1
|
Henning P, Kassem A, Westerlund A, Lundberg P, Engdahl C, Lionikaite V, Wikström P, Wu J, Li L, Lindholm C, de Souza PPC, Movérare-Skrtic S, Lerner UH. Toll-like receptor-2 induced inflammation causes local bone formation and activates canonical Wnt signaling. Front Immunol 2024; 15:1383113. [PMID: 38646530 PMCID: PMC11026618 DOI: 10.3389/fimmu.2024.1383113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.
Collapse
Affiliation(s)
- Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ali Kassem
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Anna Westerlund
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Lundberg
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Cecilia Engdahl
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vikte Lionikaite
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Section of Pathology, Umeå University, Umeå, Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lei Li
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Catharina Lindholm
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pedro P. C. de Souza
- Innovation in Biomaterials Laboratory, Federal University of Goiás, Goiania, Brazil
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulf H. Lerner
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Singhatanadgit W, Olsen I, Young A. ICAM-1-mediated osteoblast-T lymphocyte direct interaction increases mineralization through TGF-β1 suppression. J Cell Physiol 2023; 238:420-433. [PMID: 36602898 DOI: 10.1002/jcp.30939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Modulation of osteoblast functions by T lymphocytes is important in inflammation-associated mineralized tissue diseases. The study aimed to determine whether direct interaction between these two cell types affects osteoblast functions and mineralization. The results showed that direct contact between the two cell types was evident by scanning electron microscopy and transmission electron microscopy. Under osteogenic induction, higher hydroxyapatite precipitation was observed in cocultures with direct contact with T lymphocytes compared with that by osteoblasts cultured alone. Cocultures without direct cell contact caused a decrease in mineralization. Direct cell contact also upregulated intercellular adhesion molecule (ICAM)-1 and simultaneously downregulated transforming growth factor (TGF)-β1 in osteoblasts. However, the downregulation of TGF-β1 was reversed by ICAM-1 blocking. Exogenously added TGF-β1 in cocultures with direct cell contact suppressed mineralization. In conclusion, studies are consistent with ICAM-1-mediated direct contact between osteoblasts and T lymphocytes increasing mineralization via downregulation of TGF-β1 in osteoblasts in vitro. This suggests a possible unexpected, but crucial, role of T lymphocytes in enhancing matrix mineralization during the repair process in vivo. The study identifies ICAM-1/TGF-β1 as possible novel therapeutic targets for the treatment and prevention of inflammation-associated mineralized tissue diseases.
Collapse
Affiliation(s)
- Weerachai Singhatanadgit
- Research Unit in Mineralized Tissue Reconstruction and Faculty of Dentistry, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | - Irwin Olsen
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, London, UK
| | - Anne Young
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, London, UK
| |
Collapse
|
3
|
Kaaij MH, Rip J, Jeucken KCM, Kan YY, van Rooijen CCN, Saris J, Pots D, Frey S, Grootjans J, Schett G, van Duivenvoorde LM, Nolte MA, Hendriks RW, Corneth OBJ, van Hamburg JP, Baeten DLP, Tas SW. Overexpression of Transmembrane TNF Drives Development of Ectopic Lymphoid Structures in the Bone Marrow and B Cell Lineage Alterations in Experimental Spondyloarthritis. THE JOURNAL OF IMMUNOLOGY 2021; 207:2337-2346. [PMID: 34561228 DOI: 10.4049/jimmunol.2100512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/22/2021] [Indexed: 12/23/2022]
Abstract
TNF is important in immune-mediated inflammatory diseases, including spondyloarthritis (SpA). Transgenic (tg) mice overexpressing transmembrane TNF (tmTNF) develop features resembling human SpA. Furthermore, both tmTNF tg mice and SpA patients develop ectopic lymphoid aggregates, but it is unclear whether these contribute to pathology. Therefore, we characterized the lymphoid aggregates in detail and studied potential alterations in the B and T cell lineage in tmTNF tg mice. Lymphoid aggregates developed in bone marrow (BM) of vertebrae and near the ankle joints prior to the first SpA features and displayed characteristics of ectopic lymphoid structures (ELS) including presence of B cells, T cells, germinal centers, and high endothelial venules. Detailed flow cytometric analyses demonstrated more germinal center B cells with increased CD80 and CD86 expression, along with significantly more T follicular helper, T follicular regulatory, and T regulatory cells in tmTNF tg BM compared with non-tg controls. Furthermore, tmTNF tg mice exhibited increased IgA serum levels and significantly more IgA+ plasma cells in the BM, whereas IgA+ plasma cells in the gut were not significantly increased. In tmTNF tg × TNF-RI-/- mice, ELS were absent, consistent with reduced disease symptoms, whereas in tmTNF tg × TNF-RII-/- mice, ELS and clinical symptoms were still present. Collectively, these data show that tmTNF overexpression in mice results in osteitis and ELS formation in BM, which may account for the increased serum IgA levels that are also observed in human SpA. These effects are mainly dependent on TNF-RI signaling and may underlie important aspects of SpA pathology.
Collapse
Affiliation(s)
- Merlijn H Kaaij
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; .,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jasper Rip
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kim C M Jeucken
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yik Y Kan
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Charlotte C N van Rooijen
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Job Saris
- Department of Gastroenterology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Desiree Pots
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Silke Frey
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; and
| | - Joep Grootjans
- Department of Gastroenterology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; and
| | - Leonie M van Duivenvoorde
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijn A Nolte
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jan Piet van Hamburg
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; .,Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Stögner VA, Krezdorn N, Vogt PM. Comment on: "Thumb carpometacarpal joint osteoarthritis: Is there a role for denervation? A systematic review". J Plast Reconstr Aesthet Surg 2020; 74:1101-1160. [PMID: 33293244 DOI: 10.1016/j.bjps.2020.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
We read with great interest the recent systematic review by Teo I. and Riley N. on denervation in thumb carpometacarpal joint osteoarthritis. Undoubtedly, denervation of the first carpometacarpal (CMC-1) joint does represent a promising surgical treatment alternative for patients suffering from persistent CMC-1-joint osteoarthritis. A surgical standard, however, has not yet been implemented, as technical approach and indication of this procedure still show great variances. In order to contribute to an evidence-based standardization of CMC-1-joint denervation, we would like to share our considerations, approaches and anatomical findings in this comment.
Collapse
Affiliation(s)
- Viola-Antonia Stögner
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Nicco Krezdorn
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Peter Maria Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
5
|
Christodoulou-Vafeiadou E, Geka C, Ntari L, Kranidioti K, Argyropoulou E, Meier F, Armaka M, Mourouzis I, Pantos C, Rouchota M, Loudos G, Denis MC, Karagianni N, Kollias G. Ectopic bone formation and systemic bone loss in a transmembrane TNF-driven model of human spondyloarthritis. Arthritis Res Ther 2020; 22:232. [PMID: 33023659 PMCID: PMC7542121 DOI: 10.1186/s13075-020-02327-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis, we performed detailed characterization of the axial, peripheral, and comorbid pathologies of this model. METHODS TgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae, and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by μCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically, and by μCT analysis. RESULTS TgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings, as well as swollen and distorted hind joints. Whole-body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limbs and, also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation, and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice. CONCLUSIONS The TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Marietta Armaka
- Institute of Immunology, Biomedical Sciences Research Center (BSRC), 'Alexander Fleming', 34 Alexander Fleming Street, 16672, Vari, Greece
| | - Iordanis Mourouzis
- Department of Pharmacology, School of Medicine, National Kapodistrian University, Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, National Kapodistrian University, Athens, Greece
| | - Maritina Rouchota
- BioEmission Technology Solutions (BIOEMTECH), Attica Technology Park N.C.S.R. "DEMOKRITOS", Athens, Greece
| | - George Loudos
- BioEmission Technology Solutions (BIOEMTECH), Attica Technology Park N.C.S.R. "DEMOKRITOS", Athens, Greece
| | | | | | - George Kollias
- Institute of Immunology, Biomedical Sciences Research Center (BSRC), 'Alexander Fleming', 34 Alexander Fleming Street, 16672, Vari, Greece. .,Department of Physiology, School of Medicine, National Kapodistrian University, Athens, Greece.
