so-called drug resistant 'superbugs' as well as limitations associated with the existing antimicrobial agents. Due to their resilient biological properties, AMPs can very well form the sustainable alternative for nextgeneration therapeutic agents. Certain drawbacks associated with existing AMPs are, however, issues of major concern, circumventing which are imperative. These limitations mainly include proteolytic cleavage and hence poor stability inside the biological systems, reduced activity due to inadequate interaction with the microbial membrane, and ineffectiveness because of inappropriate delivery among others. In this context, the application of naturally occurring AMPs as an efficient prototype for generating various synthetic and designed counterparts has evolved as a new avenue in peptide-based therapy. Such designing approaches help to overcome the drawbacks of the parent AMPs while retaining the inherent activity. In this review, we summarize some of the basic NMR structure based approaches and techniques which aid in improving the activity of AMPs, using the example of a 16-residue dengue virus fusion protein derived peptide, VG16KRKP. Using first principle based designing technique and high resolution NMR-based structure characterization we validate different types of modifications of VG16KRKP, highlighting key motifs, which optimize its activity. The approaches and designing techniques presented can support our peers in their drug development work.
Collapse
Affiliation(s)
- Karishma Biswas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Humaira Ilyas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Aritreyee Datta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| |
Collapse
|
38
|
Afroz M, Akter S, Ahmed A, Rouf R, Shilpi JA, Tiralongo E, Sarker SD, Göransson U, Uddin SJ. Ethnobotany and Antimicrobial Peptides From Plants of the Solanaceae Family: An Update and Future Prospects. Front Pharmacol 2020; 11:565. [PMID: 32477108 PMCID: PMC7232569 DOI: 10.3389/fphar.2020.00565] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/14/2020] [Indexed: 12/03/2022] Open
Abstract
The Solanaceae is an important plant family that has been playing an essential role in traditional medicine and human nutrition. Members of the Solanaceae are rich in bioactive metabolites and have been used by different tribes around the world for ages. Antimicrobial peptides (AMPs) from plants have drawn great interest in recent years and raised new hope for developing new antimicrobial agents for meeting the challenges of antibiotic resistance. This review aims to summarize the reported AMPs from plants of the Solanaceae with possible molecular mechanisms of action as well as to correlate their traditional uses with reported antimicrobial actions of the peptides. A systematic literature study was conducted using different databases until August 2019 based on the inclusion and exclusion criteria. According to literature, a variety of AMPs including defensins, protease inhibitor, lectins, thionin-like peptides, vicilin-like peptides, and snaking were isolated from plants of the Solanaceae and were involved in their defense mechanism. These peptides exhibited significant antibacterial, antifungal and antiviral activity against organisms for both plant and human host. Brugmansia, Capsicum, Datura, Nicotiana, Salpichora, Solanum, Petunia, and Withania are the most commonly studied genera for AMPs. Among these genera, Capsicum and the Solanum ranked top according to the total number of studies (35%–38% studies) for different AMPs. The mechanisms of action of the reported AMPs from Solanaceae was not any new rather similar to other reported AMPs including alteration of membrane potential and permeability, membrane pore formation, and cell aggregation. Whereas, induction of cell membrane permiabilization, inhibition of germination and alteration of hyphal growth were reported as mechanisms of antifungal activity. Plants of the Solanaceae have been used traditionally as antimicrobial, insecticidal, and antiinfectious agents, and as poisons. The reported AMPs from the Solanaceae are the products of chemical shields to protect plants from microorganisms and pests which unfold an obvious link with their traditional medicinal use. In summary, it is evident that AMPs from this family possess considerable antimicrobial activity against a wide range of bacterial and fungal pathogens and can be regarded as a potential source for lead molecules to develop new antimicrobial agents.
