1
|
Kanda T, Iwasaki K, Taguchi Y, Umeda M. Role of sodium-dependent vitamin C transporter 2 in human periodontal ligament fibroblasts. J Periodontal Res 2024. [PMID: 39225294 DOI: 10.1111/jre.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024]
Abstract
AIM Ascorbic acid (AA) is a water-soluble vitamin that has antioxidant properties and regulates homeostasis of connective tissue through controlling various enzymatic activities. Two cell surface glycoproteins, sodium-dependent vitamin C transporter (SVCT) 1 and SVCT2, are known as ascorbate transporters. The purpose of this study was to investigate the expression pattern and functions of SVCTs in periodontal ligament (PDL) and PDL fibroblast (PDLF). METHODS Gene expression was examined using real-time polymerase chain reaction (PCR) and reverse transcription PCR. SVCT2 expression was determined by immunofluorescence staining, western blot and flow cytometry. ALP activity and collagen production were examined using ALP staining and collagen staining. Short interfering RNA was used to knock down the gene level of SVCT2. Change of comprehensive gene expression under SVCT2 knockdown condition was examined by RNA-sequencing analysis. RESULTS Real-time PCR, fluorescent immunostaining, western blot and flowy cytometry showed that SVCT2 was expressed in PDLF and PDL. ALP activity, collagen production, and SVCT2 expression were enhanced upon AA stimulation in PDLF. The enhancement of ALP activity, collagen production, and SVCT2 expression by AA was abolished under SVCT2 knockdown condition. RNA-sequencing revealed that gene expression of CLDN4, Cyclin E2, CAMK4, MSH5, DMC1, and Nidgen2 were changed by SVCT2 knockdown. Among them, the expression of MSH5 and DMC1, which are related to DNA damage sensor activity, was enhanced by AA, suggesting the new molecular target of AA in PDLF. CONCLUSION Our study reveals the SVCT2 expression in PDL and the pivotal role of SVCT2 in mediating AA-induced enhancements of ALP activity and collagen production in PDLF. Additionally, we identify alterations in gene expression profiles, highlighting potential molecular targets influenced by AA through SVCT2. These findings deepen our understanding of periodontal tissue homeostasis mechanisms and suggest promising intervention targeting AA metabolism.
Collapse
Affiliation(s)
- Tomoko Kanda
- Graduate School of Dentistry (Department of Periodontology), Osaka Dental University, Osaka, Japan
| | - Kengo Iwasaki
- Division of Creative and Integrated Medicine, Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
2
|
Wu L, Liu Z, Xiao L, Ai M, Cao Y, Mao J, Song K. The Role of Gli1 + Mesenchymal Stem Cells in Osteogenesis of Craniofacial Bone. Biomolecules 2023; 13:1351. [PMID: 37759749 PMCID: PMC10526808 DOI: 10.3390/biom13091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma-associated oncogene homolog 1 (Gli1) is a transcriptional activator of hedgehog (Hh) signaling that regulates target gene expression and several cellular biological processes. Cell lineage tracing techniques have highlighted Gli1 as an ideal marker for mesenchymal stem cells (MSCs) in vivo. Gli1+ MSCs are critical for the osteogenesis of the craniofacial bone; however, the regulatory mechanism by which Gli1+ MSCs mediate the bone development and tissue regeneration of craniofacial bone has not been systematically outlined. This review comprehensively elucidates the specific roles of Gli1+ MSCs in craniofacial bone osteogenesis. In addition to governing craniofacial bone development, Gli1+ MSCs are associated with the tissue repair of craniofacial bone under pathological conditions. Gli1+ MSCs promote intramembranous and endochondral ossification of the craniofacial bones, and assist the osteogenesis of the craniofacial bone by improving angiopoiesis. This review summarizes the novel role of Gli1+ MSCs in bone development and tissue repair in craniofacial bones, which offers new insights into bone regeneration therapy.
Collapse
Affiliation(s)
- Laidi Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Zhixin Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| |
Collapse
|
3
|
Nathan KG, Genasan K, Kamarul T. Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review. Mar Drugs 2023; 21:md21050304. [PMID: 37233498 DOI: 10.3390/md21050304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) holds great promise for addressing the growing need for innovative therapies to treat disease conditions. To achieve this, TERM relies on various strategies and techniques. The most prominent strategy is the development of a scaffold. Polyvinyl alcohol-chitosan (PVA-CS) scaffold emerged as a promising material in this field due to its biocompatibility, versatility, and ability to support cell growth and tissue regeneration. Preclinical studies showed that the PVA-CS scaffold can be fabricated and tailored to fit the specific needs of different tissues and organs. Additionally, PVA-CS can be combined with other materials and technologies to enhance its regenerative capabilities. Furthermore, PVA-CS represents a promising therapeutic solution for developing new and innovative TERM therapies. Therefore, in this review, we summarized the potential role and functions of PVA-CS in TERM applications.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Krishnamurithy Genasan
- Department of Physiology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Tunku Kamarul
- Department of Orthopedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
4
|
Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N, Seifalian AM, Ashtari B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev Rep 2022; 18:2566-2592. [PMID: 35508757 DOI: 10.1007/s12015-021-10280-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) are globally known to be important causes of mortality and disabilities. Common treatment strategies for CVDs, such as pharmacological therapeutics impose serious challenges due to the failure of treatments for myocardial necrosis. By contrast, stem cells (SCs) based therapies are seen to be promising approaches to CVDs treatment. In such approaches, cardiomyocytes are differentiated from SCs. To fulfill SCs complete potential, the method should be appointed to generate cardiomyocytes with more mature structure and well-functioning operations. For heart repairing applications, a greatly scalable and medical-grade cardiomyocyte generation must be used. Nonetheless, there are some challenges such as immune rejection, arrhythmogenesis, tumorigenesis, and graft cell death potential. Herein, we discuss the types of potential SCs, and commonly used methods including embryoid bodies related techniques, co-culture, mechanical stimulation, and electrical stimulation and their applications, advantages and limitations in this field. An estimated 17.9 million people died from CVDs in 2019, representing 32 % of all global deaths. Of these deaths, 85 % were due to heart attack and stroke.