| |
Collapse
|
6
|
Lukač N, Katavić V, Novak S, Šućur A, Filipović M, Kalajzić I, Grčević D, Kovačić N. What do we know about bone morphogenetic proteins and osteochondroprogenitors in inflammatory conditions? Bone 2020; 137:115403. [PMID: 32371019 DOI: 10.1016/j.bone.2020.115403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Osteochondroprogenitors are crucial for embryonic bone development and postnatal processes such as bone repair in response to fracture injury, and their dysfunction may contribute to insufficient repair of structural damage in inflammatory arthritides. In the fracture healing, the early inflammatory phase is crucial for normal callus development and new bone formation. This process involves a complex interplay of many molecules and cell types, responsible for recruitment, expansion and differentiation of osteochondroprogenitor populations. In inflammatory arthritides, inflammation induces bone resorption and causes insufficient bone formation, which leads to local and systemic bone loss. While bone loss is a predominant feature in rheumatoid arthritis, inflammation also induces pathologic bone formation at enthesial sites in seronegative spondyloarthropathies. Bone morphogenetic proteins (BMP) are involved in cell proliferation, differentiation and apoptosis, and have fundamental roles in maintenance of postnatal bone homeostasis. They are crucial regulators of the osteochondroprogenitor pool and drive their proliferation, differentiation, and lifespan during bone regeneration. In this review, we summarize the effects of inflammation on osteochondroprogenitor populations during fracture repair and in inflammatory arthritides, with special focus on inflammation-mediated modulation of BMP signaling. We also present data in which we describe a population of murine synovial osteochondroprogenitor cells, which are reduced in arthritis, and characterize their expression of genes involved in regulation of bone homeostasis, emphasizing the up-regulation of BMP pathways in early progenitor subset. Based on the presented data, it may be concluded that during an inflammatory response, innate immune cells induce osteochondroprogenitors by providing signals for their recruitment, by producing BMPs and other osteogenic factors for paracrine effects, and by secreting inflammatory cytokines that may positively regulate osteogenic pathways. On the other hand, inflammatory cells may secrete cytokines that interfere with osteogenic pathways, proapoptotic factors that reduce the pool of osteochondroprogenitor cells, as well as BMP and Wnt antagonists. The net effect is strongly context-dependent and influenced by the local milieu of cells, cytokines, and growth factors. Further elucidation of the interplay between inflammatory signals and BMP-mediated bone formation may provide valuable tools for therapeutic targeting.
Collapse
Affiliation(s)
- Nina Lukač
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vedran Katavić
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sanja Novak
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Alan Šućur
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Maša Filipović
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivo Kalajzić
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Danka Grčević
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
7
|
Lee JH, Jung SY, Park GK, Bao K, Hyun H, El Fakhri G, Choi HS. Fluorometric Imaging for Early Diagnosis and Prognosis of Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902267. [PMID: 31921569 PMCID: PMC6947695 DOI: 10.1002/advs.201902267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Indexed: 05/19/2023]
Abstract
Early diagnosis and monitoring of disease progress are of significant importance in the effective treatment of rheumatoid arthritis (RA), because the continuing inflammation can lead to irreversible joint damage and systemic complications. However, applying imaging modalities for the prognosis of RA remains challenging, because no tissue-specific guidelines are available to monitor the progressive course of RA. In this study, fluorometric imaging of RA is reported using bioengineered targeted agents of the blood vessel, bone, and cartilage in combination with the customized optical fluorescence imaging system. Separate but simultaneous tissue-specific images of synovitis, cartilage destruction, and bone resorption are obtained from a mouse model of RA, which allows quantification of the prognosis of diseases at each stage. Thus, the fluorometric imaging of RA by using tissue-specific contrast agents plays a key role in the systemic treatment of RA by monitoring structural damage and disease progression.
Collapse
Affiliation(s)
- Jeong Heon Lee
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Sang Youn Jung
- Division of RheumatologyDepartment of Internal MedicineCHA Bundang Medical CenterCHA UniversitySeongnam13496South Korea
| | - G. Kate Park
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Kai Bao
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Hoon Hyun
- Department of Biomedical SciencesChonnam National University Medical SchoolGwangju501‐746South Korea
| | - Georges El Fakhri
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Hak Soo Choi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
8
|
Sun W, Meednu N, Rosenberg A, Rangel-Moreno J, Wang V, Glanzman J, Owen T, Zhou X, Zhang H, Boyce BF, Anolik JH, Xing L. B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation. Nat Commun 2018; 9:5127. [PMID: 30510188 PMCID: PMC6277442 DOI: 10.1038/s41467-018-07626-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 11/06/2018] [Indexed: 02/05/2023] Open
Abstract
The function of B cells in osteoblast (OB) dysfunction in rheumatoid arthritis (RA) has not been well-studied. Here we show that B cells are enriched in the subchondral and endosteal bone marrow (BM) areas adjacent to osteocalcin+ OBs in two murine RA models: collagen-induced arthritis and the TNF-transgenic mice. Subchondral BM B cells in RA mice express high levels of OB inhibitors, CCL3 and TNF, and inhibit OB differentiation by activating ERK and NF-κB signaling pathways. The inhibitory effect of RA B cells on OB differentiation is blocked by CCL3 and TNF neutralization, and deletion of CCL3 and TNF in RA B cells completely rescues OB function in vivo, while B cell depletion attenuates bone erosion and OB inhibition in RA mice. Lastly, B cells from RA patients express CCL3 and TNF and inhibit OB differentiation, with these effects ameliorated by CCL3 and TNF neutralization. Thus, B cells inhibit bone formation in RA by producing multiple OB inhibitors.
Collapse
Affiliation(s)
- Wen Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 210029, Nanjing, China
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Alexander Rosenberg
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Victor Wang
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jason Glanzman
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Teresa Owen
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xichao Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Eixarch H, Calvo-Barreiro L, Montalban X, Espejo C. Bone morphogenetic proteins in multiple sclerosis: Role in neuroinflammation. Brain Behav Immun 2018; 68:1-10. [PMID: 28249802 DOI: 10.1016/j.bbi.2017.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that represent the largest subgroup of signalling ligands of the transforming growth factor beta (TGF-β) superfamily. Their participation in the proliferation, survival and cell fate of several cell types and their involvement in many pathological conditions are now well known. BMP expression is altered in multiple sclerosis (MS) patients, suggesting that BMPs have a role in the pathogenesis of this disease. MS is a demyelinating and neurodegenerative autoimmune disorder of the central nervous system (CNS). MS is a complex pathological condition in which genetic, epigenetic and environmental factors converge, although its aetiology remains elusive. Multifunctional molecules, such as BMPs, are extremely interesting in the field of MS because they are involved in the regulation of several adult tissues, including the CNS and the immune system. In this review, we discuss the extensive data available regarding the role of BMP signalling in neuronal progenitor/stem cell fate and focus on the participation and expression of BMPs in CNS demyelination. Additionally, we provide an overview of the involvement of BMPs as modulators of the immune system, as this subject has not been thoroughly explored even though it is of great interest in autoimmune disorders. Moreover, we describe the data on BMP signalling in autoimmunity and inflammatory diseases, including MS and its experimental models. Thus, we aim to provide an integrated view of the putative role of BMPs in MS pathogenesis and to open the field for the further development of alternative therapeutic strategies for MS patients.
Collapse
Affiliation(s)
- Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Laura Calvo-Barreiro
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
10
|
Hoffmann B, Svensson CM, Straßburger M, Gebser B, Irmler IM, Kamradt T, Peter Saluz H, Thilo Figge M. Automated Quantification of Early Bone Alterations and Pathological Bone Turnover in Experimental Arthritis by in vivo PET/CT Imaging. Sci Rep 2017; 7:2217. [PMID: 28533505 PMCID: PMC5440413 DOI: 10.1038/s41598-017-02389-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/11/2017] [Indexed: 12/29/2022] Open
Abstract
The assessment of bone damage is required to evaluate disease severity and treatment efficacy both in arthritis patients and in experimental arthritis models. Today there is still a lack of in vivo methods that enable the quantification of arthritic processes at an early stage of the disease. We performed longitudinal in vivo imaging with [18F]-fluoride PET/CT before and after experimental arthritis onset for diseased and control DBA/1 mice and assessed arthritis progression by clinical scoring, tracer uptake studies and bone volume as well as surface roughness measurements. Arthritic animals showed significantly increased tracer uptake in the paws compared to non-diseased controls. Automated CT image analysis revealed increased bone surface roughness already in the earliest stage of the disease. Moreover, we observed clear differences between endosteal and periosteal sites of cortical bone regarding surface roughness. This study shows that in vivo PET/CT imaging is a favorable method to study arthritic processes, enabling the quantification of different aspects of the disease like pathological bone turnover and bone alteration. Especially the evaluation of bone surface roughness is sensitive to early pathological changes and can be applied to study the dynamics of bone erosion at different sites of the bones in an automated fashion.