Collapse
Affiliation(s)
- Mohasana Afroz
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sanzida Akter
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, Bangladesh
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Evelin Tiralongo
- School of Pharmacy and Pharmacology, Griffith University, Southport, QLD, Australia
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ulf Göransson
- Biomedical Center, Division of Pharmacognosy, Uppsala University, Uppsala, Sweden.,Biomedical Center, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
39
|
Falcao CB, Radis-Baptista G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 2020; 126:170234. [PMID: 31857106 DOI: 10.1016/j.peptides.2019.170234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
A global public health crisis has emerged with the extensive dissemination of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs) from plants and animals have represented promising tools to counteract those resistant pathogens due to their multiple pharmacological properties such as antimicrobial, anticancer, immunomodulatory and cell-penetrating activities. In this review, we will focus on crotamine and crotalicidin, which are two interesting examples of membrane active peptides derived from the South America rattlesnake Crotalus durrisus terrificus venom. Their full-sequences and structurally-minimized fragments have potential applications, as anti-infective and anti-proliferative agents and diagnostics in medicine and in pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Claudio Borges Falcao
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences, Federal University of Ceara, Brazil; Peter Pan Association to Fight Childhood Cancer, Fortaleza, CE, 60410-770, Brazil.
| | - Gandhi Radis-Baptista
- Laboratory of Biochemistry and Biotechnology, Graduate program in Pharmaceutical Sciences and Institute for Marine Sciences, Federal University of Ceara, Av da Abolição 3207, Fortaleza, CE, 60165-081, Brazil.
| |
Collapse
|
40
|
Gupta R, Thakur J, Pal S, Mishra D, Rani P, Kumar S, Saini A, Singh A, Yadav K, Srivastava A, Prasad R, Gupta S, Bajaj A. Cholic-Acid-Derived Amphiphiles Can Prevent and Degrade Fungal Biofilms. ACS APPLIED BIO MATERIALS 2020; 4:7332-7341. [DOI: 10.1021/acsabm.9b01221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ragini Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Jyoti Thakur
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Deepakkumar Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amandeep Saini
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology,
South Campus, Mathura Road, New Delhi 110029, India
| | - Kavita Yadav
- School of Physical Sciences, Jawahar Lal Nehru University, New Delhi 110067, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
41
|
Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal Peptides as Therapeutic Agents. Front Cell Infect Microbiol 2020; 10:105. [PMID: 32257965 PMCID: PMC7089922 DOI: 10.3389/fcimb.2020.00105] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Fungi have been used since ancient times in food and beverage-making processes and, more recently, have been harnessed for the production of antibiotics and in processes of relevance to the bioeconomy. Moreover, they are starting to gain attention as a key component of the human microbiome. However, fungi are also responsible for human infections. The incidence of community-acquired and nosocomial fungal infections has increased considerably in recent decades. Antibiotic resistance development, the increasing number of immunodeficiency- and/or immunosuppression-related diseases and limited therapeutic options available are triggering the search for novel alternatives. These new antifungals should be less toxic for the host, with targeted or broader antimicrobial spectra (for diseases of known and unknown etiology, respectively) and modes of actions that limit the potential for the emergence of resistance among pathogenic fungi. Given these criteria, antimicrobial peptides with antifungal properties, i.e., antifungal peptides (AFPs), have emerged as powerful candidates due to their efficacy and high selectivity. In this review, we provide an overview of the bioactivity and classification of AFPs (natural and synthetic) as well as their mode of action and advantages over current antifungal drugs. Additionally, natural, heterologous and synthetic production of AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of these peptides, along with the future challenges relating to antifungal treatments.
Collapse
Affiliation(s)
- Miguel Fernández de Ullivarri
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Sara Arbulu
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Enriqueta Garcia-Gutierrez
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
42
|
Cholic Acid-Peptide Conjugates as Potent Antimicrobials against Interkingdom Polymicrobial Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.00520-19. [PMID: 31427303 DOI: 10.1128/aac.00520-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022] Open
Abstract
Interkingdom polymicrobial biofilms formed by Gram-positive Staphylococcus aureus and Candida albicans pose serious threats of chronic systemic infections due to the absence of any common therapeutic target for their elimination. Herein, we present the structure-activity relationship (SAR) of membrane-targeting cholic acid-peptide conjugates (CAPs) against Gram-positive bacterial and fungal strains. Structure-activity investigations validated by mechanistic studies revealed that valine-glycine dipeptide-derived CAP 3 was the most effective broad-spectrum antimicrobial against S. aureus and C. albicans CAP 3 was able to degrade the preformed single-species and polymicrobial biofilms formed by S. aureus and C. albicans, and CAP 3-coated materials prevented the formation of biofilms. Murine wound and catheter infection models further confirmed the equally potent bactericidal and fungicidal effect of CAP 3 against bacterial, fungal, and polymicrobial infections. Taken together, these results demonstrate that CAPs, as potential broad-spectrum antimicrobials, can effectively clear the frequently encountered polymicrobial infections and can be fine-tuned further for future applications.