Collapse
Affiliation(s)
- Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Moradi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Hosseini
- Neuroscience Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran. .,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Šafaříková E, Ehlich J, Stříteský S, Vala M, Weiter M, Pacherník J, Kubala L, Víteček J. Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation. Int J Mol Sci 2022; 23:ijms23031107. [PMID: 35163031 PMCID: PMC8835127 DOI: 10.3390/ijms23031107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
Organic semiconductors are constantly gaining interest in regenerative medicine. Their tunable physico-chemical properties, including electrical conductivity, are very promising for the control of stem-cell differentiation. However, their use for combined material-based and electrical stimulation remains largely underexplored. Therefore, we carried out a study on whether a platform based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be beneficial to the differentiation of mouse embryonic stem cells (mESCs). The platform was prepared using the layout of a standard 24-well cell-culture plate. Polyethylene naphthalate foil served as the substrate for the preparation of interdigitated gold electrodes by physical vapor deposition. The PEDOT:PSS pattern was fabricated by precise screen printing over the gold electrodes. The PEDOT:PSS platform was able to produce higher electrical current with the pulsed-direct-current (DC) electrostimulation mode (1 Hz, 200 mV/mm, 100 ms pulse duration) compared to plain gold electrodes. There was a dominant capacitive component. In proof-of-concept experiments, mESCs were able to respond to such electrostimulation by membrane depolarization and elevation of cytosolic calcium. Further, the PEDOT:PSS platform was able to upregulate cardiomyogenesis and potentially inhibit early neurogenesis per se with minor contribution of electrostimulation. Hence, the present work highlights the large potential of PEDOT:PSS in regenerative medicine.
Collapse
Affiliation(s)
- Eva Šafaříková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Jiří Ehlich
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Stanislav Stříteský
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Vala
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Weiter
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jan Víteček
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Correspondence: ; Tel./Fax: +420-541-517104; Fax: +420-541-517104
| |
Collapse
|
6
|
Čater M, Majdič G. In Vitro Culturing of Adult Stem Cells: The Importance of Serum and Atmospheric Oxygen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:101-118. [PMID: 34426961 DOI: 10.1007/5584_2021_656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells are undifferentiated cells found in many different tissues in the adult human and animal body and are thought to be important for replacing damaged and dead cells during life. Due to their differentiation abilities, they have significant potential for regeneration and consequently therapeutic potential in various medical conditions. Studies on in vitro cultivation of different types of adult stem cells have shown that they have specific requirements for optimal proliferation and stemness maintenance as well as induced differentiation. The main factors affecting the success of stem cell cultivation are the composition of the growth medium, including the presence of serum, temperature, humidity, and contact with other cells and the composition of the atmosphere in which the cells grow. In this chapter, we review the literature and describe our own experience regarding the influence of the presence of fetal bovine serum in the medium and the oxygen concentration in the atmosphere on the stemness maintenance and survival of adult stem cells from various tissue sources such as adipose tissue, muscle, brain, and testicular tissue.
Collapse
Affiliation(s)
- Maša Čater
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia. .,Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
7
|
Findeisen L, Bolte J, Vater C, Petzold C, Quade M, Müller L, Goodman SB, Zwingenberger S. Cell spheroids are as effective as single cells suspensions in the treatment of critical-sized bone defects. BMC Musculoskelet Disord 2021; 22:401. [PMID: 33941144 PMCID: PMC8091496 DOI: 10.1186/s12891-021-04264-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/12/2021] [Indexed: 01/14/2023] Open
Abstract
Background Due to their multilineage potential and high proliferation rate, mesenchymal stem cells (MSC) indicate a sufficient alternative in regenerative medicine. In comparison to the commonly used 2-dimensional culturing method, culturing cells as spheroids stimulates the cell-cell communication and mimics the in vivo milieu more accurately, resulting in an enhanced regenerative potential. To investigate the osteoregenerative potential of MSC spheroids in comparison to MSC suspensions, cell-loaded fibrin gels were implanted into murine critical-sized femoral bone defects. Methods After harvesting MSCs from 4 healthy human donors and preculturing and immobilizing them in fibrin gel, cells were implanted into 2 mm murine femoral defects and stabilized with an external fixator. Therefore, 26 14- to 15-week-old nu/nu NOD/SCID nude mice were randomized into 2 groups (MSC spheroids, MSC suspensions) and observed for 6 weeks. Subsequently, micro-computed tomography scans were performed to analyze regenerated bone volume and bone mineral density. Additionally, histological analysis, evaluating the number of osteoblasts, osteoclasts and vessels at the defect side, were performed. Statistical analyzation was performed by using the Student’s t-test and, the Mann-Whitney test. The level of significance was set at p = 0.05. Results μCT-analysis revealed a significantly higher bone mineral density of the MSC spheroid group compared to the MSC suspension group. However, regenerated bone volume of the defect side was comparable between both groups. Furthermore, no significant differences in histological analysis between both groups could be shown. Conclusion Our in vivo results reveal that the osteo-regenerative potential of MSC spheroids is similar to MSC suspensions. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04264-y.