Collapse
Affiliation(s)
- Bianca Hoffmann
- Departemet Cell and Molecular Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany.,Friedrich Schiller University, Fürstengraben 1, 07743, Jena, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Maria Straßburger
- Transfer Group Anti-infectives, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Björn Gebser
- Departemet Cell and Molecular Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Ingo M Irmler
- Institute of Immunology, Jena University Hospital, Leutragraben 3, 07743, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, Leutragraben 3, 07743, Jena, Germany
| | - Hans Peter Saluz
- Departemet Cell and Molecular Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany. .,Friedrich Schiller University, Fürstengraben 1, 07743, Jena, Germany.
| | - Marc Thilo Figge
- Friedrich Schiller University, Fürstengraben 1, 07743, Jena, Germany. .,Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany.
| |
Collapse
|
11
|
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that primarily affects the joints. Self-reactive B and T lymphocytes cooperate to promote antibody responses against self proteins and are major drivers of disease. T lymphocytes also promote RA independently of B lymphocytes mainly through the production of key inflammatory cytokines, such as IL-17, that promote pathology. While the innate signals that initiate self-reactive adaptive immune responses are poorly understood, the disease is predominantly caused by inflammatory cellular infiltration and accumulation in articular tissues, and by bone erosions driven by bone-resorbing osteoclasts. Osteoclasts are giant multinucleated cells formed by the fusion of multiple myeloid cells that require short-range signals, such as the cytokines MCSF and RANKL, for undergoing differentiation. The recruitment and positioning of osteoclast precursors to sites of osteoclast differentiation by chemoattractants is an important point of control for osteoclastogenesis and bone resorption. Recently, the GPCR EBI2 and its oxysterol ligand 7a, 25 dihydroxycholesterol, were identified as important regulators of osteoclast precursor positioning in proximity to bone surfaces and of osteoclast differentiation under homeostasis. In chronic inflammatory diseases like RA, osteoclast differentiation is also driven by inflammatory cytokines such as TNFa and IL-1, and can occur independently of RANKL. Finally, there is growing evidence that the chemotactic signals guiding osteoclast precursors to inflamed articular sites contribute to disease and are of great interest. Furthering our understanding of the complex osteoimmune cell interactions should provide new avenues of therapeutic intervention for RA.
Collapse
|
12
|
Lerner UH. Inflammation-induced Bone Remodeling in Periodontal Disease and the Influence of Post-menopausal Osteoporosis. J Dent Res 2016; 85:596-607. [PMID: 16798858 DOI: 10.1177/154405910608500704] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During physiological conditions, the skeleton is remodeled in so-called bone multi-cellular units. Such units have been estimated to exist at 1–2 x 106 sites in the adult skeleton. The number and activities of these units are regulated by a variety of hormones and cytokines. In post-menopausal osteoporosis, lack of estrogen leads to increased numbers of bone multi-cellular units and to uncoupling of bone formation and bone resorption, resulting in too little bone laid down by osteoblasts compared with the amount of bone resorbed by osteoclasts. Inflammatory processes in the vicinity of the skeleton, e.g., marginal and apical periodontitis, will affect the remodeling of the nearby bone tissue in such a way that, in most patients, the amount of bone resorbed exceeds that being formed, resulting in net bone loss (inflammation-induced osteolysis). In some patients, however, inflammation-induced bone formation exceeds resorption, and a sclerotic lesion will develop. The cellular and molecular pathogenetic mechanisms in inflammation-induced osteolysis and sclerosis are discussed in the present review. The cytokines believed to be involved in inflammation-induced remodeling are very similar to those suggested to play crucial roles in post-menopausal osteoporosis. In patients with periodontal disease and concomitant post-menopausal osteoporosis, the possibility exists that the lack of estrogen influences the activities of bone cells and immune cells in such a way that the progression of alveolar bone loss will be enhanced. In the present paper, the evidence for and against this hypothesis is presented.
Collapse
Affiliation(s)
- U H Lerner
- Department of Oral Cell Biology, Umeå University, Umeå SE-901 87, Sweden.
| |
Collapse
|
13
|
Meednu N, Zhang H, Owen T, Sun W, Wang V, Cistrone C, Rangel-Moreno J, Xing L, Anolik JH. Production of RANKL by Memory B Cells: A Link Between B Cells and Bone Erosion in Rheumatoid Arthritis. Arthritis Rheumatol 2016; 68:805-16. [PMID: 26554541 DOI: 10.1002/art.39489] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a systemic autoimmune disease that often leads to joint damage. The mechanisms of bone damage in RA are complex, involving activation of bone-resorbing osteoclasts (OCs) by synoviocytes and Th17 cells. This study was undertaken to investigate whether B cells play a direct role in osteoclastogenesis through the production of RANKL, the essential cytokine for OC development. METHODS RANKL production by total B cells or sorted B cell subpopulations in the peripheral blood and synovial tissue from healthy donors or anti-cyclic citrullinated peptide-positive patients with RA was examined by flow cytometry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analysis. To define direct effects on osteoclastogenesis, B cells were cocultured with CD14+ monocytes, and OCs were enumerated by tartrate-resistant acid phosphatase staining. RESULTS Healthy donor peripheral blood B cells were capable of expressing RANKL upon stimulation, with switched memory B cells (CD27+IgD-) having the highest propensity for RANKL production. Notably, switched memory B cells in the peripheral blood from RA patients expressed significantly more RANKL compared to healthy controls. In RA synovial fluid and tissue, memory B cells were enriched and spontaneously expressed RANKL, with some of these cells visualized adjacent to RANK+ OC precursors. Critically, B cells supported OC differentiation in vitro in a RANKL-dependent manner, and the number of OCs was higher in cultures with RA B cells than in those derived from healthy controls. CONCLUSION These findings reveal the critical importance of B cells in bone homeostasis and their likely contribution to joint destruction in RA.
Collapse
Affiliation(s)
- Nida Meednu
- University of Rochester Medical Center, Rochester, New York
| | - Hengwei Zhang
- University of Rochester Medical Center, Rochester, New York
| | - Teresa Owen
- University of Rochester Medical Center, Rochester, New York
| | - Wen Sun
- University of Rochester Medical Center, Rochester, New York
| | - Victor Wang
- University of Rochester Medical Center, Rochester, New York
| | | | | | - Lianping Xing
- University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
14
|
Matzelle MM, Shaw AT, Baum R, Maeda Y, Li J, Karmakar S, Manning CA, Walsh NC, Rosen V, Gravallese EM. Inflammation in arthritis induces expression of BMP3, an inhibitor of bone formation. Scand J Rheumatol 2016; 45:379-83. [PMID: 26982203 DOI: 10.3109/03009742.2015.1126347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Inflammation in diseases such as rheumatoid arthritis (RA) stimulates osteoclast-mediated articular bone erosion and inhibits osteoblast-mediated bone formation, leading to a net loss of bone. Pro-inflammatory cytokines and antagonists of the Wnt signalling pathway have been implicated in the inhibition of osteoblast differentiation and activity in RA, contributing to the erosive process and impairing erosion healing. Importantly, osteoblast differentiation and function are also regulated by the osteogenic bone morphogenetic protein (BMP) signalling pathway, which is antagonized by BMP3. We therefore examined the potential role of BMP3 in inflammatory arthritis. METHOD Two murine models of RA, K/BxN serum transfer arthritis (STA) and antigen-induced arthritis (AIA), were used to establish the temporal expression of BMP3 and the cellular sources of BMP3 mRNA and protein in inflammatory arthritis. To determine the effects of inflammation on the expression of BMP3 in osteoblasts, murine calvarial osteoblasts were treated with pro-inflammatory cytokines and BMP3 expression was assessed. RESULTS In both murine models of RA, BMP3 mRNA and protein are highly expressed by osteoblasts lining inflammation-bone interfaces late in the course of arthritis. Synovial tissues are not a significant source of BMP3. BMP3 expression is induced in osteocalcin-expressing osteoblasts in vitro following stimulation by tumour necrosis factor (TNF). CONCLUSIONS These data implicate BMP3 as a novel factor that may act locally to contribute to the erosive process and inhibit the repair of articular bone in RA through inhibition of osteoblast differentiation and function.
Collapse
Affiliation(s)
- M M Matzelle
- a Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - A T Shaw
- a Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - R Baum
- a Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Y Maeda
- a Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - J Li
- a Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - S Karmakar
- a Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - C A Manning
- a Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - N C Walsh
- b Murdoch Childrens Research Institute , Parkville , Victoria , Australia
| | - V Rosen
- c Department of Developmental Biology , Harvard School of Dental Medicine , Boston , MA , USA
| | - E M Gravallese
- a Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
15
|
Blüml S, Redlich K, Smolen JS. Mechanisms of tissue damage in arthritis. Semin Immunopathol 2014; 36:531-40. [PMID: 25212687 DOI: 10.1007/s00281-014-0442-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/31/2014] [Indexed: 01/17/2023]
Abstract
The destruction of articular structures in the course of inflammatory arthritides such as rheumatoid arthritis (RA) or seronegative spondyloarthropathies is the most serious direct consequence of these diseases. Indeed, joint damage constitutes the "organ damage" of RA and-just like in all other diseases with organ involvement-such damage will usually be irreversible, cause permanent loss of function and subsequent disability. Research has identified a number of mechanisms and mediators of damage to articular structures such as bone and cartilage, ranging from proinflammatory cytokines, signal transduction pathways and cells types, which will be discussed in this review.