Collapse
|
43
|
Designed Antimicrobial Peptides for Recurrent Vulvovaginal Candidiasis Treatment. Antimicrob Agents Chemother 2019; 63:AAC.02690-18. [PMID: 31451496 PMCID: PMC6811422 DOI: 10.1128/aac.02690-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/10/2019] [Indexed: 12/30/2022] Open
Abstract
Recurrent vulvovaginal candidiasis (RVVC) is a widespread chronic infection that has a substantial negative impact on work and quality of life. The development of antimicrobial resistance and biofilm formation are speculated to contribute to Candida pathogenicity and treatment ineffectiveness. Designed antimicrobial peptides (dAMPs) are chemically modified from endogenous antimicrobial peptides that provide the first line of defense against pathogens. Recurrent vulvovaginal candidiasis (RVVC) is a widespread chronic infection that has a substantial negative impact on work and quality of life. The development of antimicrobial resistance and biofilm formation are speculated to contribute to Candida pathogenicity and treatment ineffectiveness. Designed antimicrobial peptides (dAMPs) are chemically modified from endogenous antimicrobial peptides that provide the first line of defense against pathogens. The goal here is to identify a dAMP for the topical treatment of RVVC. The dAMP MICs were determined for 46 fluconazole-susceptible and fluconazole-resistant Candida spp. clinical isolates. The possibility of inducing dAMP drug resistance and comparison of dAMP and fluconazole activity against preformed Candida biofilm and biofilm formation were evaluated. Assessment of mammalian cell viability was determined using bioluminescent human keratinocytes. The dAMP effect on fungus was probed via scanning electron microscopy, and topically applied dAMP activity was evaluated in a rodent vulvovaginal candidiasis (VVC) infection model. dAMPs demonstrated broad-spectrum antimicrobial activity against common causative clinical Candida isolates, reduced preformed biofilm, and inhibited biofilm formation. An evaluated dAMP did not induce resistance after repeated exposure of Candida tropicalis. The dAMPs were selective for Candida cells with limited mammalian cytotoxicity with substantial activity in a rodent VVC model. dAMPs are described as having potent antifungal and antibiofilm activity, likely direct membrane action with selectivity for Candida cells, with limited resistance development. Combined with activity in a rodent VVC model, the data support clinical evaluation of dAMPs for topical treatment of VCC and recurrent VVC infections.
Collapse
|
44
|
Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL. Bioactive Peptides Against Fungal Biofilms. Front Microbiol 2019; 10:2169. [PMID: 31681179 PMCID: PMC6797862 DOI: 10.3389/fmicb.2019.02169] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells’ adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.
Collapse
Affiliation(s)
- Karen G N Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bruna Estéfani D Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
45
|
Shah P, Wu WS, Chen CS. Systematical Analysis of the Protein Targets of Lactoferricin B and Histatin-5 Using Yeast Proteome Microarrays. Int J Mol Sci 2019; 20:ijms20174218. [PMID: 31466342 PMCID: PMC6747642 DOI: 10.3390/ijms20174218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) have potential antifungal activities; however, their intracellular protein targets are poorly reported. Proteome microarray is an effective tool with high-throughput and rapid platform that systematically identifies the protein targets. In this study, we have used yeast proteome microarrays for systematical identification of the yeast protein targets of Lactoferricin B (Lfcin B) and Histatin-5. A total of 140 and 137 protein targets were identified from the triplicate yeast proteome microarray assays for Lfcin B and Histatin-5, respectively. The Gene Ontology (GO) enrichment analysis showed that Lfcin B targeted more enrichment categories than Histatin-5 did in all GO biological processes, molecular functions, and cellular components. This might be one of the reasons that Lfcin B has a lower minimum inhibitory concentration (MIC) than Histatin-5. Moreover, pairwise essential proteins that have lethal effects on yeast were analyzed through synthetic lethality. A total of 11 synthetic lethal pairs were identified within the protein targets of Lfcin B. However, only three synthetic lethal pairs were identified within the protein targets of Histatin-5. The higher number of synthetic lethal pairs identified within the protein targets of Lfcin B might also be the reason for Lfcin B to have lower MIC than Histatin-5. Furthermore, two synthetic lethal pairs were identified between the unique protein targets of Lfcin B and Histatin-5. Both the identified synthetic lethal pairs proteins are part of the Spt-Ada-Gcn5 acetyltransferase (SAGA) protein complex that regulates gene expression via histone modification. Identification of synthetic lethal pairs between Lfcin B and Histatin-5 and their involvement in the same protein complex indicated synergistic combination between Lfcin B and Histatin-5. This hypothesis was experimentally confirmed by growth inhibition assay.