Collapse
Affiliation(s)
- Stephan Blüml
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
16
|
Derer A, Groetsch B, Harre U, Böhm C, Towne J, Schett G, Frey S, Hueber AJ. Blockade of IL-36 receptor signaling does not prevent from TNF-induced arthritis. PLoS One 2014; 9:e101954. [PMID: 25111378 PMCID: PMC4128584 DOI: 10.1371/journal.pone.0101954] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022] Open
Abstract
Introduction Interleukin (IL)-36α is a newly described member of the IL-1 cytokine family with a known inflammatory and pathogenic function in psoriasis. Recently, we could demonstrate that the receptor (IL-36R), its ligand IL-36α and its antagonist IL-36Ra are expressed in synovial tissue of arthritis patients. Furthermore, IL-36α induces MAP-kinase and NFκB signaling in human synovial fibroblasts with subsequent expression and secretion of pro-inflammatory cytokines. Methods To understand the pathomechanism of IL-36 dependent inflammation, we investigated the biological impact of IL-36α signaling in the hTNFtg mouse. Also the impact on osteoclastogenesis by IL-36α was tested in murine and human osteoclast assays. Results Diseased mice showed an increased expression of IL-36R and IL-36α in inflamed knee joints compared to wildtype controls. However, preventively treating mice with an IL-36R blocking antibody led to no changes in clinical onset and pattern of disease. Furthermore, blockade of IL-36 signaling did not change histological signs of TNF-induced arthritis. Additionally, no alteration on bone homeostasis was observed in ex vivo murine and human osteoclast differentiation assays. Conclusion Thus we conclude that IL-36α does not affect the development of inflammatory arthritis.
Collapse
Affiliation(s)
- Anja Derer
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Bettina Groetsch
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Ulrike Harre
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Christina Böhm
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Jennifer Towne
- Department of Inflammation Research, Amgen Inc., Longmont, Colorado, United States of America
| | - Georg Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Silke Frey
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Axel J. Hueber
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| |
Collapse
|
17
|
Keller KK, Thomsen JS, Stengaard-Pedersen K, Dagnæs-Hansen F, Nyengaard JR, Hauge EM. Bone formation and resorption are both increased in experimental autoimmune arthritis. PLoS One 2012; 7:e53034. [PMID: 23300855 PMCID: PMC3531401 DOI: 10.1371/journal.pone.0053034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Arthritic bone loss in the joints of patients with rheumatoid arthritis is the result of a combination of osteoclastic bone resorption and osteoblastic bone formation. This process is not completely understood, and especially the importance of local inflammation needs further investigation. We evaluated how bone formation and bone resorption are altered in experimental autoimmune arthritis. METHODS Twenty-one female SKG mice were randomized to either an arthritis group or a control group. Tetracycline was used to identify mineralizing surfaces. After six weeks the right hind paws were embedded undecalcified in methylmethacrylate. The paws were cut exhaustively according to the principles of vertical sectioning and systematic sampling. 3D design-based methods were used to estimate the total number of osteoclasts, mineralizing surfaces, eroded surfaces, and osteoclast-covered bone surfaces. In addition the presence of adjacent inflammation was ascertained. RESULTS The total number of osteoclasts, mineralizing surfaces, eroded surfaces, and osteoclast covered surfaces were elevated in arthritic paws compared to normal paws. Mineralizing surfaces were elevated adjacent to as well as not adjacent to inflammation in arthritic mice compared to normal mice. In arthritic mice, eroded surfaces and osteoclast covered surfaces were larger on bone surfaces adjacent to inflammation than on bone surfaces without adjacent inflammation. However, we found no difference between mineralizing surfaces at bone surfaces with or without inflammation in arthritic mice. CONCLUSIONS Inflammation induced an increase in resorptive bone surfaces as well as formative bone surfaces. The bone formative response may be more general, since formative bone surfaces were also increased when not associated with inflammation. Thus, the bone loss may be the result of a substantial local bone resorption, which cannot be compensated by the increased local bone formation. These findings may be valuable for the development of new osteoblast targeting drugs in RA.
Collapse
|
18
|
Bugatti S, Manzo A, Caporali R, Montecucco C. Inflammatory lesions in the bone marrow of rheumatoid arthritis patients: a morphological perspective. Arthritis Res Ther 2012; 14:229. [PMID: 23270711 PMCID: PMC3674615 DOI: 10.1186/ar4115] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 12/11/2012] [Indexed: 12/25/2022] Open
Abstract
The synovial tissue stands at the epicenter of joint pathology in rheumatoid arthritis (RA). As a primary target of the disease, studies on the synovium have provided invaluable insights into the mechanisms involved in disease pathogenesis. Recent work has, however, revealed the importance of a previously unseen anatomic compartment in direct contact with the joint space, namely the subchondral bone marrow. Bone marrow edema (BME) visible on magnetic resonance imaging (MRI) is clinically meaningful in both early and late RA as it associates with future development of bone erosions and poor functional outcomes. Although the histopathologic correlates of MRI-based BME in early RA remain obscure, studies in advanced disease are consistent in describing lymphocytic inflammatory infiltrates within the subchondral marrow cavity of affected joints. In this review, we discuss the nature of bone marrow lesions in patients with RA, analyze their relationship with synovitis, and explore their potential contribution to the pathological processes of the disease.
Collapse
|
19
|
Singhatanadgit W, Varodomrujiranon M. Osteogenic potency of a 3-dimensional scaffold-free bonelike sphere of periodontal ligament stem cells in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 116:e465-72. [PMID: 22901658 DOI: 10.1016/j.oooo.2012.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/27/2012] [Accepted: 02/21/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The present study aimed to investigate the osteogenic potency of scaffold-free 3-dimensional (3D) spheres of periodontal ligament stem cells (PDLSCs). STUDY DESIGN The osteogenic potency of PDLSC spheres was determined by the ability to form mineralization and to express key osteogenesis-associated genes. The alkaline phosphatase (ALP) activity and the protein content of PDLSC spheres were also measured. RESULTS The 3D sphere developed its osteogenic potency in a time-dependent manner, containing approximately 10-fold higher mineralization, 5-fold higher protein content, and 4-fold greater ALP activity than those in the controls. The expression of key osteogenic genes was also upregulated in the 3D PDLSC spheres. Cellular outgrowth was observed when reintroduced into 2D culture. CONCLUSIONS PDLSCs were able to undergo osteogenic differentiation in a scaffold-free 3D culture, producing bonelike mineralization in vitro. This suggests, at least in vitro, the osteogenic potency of the 3D PDLSC spheres.
Collapse
Affiliation(s)
- Weerachai Singhatanadgit
- Assistant Professor, Faculty of Dentistry, Thammasat University, Klong, Luang, Pathum-Thani, Thailand.
| | | |
Collapse
|
20
|
Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 2012; 11:234-50. [PMID: 22378270 DOI: 10.1038/nrd3669] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone is a tissue undergoing continuous building and degradation. This remodelling is a tightly regulated process that can be disturbed by many factors, particularly hormonal changes. Chronic inflammation can also perturb bone metabolism and promote increased bone loss. Inflammatory diseases can arise all over the body, including in the musculoskeletal system (for example, rheumatoid arthritis), the intestine (for example, inflammatory bowel disease), the oral cavity (for example, periodontitis) and the lung (for example, cystic fibrosis). Wherever inflammatory diseases occur, systemic effects on bone will ensue, as well as increased fracture risk. Here, we discuss the cellular and signalling pathways underlying, and strategies for therapeutically interfering with, the inflammatory loss of bone.
Collapse
Affiliation(s)
- Kurt Redlich
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | |
Collapse
|
21
|
Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 2012. [DOI: 78495111110.1038/nrd3669' target='_blank'>'"<>78495111110.1038/nrd3669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1038/nrd3669','', '10.1359/jbmr.040205')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
78495111110.1038/nrd3669" />
|
22
|
Zwerina K, Koenders M, Hueber A, Marijnissen RJ, Baum W, Heiland GR, Zaiss M, McLnnes I, Joosten L, van den Berg W, Zwerina J, Schett G. Anti IL-17A therapy inhibits bone loss in TNF-α-mediated murine arthritis by modulation of the T-cell balance. Eur J Immunol 2011; 42:413-23. [PMID: 22101928 DOI: 10.1002/eji.201141871] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 12/14/2022]
Abstract
Tumour necrosis factor alpha (TNF-α) is a major inducer for inflammation and bone loss. Here, we investigated whether interleukin (IL)-17 plays a role in TNF-α-mediated inflammation and bone resorption. Human TNF-α transgenic (hTNFtg) mice were treated with a neutralizing anti-IL-17A antibody and assessed for inflammation, cartilage and bone damage. T-cell transcription factors and lymphokine patterns were measured in the LNs. IL-17A inhibition in the absence of IL-1 was also evaluated by treating hTNFtg/IL-1(-/-) mice with an IL-17A neutralizing antibody. IL-17A neutralization had only minor effects on TNF-α-induced inflammation but effectively reduced local and systemic bone loss by blocking osteoclast differentiation in vivo. Effects were based on a shift to bone-protective T-cell responses such as enhanced Th2 differentiation, IL-4 and IL-12 expression and Treg cell numbers. Whereas inflammation in hTNFtg/IL-1(-/-) mice was highly sensitive to IL-17A blockade, no shift in the T-cell lineages and no additional benefit on bone mass were observed in response to IL-17A neutralization. We thus conclude that IL-17A is a key mediator of TNF-α-induced bone loss by closely interacting with IL-1 in blocking bone protective T-cell responses.
Collapse
Affiliation(s)
- Karin Zwerina
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sununliganon L, Singhatanadgit W. Highly osteogenic PDL stem cell clones specifically express elevated levels of ICAM1, ITGB1 and TERT. Cytotechnology 2011; 64:53-63. [PMID: 21866310 DOI: 10.1007/s10616-011-9390-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 08/05/2011] [Indexed: 12/12/2022] Open
Abstract
Cells derived from the periodontal ligament (PDL) have previously been reported to have stem cell-like characteristics (PDL stem cells; PDLSCs) and play an important part in bone engineering, including that of alveolar bone. However, these populations have been heterogeneous, and thus far no specific marker has yet been established from adult human stem cells derived from PDL tissue. We have previously isolated highly purified single cell-derived PDLSC clones and delineated their phenotypic and functional characteristics. In this report, we further obtained three homogeneous and distinct PDLSC clones demonstrating low, moderate and high mineralized matrix forming ability-namely PC12, PC4 and PC3, respectively, and the expression of mesenchymal stem cell pathway-specific genes in these clones was investigated. PCR array revealed that the expression of intercellular adhesion molecule 1 (ICAM1), integrin beta 1 (ITGB1) and telomerase reverse transcriptase (TERT) was associated with highly osteogenic PDLSC clones, as determined by the expression of key osteoblastic markers and their ability to form alizarin red S positive mineralized matrix in vitro. The present results suggest that these three mesenchymal stem cell-associated markers could potentially be used to isolate PDLSCs with high osteogenic capability for engineering new bone.
Collapse
Affiliation(s)
- Laddawun Sununliganon
- Faculty of Dentistry, Thammasat University (Rangsit Campus), 99 Moo18 Paholyothin Road, Klong Luang, Patumthani, 12121, Thailand
| | | |
Collapse
|
24
|
Díaz-Rodríguez L, García-Martínez O, Morales MA, Rodríguez-Pérez L, Rubio-Ruiz B, Ruiz C. Effects of Indomethacin, Nimesulide, and Diclofenac on Human MG-63 Osteosarcoma Cell Line. Biol Res Nurs 2011; 14:98-107. [DOI: 10.1177/1099800411398933] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely prescribed drugs worldwide and serve as treatment of some degenerative inflammatory joint diseases. The aim of the present study was to investigate the influence of different concentrations of three NSAIDs on cell proliferation, differentiation, antigenic profile, and cell cycle in the human MG-63 osteosarcoma cell line, incubated for 24 hr. All NSAIDs had an inhibiting effect on osteoblastic proliferation. Treatments for 24 hr had small but significant effects on the antigenic profile. No treatment altered osteocalcin synthesis. Indomethacin and nimesulide treatments arrested the cell cycle at G0/G1. These results suggest that indomethacin, nimesulide, and diclofenac appear to have no effects on osteocalcin synthesis and a slight effect on the antigenic profile. They may delay bone regeneration due to their inhibiting effect on osteoblast growth. Therefore, these drugs should only be used in situations that do not require rapid bone healing.
Collapse
Affiliation(s)
| | | | | | | | - Belén Rubio-Ruiz
- Department of Pharmaceutical Chemistry and Organic Chemistry, School of Pharmacy, Universidad Granada, Spain
| | - Concepción Ruiz
- Department of Nursing, Health Sciences Faculty, Universidad Granada, Spain
- Institute of Neuroscience, Universidad Granada, Spain
| |
Collapse
|
25
|
Winslow BD, Shao H, Stewart RJ, Tresco PA. Biocompatibility of adhesive complex coacervates modeled after the sandcastle glue of Phragmatopoma californica for craniofacial reconstruction. Biomaterials 2010; 31:9373-81. [PMID: 20950851 DOI: 10.1016/j.biomaterials.2010.07.078] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 07/21/2010] [Indexed: 11/24/2022]
Abstract
Craniofacial reconstruction would benefit from a degradable adhesive capable of holding bone fragments in three-dimensional alignment and gradually being replaced by new bone without loss of alignment or volume changes. Modeled after a natural adhesive secreted by the sandcastle worm, we studied the biocompatibility of adhesive complex coacervates in vitro and in vivo with two different rat calvarial models. We found that the adhesive was non-cytotoxic and supported the attachment, spreading, and migration of a commonly used osteoblastic cell line over the course of several days. In animal studies we found that the adhesive was capable of maintaining three-dimensional bone alignment in freely moving rats over a 12 week indwelling period. Histological evidence indicated that the adhesive was gradually resorbed and replaced by new bone that became lamellar across the defect without loss of alignment, changes in volume, or changes in the adjacent uninjured bone. The presence of inflammatory cells was consistent with what has been reported with other craniofacial fixation methods including metal plates, screws, tacks, calcium phosphate cements and cyanoacrylate adhesives. Collectively, the results suggest that the new bioadhesive formulation is degradable, osteoconductive and appears suitable for use in the reconstruction of craniofacial fractures.
Collapse
Affiliation(s)
- Brent D Winslow
- The Keck Center for Tissue Engineering, Department of Bioengineering, College of Engineering, University of Utah, 20 S 2030 E Building, 570 BPRB, Room 108D, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Our understanding of the multiple physiological and pathogenic functions of B cells in rheumatoid arthritis (RA) continues to expand. In turn, the availability of effective agents targeting the B cell compartment increases. In this review, we discuss novel insights into the roles of B cells in RA and recent evidence regarding the efficacy of B cell depletion and biomarkers of treatment response. RECENT FINDINGS Recent data have further elucidated the requirements for the generation of ectopic lymphoid structures in the rheumatoid synovium, their frequency, and role in pathogenesis. Additional studies have described the phenotype of infiltrating B cells in the synovium and the unexpected role for B cells in bone homeostasis. In addition to pathogenic roles for B cells, there is also mounting evidence for regulatory B cell subsets that may play a protective role. New data on radiographic progression, efficacy in early disease, the role of retreatment, and biomarkers of treatment response continue to refine the role of B cell depletion in the treatment armamentarium. SUMMARY The past few years have seen new advances in immunology applied to the study of RA with surprising observations and interesting new insights into cause and pathogenesis.
Collapse
|
27
|
Li D, Gromov K, Proulx ST, Xie C, Li J, Crane DP, Søballe K, O'Keefe RJ, Awad HA, Xing L, Schwarz EM. Effects of antiresorptive agents on osteomyelitis: novel insights into the pathogenesis of osteonecrosis of the jaw. Ann N Y Acad Sci 2010; 1192:84-94. [PMID: 20392222 DOI: 10.1111/j.1749-6632.2009.05210.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of antiresorptive agents (e.g., alendronate [Aln], osteoprotegerin [OPG]) on bone infection are unknown. Thus, their effects on implant-associated osteomyelitis (OM) were investigated in mice using PBS (placebo), gentamycin, and etanercept (TNFR:Fc) controls. None of the drugs affected humoral immunity, angiogenesis, or chronic infection. However, the significant (P < 0.05 vs. PBS) inhibition of cortical osteolysis and decreased draining lymph node size in Aln- and OPG-treated mice was associated with a significant (P < 0.05) increase in the incidence of high-grade infections during the establishment of OM. In contrast, the high-grade infections in TNFR:Fc-treated mice were associated with immunosuppression, as evidenced by the absence of granulomas and presence of Gram(+) biofilm in the bone marrow. Collectively, these findings indicate that although antiresorptive agents do not exacerbate chronic OM, they can increase the bacterial load during early infection by decreasing lymphatic drainage and preventing the removal of necrotic bone that harbors the bacteria.
Collapse
Affiliation(s)
- Dan Li
- The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li J, Kuzin I, Moshkani S, Proulx ST, Xing L, Skrombolas D, Dunn R, Sanz I, Schwarz EM, Bottaro A. Expanded CD23(+)/CD21(hi) B cells in inflamed lymph nodes are associated with the onset of inflammatory-erosive arthritis in TNF-transgenic mice and are targets of anti-CD20 therapy. THE JOURNAL OF IMMUNOLOGY 2010; 184:6142-50. [PMID: 20435928 DOI: 10.4049/jimmunol.0903489] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Anti-CD20 B cell depletion therapy (BCDT) is very effective for some patients with rheumatoid arthritis (RA); however the pathogenic role of B lymphocytes in RA and the primary targets of BCDT are unknown. The human TNF transgenic (hTNF-Tg) mouse model of RA displays a chronic, progressive disease that spreads from distal to proximal joints and is generally considered to be adaptive immune system independent. We have previously reported that knee arthritis in hTNF-Tg mice is accompanied by structural and functional changes of the adjoining popliteal lymph node (PLN), detectable by contrast-enhanced magnetic resonance imaging. To better understand these changes, in this paper we show that onset of knee synovitis and focal erosions are paralleled by PLN contraction and accumulation of large numbers of B cells in the lymphatic sinus spaces within the node. Flow cytometry from TNF-Tg mice 2, 4-5, and 8-12 mo old demonstrated that B cell accumulation in the PLN follows ankle arthritis, but commences before knee disease, and involves early expansion of CD21(hi), CD23(+), IgM(hi), CD1d(+), activation marker-negative, polyclonal B cells that are found to be specifically restricted to lymph nodes draining inflamed, arthritic joints. The same B cell population also accumulates in PLNs of K/BxN mice with autoantigen-dependent arthritis. Strikingly, we show that BCDT ameliorates hTNF-Tg disease and clears follicular and CD21(hi), CD23(+) B cells from the PLNs. On the basis of these findings, we propose a model whereby B cells contribute to arthritis in mice, and possibly RA, by directly affecting the structure, composition, and function of joint-draining lymph nodes.