Collapse
Affiliation(s)
- Pramod Shah
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan.
- Department of Biomedical Science and Engineering, National Central University, Jhongli 32001, Taiwan.
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan.
| |
Collapse
|
46
|
Thery T, Lynch KM, Arendt EK. Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Compr Rev Food Sci Food Saf 2019; 18:1327-1360. [DOI: 10.1111/1541-4337.12480] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Ireland
- Microbiome IrelandUniv. College Cork Ireland
| |
Collapse
|
47
|
Húmpola MV, Rey MC, Spontón PG, Simonetta AC, Tonarelli GG. A Comparative Study of the Antimicrobial and Structural Properties of Short Peptides and Lipopeptides Containing a Repetitive Motif KLFK. Protein Pept Lett 2019; 26:192-203. [PMID: 30526450 DOI: 10.2174/0929866526666181208144629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last years, Antimicrobial Peptides (AMPs) and lipopeptides have received attention as promising candidates to treat infections caused by resistant microorganisms. OBJECTIVE The main objective of this study was to investigate the effect of repetitive KLFK motifs and the attachment of aliphatic acids to the N-terminus of (KLFK)n peptides on therapeutic properties. METHODS Minimal inhibitory concentration against Gram (+) and (-) bacteria and yeast of synthetic compounds were determined by broth microtiter dilution method, and the toxicity was evaluated by hemolysis assay. Membrane-peptide interaction studies were performed with model phospholipid membranes mimicking those of bacterial and mammalian cells by Fluorescence Spectroscopy. The secondary structure in solution and membranes was determined by Circular Dichroism. RESULTS Our results showed that the resulting compounds have inhibitory activity against bacteria and fungi. The (KLFK)3 peptide showed the highest therapeutic index against bacterial and yeast strains, and the (KLFK)2 peptide conjugated with octanoic acid was the most active against yeasts. All the lipopeptides containing long-chain fatty acids (C14 or longer) were highly hemolytic at low concentrations. The antimicrobial activity of (KLFK)2 and (KLFK)3 lipopeptides was mainly associated with improved stability of the amphipathic secondary structure, which showed high contributions of α-helix in dipalmitoylphosphatidylglycerol (DPPG) vesicles. CONCLUSION The repetition of the KLFK sequence and the conjugation with lipid tails allowed obtained compounds with high antimicrobial activity and low toxicity, becoming good candidates for treating infectious diseases.
Collapse
Affiliation(s)
- María Verónica Húmpola
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| | - María Carolina Rey
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| | - Pablo Gabriel Spontón
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina.,Catedras de Microbiologia y Biotecnologia, Departamento de Ingenieria en Alimentos, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Arturo Carlos Simonetta
- Catedras de Microbiologia y Biotecnologia, Departamento de Ingenieria en Alimentos, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Georgina Guadalupe Tonarelli
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| |
Collapse
|
48
|
Seyedjavadi SS, Khani S, Zare-Zardini H, Halabian R, Goudarzi M, Khatami S, Imani Fooladi AA, Amani J, Razzaghi-Abyaneh M. Isolation, functional characterization, and biological properties of MCh-AMP1, a novel antifungal peptide from Matricaria chamomilla L. Chem Biol Drug Des 2019; 93:949-959. [PMID: 30773822 DOI: 10.1111/cbdd.13500] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/13/2019] [Accepted: 02/09/2019] [Indexed: 12/27/2022]
Abstract
The antimicrobial activities of natural products have attracted much attention due to the increasing incidence of pathogens that have become resistant to drugs. Thus, it has been attempted to promisingly manage infectious diseases via a new group of therapeutic agents called antimicrobial peptides. In this study, a novel antifungal peptide, MCh-AMP1, was purified by reverse phase HPLC and sequenced by de novo sequencing and Edman degradation. The antifungal activity, safety, thermal, and pH stability of MCh-AMP1 were determined. This peptide demonstrated an antifungal activity against the tested Candida and Aspergillus species with MIC values in the range of 3.33-6.66 μM and 6.66-13.32 μM, respectively. Further, physicochemical properties and molecular modeling of MCh-AMP1 were evaluated. MCh-AMP1 demonstrated 3.65% hemolytic activity at the concentration of 13.32 μM on human red blood cells and 10% toxicity after 48 hr at the same concentration on HEK293 cell lines. The antifungal activity of MCh-AMP1 against Candida albicans was stable at a temperature range of 30-50°C and at the pH level of 7-11. The present study indicates that MCh-AMP1 may be considered as a new antifungal agent with therapeutic potential against major human pathogenic fungi.
Collapse
Affiliation(s)
| | - Soghra Khani
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
49
|
Thery T, Shwaiki LN, O'Callaghan YC, O'Brien NM, Arendt EK. Antifungal activity of a de novo synthetic peptide and derivatives against fungal food contaminants. J Pept Sci 2018; 25:e3137. [PMID: 30488526 DOI: 10.1002/psc.3137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
The development of novel solutions to fight microbial food contaminants rests upon two pillars, which are the development of resistant strains and consumers' desire for a reduced consumption of synthetic drugs. Natural antimicrobial peptides possess the qualities to overcome these issues. De novo synthesis of novel antifungal compounds is a major progress that has been facilitated by the identification of parameters involved in the antimicrobial activity. A 14-residue peptide named KK14, with the sequence KKFFRAWWAPRFLK-NH2 , was designed and inhibited conidial germination and fungal growth of food contaminants within the range 6.25 to 50 μg/ml and 6.25 to 100 μg/ml, respectively. The study of three analogues of the peptide highlighted the role of some residues in the structural conformation of the peptide and its antifungal activity. The substitution of a Pro residue with Arg increased the helical content of the peptide not only its antifungal activity but also its cytotoxicity. The insertion of an unnatural bulky residue β-diphenylalanine or a full d-enantiomerization overall increased the antifungal potency. The four peptides showed similar behaviour towards salt increase, heat treatment, and pH decrease. Interestingly, the denantiomer remained the most active at high pH and after proteolytic digestion. The four peptides did not present haemolytic activity up to 200 μg/ml but had different behaviours of cytotoxicity. These differences could be crucial for potential application as pharmaceutical or food preservatives.
Collapse
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Laila N Shwaiki
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
50
|
Nicola AM, Albuquerque P, Paes HC, Fernandes L, Costa FF, Kioshima ES, Abadio AKR, Bocca AL, Felipe MS. Antifungal drugs: New insights in research & development. Pharmacol Ther 2018; 195:21-38. [PMID: 30347212 DOI: 10.1016/j.pharmthera.2018.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The need for better antifungal therapy is commonly accepted in view of the high mortality rates associated with systemic infections, the low number of available antifungal classes, their associated toxicity and the increasing number of infections caused by strains with natural or acquired resistance. The urgency to expand the range of therapeutic options for the treatment of fungal infections has led researchers in recent decades to seek alternative antifungal targets when compared to the conventional ones currently used. Although new potential targets are reported, translating the discoveries from bench to bedside is a long process and most of these drugs fail to reach the patients. In this review, we discuss the development of antifungal drugs focusing on the approach of drug repurposing and the search for novel drugs for classical targets, the most recently described gene targets for drug development, the possibilities of immunotherapy using antibodies, cytokines, therapeutic vaccines and antimicrobial peptides.
Collapse
Affiliation(s)
| | - Patrícia Albuquerque
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Hugo Costa Paes
- Division of Clinical Medicine, University of Brasília Medical School, Brazil
| | - Larissa Fernandes
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Fabricio F Costa
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; MATTER, Chicago, IL, USA; Cancer Biology and Epigenomics Program, Ann & Robert Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Ana Karina Rodrigues Abadio
- School for Applied Social and Agricultural Sciences, State University of Mato Grosso, Nova Mutum Campus, Mato Grosso, Brazil
| | | | - Maria Sueli Felipe
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brazil.
| |
Collapse
|