Collapse
Affiliation(s)
- Jie Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 19642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This article examines synovectomy and ankle arthrodesis for the rheumatoid ankle joint. Reviews of osteoimmunology and gait analyses specific to rheumatoid arthritis are included. Comparison studies including ankle arthrodesis and total ankle arthroplasty are reviewed.
Collapse
Affiliation(s)
- Joseph R Treadwell
- Foot & Ankle Specialists of Connecticut, PC, 6 Germantown Road, Danbury, CT 06810, USA.
| |
Collapse
|
30
|
|
31
|
Lisignoli G, Manferdini C, Codeluppi K, Piacentini A, Grassi F, Cattini L, Filardo G, Facchini A. CCL20/CCR6 chemokine/receptor expression in bone tissue from osteoarthritis and rheumatoid arthritis patients: Different response of osteoblasts in the two groups. J Cell Physiol 2009; 221:154-60. [DOI: 10.1002/jcp.21839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Abstract
Recent studies have elucidated unanticipated connections between the immune and skeletal systems, and this relationship has led to the development of a new field known as osteoimmunology. The goal of research in this field is to: (1) further understand how the bone microenvironment influences immune cell ontogeny and subsequent effector functions, and (2) translate basic science findings in bone biology to clinical applications for autoimmune diseases that target the skeleton such as rheumatoid arthritis (RA). In this review, we will examine the recent findings of the interplay between the immune and skeletal systems. This discussion will focus on the cells and signaling pathways in osteoimmune interactions and how innate and adaptive immune effector cells as well as cytokines and chemokines play a role in the maintenance and dysregulation of skeletal-immune homeostasis. We will also discuss how immunomodulatory biologic drugs, which specifically target these cells and effector molecules, have transformed the treatment of autoimmune mediated inflammatory diseases (IMIDs) and metabolic bone diseases such as osteoporosis.
Collapse
|
33
|
Schett G. Bone formation versus bone resorption in ankylosing spondylitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 649:114-21. [PMID: 19731624 DOI: 10.1007/978-1-4419-0298-6_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ankylosing spondylitis (AS) and other forms of seronegative spondylarthritis (SpA) are characterized by two major processes in joints-the first is chronic inflammation and the second is progressive ankylosis. Both features go hand-in-hand and determine the clinical picture of disease, which is joint pain, progressive stiffness and, in case ofperipheral joint involvement also joint swelling. The interplay between inflammation and ankylosis is best illustrated in AS, where chronic inflammation of the spine leads to progressive stiffness, reduced spinal mobility and kyphosis. AS may thus be considered as a synthesis of inflammatory disease and bone disease.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
34
|
Abstract
The objective of this study was to investigate the function of inflammatory bone marrow infiltrates found in vicinity to joints affected by inflammatory arthritis. These bone marrow infiltrates are rich in B cells and emerge at the interphase between bone marrow and synovial inflammatory tissue, where cortical bone has been broken. We deleted an essential molecule of B-cell development, Brutońs tyrosine kinase (Btk), in arthritic TNF-transgenic mice and studied its effect on bone marrow inflammation. Although antigen responses, immunoglobulin levels, and autoantibody production were diminished in Btk(-/-)hTNFtg mice, synovial inflammation developed normally. However, bone marrow infiltrates were significantly diminished in Btk(-/-)hTNFtg mice, which lead to impaired bone formation at endosteal sites underneath bone erosions and an increased invasion of synovial inflammatory cells into the bone marrow. Expression of bone morphogenic protein-7 was dramatically decreased in Btk(-/-)hTNFtg mice. These results do not only indicate that bone formation at endosteal regions next to bone marrow infiltrates is driven by B cells but also show that bone marrow aggregates in the vicinity of inflamed joint appear as an attempt to counter the invasion of inflammatory tissue into the bone marrow.
Collapse
|
35
|
Proulx ST, Kwok E, You Z, Papuga MO, Beck CA, Shealy DJ, Calvi LM, Ritchlin CT, Awad HA, Boyce BF, Xing L, Schwarz EM. Elucidating bone marrow edema and myelopoiesis in murine arthritis using contrast-enhanced magnetic resonance imaging. ACTA ACUST UNITED AC 2008; 58:2019-29. [PMID: 18576355 DOI: 10.1002/art.23546] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE While bone marrow edema (BME) detected by magnetic resonance imaging (MRI) is a biomarker of arthritis, its nature remains poorly understood due to the limitations of clinical studies. In this study, MRI of murine arthritis was used to elucidate its cellular composition and vascular involvement. METHODS BME was quantified using normalized bone marrow intensity (NBMI) from precontrast MRI and normalized marrow contrast enhancement (NMCE) following intravenous administration of gadopentate dimeglumine. Wild-type (WT) and tumor necrosis factor (TNF)-transgenic mice were scanned from 2 to 5 months of age, followed by histologic or fluorescence-activated cell sorting (FACS) analysis of marrow. In efficacy studies, TNF-transgenic mice were treated with anti-TNF or placebo for 8 weeks, and then were studied using bimonthly MRI and histologic analysis. RESULTS NBMI values were similar in WT and TNF-transgenic mice at 2 months. The values in WT mice steadily decreased thereafter, with mean values becoming significantly different from those of TNF-transgenic mice at 3.5 months (mean +/- SD 0.29 +/- 0.08 versus 0.46 +/- 0.13; P < 0.05). Red to yellow marrow transformation occurred in WT but not TNF-transgenic mice, as observed histologically at 5 months. The marrow of TNF-transgenic mice that received anti-TNF therapy converted to yellow marrow, with lower NBMI values versus placebo at 6 weeks (mean +/- SD 0.26 +/- 0.07 versus 0.61 +/- 0.22; P < 0.05). FACS analysis of bone marrow revealed a significant correlation between NBMI values and CD11b+ monocytes (R2 = 0.91, P = 0.0028). Thresholds for "normal" red marrow versus pathologic BME were established, and it was also found that inflammatory marrow is highly permeable to contrast agent. CONCLUSION BME signals in TNF-transgenic mice are caused by yellow to red marrow conversion, with increased myelopoiesis and increased marrow permeability. The factors that mediate these changes warrant further investigation.
Collapse
|
36
|
Itagaki T, Honma T, Takahashi I, Echigo S, Sasano Y. Quantitative Analysis and Localization of mRNA Transcripts of Type I Collagen, Osteocalcin, MMP 2, MMP 8, and MMP 13 During Bone Healing in a Rat Calvarial Experimental Defect Model. Anat Rec (Hoboken) 2008; 291:1038-46. [DOI: 10.1002/ar.20717] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Honma T, Itagaki T, Nakamura M, Kamakura S, Takahashi I, Echigo S, Sasano Y. Bone formation in rat calvaria ceases within a limited period regardless of completion of defect repair. Oral Dis 2008; 14:457-64. [DOI: 10.1111/j.1601-0825.2007.01401.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Zwerina J, Tuerk B, Redlich K, Smolen JS, Schett G. Imbalance of local bone metabolism in inflammatory arthritis and its reversal upon tumor necrosis factor blockade: direct analysis of bone turnover in murine arthritis. Arthritis Res Ther 2007; 8:R22. [PMID: 16507121 PMCID: PMC1526585 DOI: 10.1186/ar1872] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/18/2005] [Accepted: 11/25/2005] [Indexed: 11/10/2022] Open
Abstract
Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption.
Collapse
Affiliation(s)
- Jochen Zwerina
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Birgit Tuerk
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Kurt Redlich
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Georg Schett
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
39
|
Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13:156-63. [PMID: 17237793 DOI: 10.1038/nm1538] [Citation(s) in RCA: 941] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/15/2006] [Indexed: 11/09/2022]
Abstract
Degenerative and inflammatory joint diseases lead to a destruction of the joint architecture. Whereas degenerative osteoarthritis results in the formation of new bone, rheumatoid arthritis leads to bone resorption. The molecular basis of these different patterns of joint disease is unknown. By inhibiting Dickkopf-1 (DKK-1), a regulatory molecule of the Wnt pathway, we were able to reverse the bone-destructive pattern of a mouse model of rheumatoid arthritis to the bone-forming pattern of osteoarthritis. In this way, no overall bone erosion resulted, although bony nodules, so-called osteophytes, did form. We identified tumor necrosis factor-alpha (TNF) as a key inducer of DKK-1 in the mouse inflammatory arthritis model and in human rheumatoid arthritis. These results suggest that the Wnt pathway is a key regulator of joint remodeling.
Collapse
Affiliation(s)
- Danielle Diarra
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nurnberg, Krankenhausstrasse 12, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Luyten FP, Lories RJU, Verschueren P, de Vlam K, Westhovens R. Contemporary concepts of inflammation, damage and repair in rheumatic diseases. Best Pract Res Clin Rheumatol 2006; 20:829-48. [PMID: 16980209 DOI: 10.1016/j.berh.2006.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic arthritis has been regarded as a disease resulting from a disequilibrium in pro- and anti-inflammatory cytokines. Restoration of this imbalance by using blocking antibodies or soluble receptors against a variety of inflammatory components has been the focus of most therapeutic interventions so far. More recently, other destructive mechanisms partially independent of inflammation have been elucidated, including osteoclast mediated bone resorption driven by the RANKL/RANK system. Despite efficient control of inflammation and destruction, little joint tissue repair has been observed. In addition, abnormal tissue responses such as cartilage calcification and ankylosis may contribute to disease progression and loss of joint function. We propose that 'true' disease remission may only be achieved with appropriate activation of local joint tissue responses leading to restoration of joint homeostasis and recovery of joint function. Understanding the molecular networks of joint homeostasis, repair and remodelling will be required to achieve this goal. Defining and validating clinical outcomes evaluating remission remain a challenge.
Collapse
Affiliation(s)
- Frank P Luyten
- University Hospitals Leuven, Division of Rheumatology, Herestraat 49, B 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
41
|
Fan YH, Lin CD, Chiou SH, Chow KC, Chi YS, Lee LH, Shien JH, Shieh HK. Differential expression of U2AF35 in the arthritic joint of avian reovirus-infected chicks. Vet Immunol Immunopathol 2006; 114:49-60. [PMID: 16916547 DOI: 10.1016/j.vetimm.2006.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 07/05/2006] [Indexed: 11/23/2022]
Abstract
To identify cell types and genes that are differentially expressed during immunopathogenesis of avian reovirus (ARV)-induced viral arthritis (VA), we inoculated arthrotropic strain S1133 of ARV into 1-day-old broilers, and examined tissue histology as well as RNA expression at different days post-inoculation (PI). Using immunohistochemical staining, we detected many CD68 expressing macrophages in and around the blood vessels of the arthritic joints. By RT-PCR, we found that expression of matrix metalloproteinase-2 (MMP-2) and bone morphogenetic protein-2 (BMP-2) was induced earlier in footpads and hock joints of ARV-infected chickens. By employing suppression subtractive hybridization (SSH) technique and RT-PCR, we further identified that small subunit of U2 snRNP auxiliary factor (U2AF35 or U2AF1) mRNA was differentially induced in the joint of ARV-infected chickens. By in situ hybridization (ISH), mRNA signals of U2AF35 and BMP-2 were located in chondrocytes within/near the epiphyseal plate and secondary center of ossification, and in epidermal cells and dermal fibroblast-like cells of arthritic joints. In addition, U2AF35 mRNA was expressed in the inflammatory infiltrates of the bone marrow of ARV-infected arthritic joints, while MMP-2 was mainly detected in chondrocytes. Interestingly, among U2AF35, MMP-2, and BMP-2 that were differentially expressed in the joint of ARV-infected chickens, only U2AF35 induction correlated well with arthritic manifestation. Because U2AF35 may assist in mRNA splicing of proinflammatory chemokines and cytokines, our results indicated that U2AF35 induction might play an immunopathological role in ARV-induced arthritis. This study has first associated U2AF35 to viral arthritis.
Collapse
Affiliation(s)
- Yi-Hsin Fan
- Graduate Institute of Veterinary Microbiology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW In this review we summarize some of the most recent research in the area of local bone regeneration. These innovations may be relevant in the orthopaedic treatment of patients with rheumatoid arthritis, or other inflammatory arthridities, as such patients often present with inadequate bone stock. RECENT FINDINGS Bone grafting remains the standard treatment for bone deficiency. Several new approaches, such as the use of concentrated blood products or osteoprogenitor cells in conjunction with grafts, have been developed but remain to be tested clinically. Experimental studies have elucidated important aspects of the biology of bone graft remodeling and osteoprogenitor cell differentiation. Materials that can serve as graft alternatives continue to be developed. Positive experimental findings have resulted from combinations of such materials with osteoprogenitor cells or osteoinductive factors such as bone morphogenetic proteins. SUMMARY While few studies to date have examined the specific use of these new strategies in the setting of rheumatoid arthritis, many hold promise for patients with rheumatoid arthritis and other inflammatory and metabolic conditions that affect bone quality and quantity.
Collapse
Affiliation(s)
- Chisa Hidaka
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
43
|
Lisignoli G, Piacentini A, Cristino S, Grassi F, Cavallo C, Cattini L, Tonnarelli B, Manferdini C, Facchini A. CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: Increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol 2006; 210:798-806. [PMID: 17133360 DOI: 10.1002/jcp.20905] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We evaluated the role of CCL20 (MIP-3alpha) chemokine in cells directly involved in the remodeling of bone tissue (osteoblasts and osteoclasts) and we confirmed its expression in the subchondral bone tissue of rheumatoid arthritis (RA) patients. The expression of CCL20 and of its receptor CCR6 was evaluated in osteoblasts isolated from bone tissue of post-traumatic (PT) patients. Functional tests were performed to evaluate osteoblast proliferation and matrix protein modulation. Immunohistochemical analysis for CCR6, CCL20, and RANKL was performed on bone samples from RA patients. The role of CCL20 was then analyzed in osteoclast differentiation. We found that in basal conditions CCR6, but not its ligand CCL20, was highly expressed by osteoblasts. Functional analysis on osteoblasts showed that CCL20 significantly increased cellular proliferation but did not affect matrix protein expression. Pro-inflammatory cytokines significantly induced the release of CCL20 and RANKL by human osteoblasts but did not modulate CCR6 expression. Increased expression of CCR6, CCL20, and RANKL was confirmed in RA subchondral bone tissue biopsies. We demonstrated that CCL20 was also an earlier inducer of osteoclast differentiation by increasing the number of pre-osteoclasts, thus favoring cell fusion and MMP-9 release. Our results add new insight to the important role of the CCL20/CCR6, RANKL system in the bone tissue of RA. The contemporary action of CCL20 on osteoblasts and osteoclasts involved in the maintenance of bone tissue homeostasis demonstrates the important role of this compartment in the evolution of RA, by showing a clear uncoupling between new bone formation and bone resorption.
Collapse
Affiliation(s)
- Gina Lisignoli
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hayer S, Redlich K, Korb A, Hermann S, Smolen J, Schett G. Tenosynovitis and osteoclast formation as the initial preclinical changes in a murine model of inflammatory arthritis. ACTA ACUST UNITED AC 2006; 56:79-88. [PMID: 17195210 DOI: 10.1002/art.22313] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To determine the nature of the initial changes of joint inflammation occurring before, at the time of, and shortly after onset of clinically apparent arthritis. METHODS Human tumor necrosis factor (TNF)-transgenic mice were assessed for clinical, histologic, immunophenotypic, serologic, and molecular changes at the preclinical phase of arthritis, at the onset of disease, and at the stage of early clinical disease. In addition, the effects of a genetic osteoclast deficiency and pharmacologic inhibition of TNF were studied in these initial phases of disease. RESULTS Initial articular changes were observed even before the start of clinical symptoms. Infiltration of the tendon sheaths by granulocytes and macrophages as well as formation of osteoclasts next to the inflamed tendon sheaths were the first pathologic events. Tenosynovitis rapidly led to remodeling of the sheaths into pannus-like tissue, which formed osteoclasts that invaded the adjacent mineralized cartilage. Early lesions were associated with up-regulation of interleukin-1 (IL-1) and IL-6 as well as activation of p38 MAPK and ERK. In contrast, absence of osteoclasts led to uncoupling of tenosynovitis from invasion into cartilage and bone. TNF blockade also attenuated the pathologic changes associated with tenosynovitis. CONCLUSION Structural damage begins even before the onset of clinical symptoms of arthritis and involves the tendon sheaths as well as adjacent cartilage and bone. These results suggest that tenosynovitis is an initiating feature of arthritis and that joint destruction starts right from the onset of disease. Our findings thus underscore the importance of immediate initiation of an effective therapy in patients with rheumatoid arthritis.
Collapse
|
45
|
Stanley KT, VanDort C, Motyl C, Endres J, Fox DA. Immunocompetent properties of human osteoblasts: interactions with T lymphocytes. J Bone Miner Res 2006; 21:29-36. [PMID: 16355271 DOI: 10.1359/jbmr.051004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/21/2005] [Accepted: 10/06/2005] [Indexed: 12/25/2022]
Abstract
UNLABELLED We sought to determine whether osteoblasts (OBs) can serve as accessory cells (ACs) for T-cell activation and whether T cells directly activate OB production of IL-6, using primary human OBs (NHOst), the transformed fetal osteoblast line hFOB1.19, and an osteosarcoma line SaOS-2. Robust, bidirectional activating interactions were shown using each of these three human ostoblast lines. INTRODUCTION Osteoblasts (OBs) could come into contact with lymphocytes during inflammatory joint destruction and fracture repair. MATERIALS AND METHODS We used several in vitro assays to assess the ability of T cells and OBs to interact in the generation of immune and inflammatory responses. RESULTS By flow cytometry, three OB cell lines all were found to express ligands for T-cell co-stimulation. The integrin ligand CD54/ICAM-1 was constitutively expressed by hFOB1.19 and NHOst and was upregulated on SaOS-2 by IFN-gamma. MHC Class II was upregulated on all three lines by IFN-gamma. CD166/ALCAM, a ligand of the T-cell molecule CD6, was constitutively expressed on all three lines. A second putative CD6 ligand designated 3A11 was expressed on hFOB1.19 and NHOst, but not consistently on SaOS-2. The ectoenzyme CD26 (dipeptidyl peptidase IV) was expressed on hFOB1.19 and NHOst, but not on SaOS-2. All three cell lines presented superantigen to T cells, especially after treatment with IFN-gamma. Superantigen presentation was inhibited by antibodies to the leukocyte integrin CD11a/CD18 (LFA-1), MHC Class II, and CD54/ICAM-1. T cells, particularly when cytokine activated for 7 days before co-culture, stimulated all three osteoblast lines to produce interleukin (IL)-6, and this effect was boosted when IL-17 was added to the co-cultures with either resting T cells or cytokine-activated T cells. CONCLUSIONS Bidirectional activating interactions are readily shown between human T cells and several types of human OBs. The expression by OBs of ligands for the T cell-specific molecule CD6, as well as other molecules involved in immune interactions, strongly suggests that such in vitro interactions are representative of physiologic or pathologic events that occur in vivo.
Collapse
Affiliation(s)
- Katherine T Stanley
- Division of Rheumatology and Rheumatic Disease Core Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
46
|
Bugatti S, Caporali R, Manzo A, Vitolo B, Pitzalis C, Montecucco C. Involvement of subchondral bone marrow in rheumatoid arthritis: lymphoid neogenesis and in situ relationship to subchondral bone marrow osteoclast recruitment. ACTA ACUST UNITED AC 2005; 52:3448-59. [PMID: 16258900 DOI: 10.1002/art.21377] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To evaluate the presence and immunohistochemical characteristics of subchondral bone marrow inflammatory infiltrate in rheumatoid arthritis (RA) and to determine the in situ relationship between marrow inflammation and osteoclast recruitment. METHODS Bone samples and paired synovia from 8 RA patients undergoing joint surgery were analyzed by immunohistochemistry and in situ hybridization for specific lymphoid neogenetic features, such as T and B cell composition, follicular dendritic cell (FDC) networks, peripheral lymph node addressin (PNAd)-positive high endothelial venules, and lymphoid chemokine expression. Osteoclasts were identified as multinucleated tartrate-resistant acid phosphatase (TRAP)-positive and cathepsin K-positive cells adherent to the bone surface. RESULTS An inflammatory infiltrate with perivascular aggregates of variable size was detected in 7 (87.5%) of 8 synovial samples and in paired bone samples. Lymphoid neogenetic features typical of rheumatoid synovium were also recognized in the bone marrow. PNAd+ blood vessels were found in 4 of 8 patients, CD21+ FDC networks in 2 patients, CXCL13+ cells in 5 patients, and CCL21+ cells in 6 patients. TRAP-positive and cathepsin K-positive osteoclasts were identified on both the synovial and marrow sides of the bone surface. Bone marrow samples showing a higher degree of inflammation were characterized by a significantly increased number of osteoclasts adherent to the subchondral bone. CONCLUSION Our data demonstrate that lymphoid aggregates with lymphoid neogenetic features are detectable on the subchondral side of the joint in established RA. Moreover, the local inflammation/aggregation process appears to be related to osteoclast differentiation on the marrow side of subchondral bone, supporting a functional role of the bone compartment in local damage.
Collapse
Affiliation(s)
- Serena Bugatti
- University of Pavia, IRCCS Policlinico S. Matteo, Piazzale Golgi 2, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Jimenez-Boj E, Redlich K, Türk B, Hanslik-Schnabel B, Wanivenhaus A, Chott A, Smolen JS, Schett G. Interaction between Synovial Inflammatory Tissue and Bone Marrow in Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2005; 175:2579-88. [PMID: 16081832 DOI: 10.4049/jimmunol.175.4.2579] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) leads to destruction of cartilage and bone. Whether rheumatoid arthritis also affects the adjacent bone marrow is less clear. In this study, we investigated subcortical bone marrow changes in joints from patients with RA. We describe penetration of the cortical barrier by synovial inflammatory tissue, invasion into the bone marrow cavity and formation of mononuclear cell aggregates with B cells as the predominant cell phenotype. B cells expressed common B cell markers, such as CD20, CD45RA, and CD79a, and were mature B cells, as indicated by CD27 expression. Plasma cells were also present and were enriched in the regions between aggregates and inflammatory tissue. Moreover, molecules for B cell chemoattraction, such as BCA-1 and CCL-21, homing, mucosal addressin cell adhesion molecule-1 and survival, BAFF, were expressed. Endosteal bone next to subcortical bone marrow aggregates showed an accumulation of osteoblasts and osteoid deposition. In summary, we show that synovial inflammatory tissue can reach the adjacent bone marrow by fully breaking the cortical barrier, which results in formation of B cell-rich aggregates as well as increased formation of new bone. This suggests that bone marrow is an additional compartment in the disease process of RA.
Collapse
Affiliation(s)
- Esther Jimenez-Boj
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lories RJU, Luyten FP. Bone Morphogenetic Protein signaling in joint homeostasis and disease. Cytokine Growth Factor Rev 2005; 16:287-98. [PMID: 15993360 DOI: 10.1016/j.cytogfr.2005.02.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
Despite advances in therapies that target inflammation and tissue destruction in chronic arthritis, stimulation of tissue repair and restoration of joint function, the ultimate goal of treatment, is far from achieved. We introduce a new paradigm that may help to improve our understanding and management of chronic arthritis. The presence or absence of tissue responses distinguishes destructive arthritis, steady-state arthritis and remodeling arthritis. Increasing evidence suggests that reactivation of embryonic molecular pathways is an important mechanism to stimulate postnatal tissue repair. Bone Morphogenetic Proteins (BMPs) have critical roles in skeletal development and joint morphogenesis, but also in postnatal joint homeostasis and joint tissue remodeling. Therefore, modulation of BMP signaling may be an attractive therapeutic target in chronic arthritis to restore homeostasis and function of synovial joints.
Collapse
Affiliation(s)
- Rik J U Lories
- Laboratory for Skeletal Development and Joint Disorders, Department of Rheumatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | |
Collapse
|
49
|
Kersten C, Sivertsen EA, Hystad ME, Forfang L, Smeland EB, Myklebust JH. BMP-6 inhibits growth of mature human B cells; induction of Smad phosphorylation and upregulation of Id1. BMC Immunol 2005; 6:9. [PMID: 15877825 PMCID: PMC1134658 DOI: 10.1186/1471-2172-6-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 05/09/2005] [Indexed: 01/13/2023] Open
Abstract
Background Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily and are secreted proteins with pleiotropic roles in many different cell types. A potential role of BMP-6 in the immune system has been implied by various studies of malignant and rheumatoid diseases. In the present study, we explored the role of BMP-6 in normal human peripheral blood B cells. Results The B cells were found to express BMP type I and type II receptors and BMP-6 rapidly induced phosphorylation of Smad1/5/8. Furthermore, Smad-phosphorylation was followed by upregulation of Id1 mRNA and Id1 protein, whereas Id2 and Id3 expression was not affected. Furthermore, we found that BMP-6 had an antiproliferative effect both in naïve (CD19+CD27-) and memory B cells (CD19+CD27+) stimulated with anti-IgM alone or the combined action of anti-IgM and CD40L. Additionally, BMP-6 induced cell death in activated memory B cells. Importantly, the antiproliferative effect of BMP-6 in B-cells was completely neutralized by the natural antagonist, noggin. Furthermore, B cells were demonstrated to upregulate BMP-6 mRNA upon stimulation with anti-IgM. Conclusion In mature human B cells, BMP-6 inhibited cell growth, and rapidly induced phosphorylation of Smad1/5/8 followed by an upregulation of Id1.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/pharmacology
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- Bone Morphogenetic Protein 6
- Bone Morphogenetic Protein Receptors, Type I/biosynthesis
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type II/biosynthesis
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Proteins/pharmacology
- Bone Morphogenetic Proteins/physiology
- Burkitt Lymphoma/pathology
- CD40 Ligand/pharmacology
- Cell Division/drug effects
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Humans
- Immunologic Memory
- Inhibitor of Differentiation Protein 1/biosynthesis
- Inhibitor of Differentiation Protein 1/genetics
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Signal Transduction/drug effects
- Smad1 Protein/metabolism
- Smad5 Protein/metabolism
- Smad8 Protein/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Christian Kersten
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Einar A Sivertsen
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Marit E Hystad
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Lise Forfang
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Erlend B Smeland
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
- Faculty Division The Norwegian Radium Hospital, University of Oslo, Norway
| | - June H Myklebust
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|