Collapse
Affiliation(s)
- Lisa Findeisen
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany.
| | - Julia Bolte
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Corina Vater
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Cathleen Petzold
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Mandy Quade
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Lars Müller
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University, Stanford, USA
| | - Stefan Zwingenberger
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
8
|
Gasson SB, Dobson LK, Chow L, Dow S, Gregory CA, Saunders WB. Optimizing In Vitro Osteogenesis in Canine Autologous and Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells with Dexamethasone and BMP-2. Stem Cells Dev 2021; 30:214-226. [PMID: 33356875 PMCID: PMC7891305 DOI: 10.1089/scd.2020.0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
A growing body of work suggests that canine mesenchymal stromal cells (cMSCs) require additional agonists such as bone morphogenic protein-2 (BMP-2) for consistent in vitro osteogenic differentiation. BMP-2 is costly and may challenge the translational relevance of the canine model. Dexamethasone enhances osteogenic differentiation of human MSCs (hMSCs) and is widely utilized in osteogenic protocols. The aim of this study was to determine the effect of BMP-2 and dexamethasone on early- and late-stage osteogenesis of autologous and induced pluripotent stem cell (iPS)-derived cMSCs. Two preparations of marrow-derived cMSCs were selected to represent exceptionally or marginally osteogenic autologous cMSCs. iPS-derived cMSCs were generated from canine fibroblasts. All preparations were evaluated using alkaline phosphatase (ALP) activity, Alizarin Red staining of osteogenic monolayers, and quantitative polymerase chain reaction. Data were reported as mean ± standard deviation and compared using one- or two-way analysis of variance and Tukey or Sidak post hoc tests. Significance was established at P < 0.05. In early-stage assays, dexamethasone decreased ALP activity for all cMSCs in the presence of BMP-2. In late-stage assays, inclusion of dexamethasone and BMP-2 at Day 1 of culture produced robust monolayer mineralization for autologous cMSCs. Delivering 100 nM dexamethasone at Day 1 improved mineralization and reduced the BMP-2 concentrations required to achieve mineralization of the marginal cMSCs. For iPS-cMSCs, dexamethasone was inhibitory to both ALP activity and monolayer mineralization. There was increased expression of osteocalcin and osterix with BMP-2 in autologous cMSCs but a more modest expression occurred in iPS cMSCs. While autologous and iPS-derived cMSCs respond similarly in early-stage osteogenic assays, they exhibit unique responses to dexamethasone and BMP-2 in late-stage mineralization assays. This study demonstrates that dexamethasone and BMP-2 can be titrated in a time- and concentration-dependent manner to enhance osteogenesis of autologous cMSC preparations. These results will prove useful for investigators performing translational studies with cMSCs while providing insight into iPS-derived cMSC osteogenesis.
Collapse
Affiliation(s)
- Shelby B. Gasson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lauren K. Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lyndah Chow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Dow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Carl A. Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - William Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Sordi MB, Curtarelli RB, da Silva IT, Fongaro G, Benfatti CAM, de Souza Magini R, Cabral da Cruz AC. Effect of dexamethasone as osteogenic supplementation in in vitro osteogenic differentiation of stem cells from human exfoliated deciduous teeth. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:1. [PMID: 33469820 PMCID: PMC7815568 DOI: 10.1007/s10856-020-06475-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/10/2020] [Indexed: 05/05/2023]
Abstract
In in vitro culture systems, dexamethasone (DEX) has been applied with ascorbic acid (ASC) and β-glycerophosphate (βGLY) as culture media supplementation to induce osteogenic differentiation of mesenchymal stem cells. However, there are some inconsistencies regarding the role of DEX as osteogenic media supplementation. Therefore, this study verified the influence of DEX culture media supplementation on the osteogenic differentiation, especially the capacity to mineralize the extracellular matrix of stem cells from human exfoliated deciduous teeth (SHED). Five groups were established: G1-SHED + Dulbecco's Modified Eagles' Medium (DMEM) + fetal bovine serum (FBS); G2-SHED + DMEM + FBS + DEX; G3-SHED + DMEM + FBS + ASC + βGLY; G4-SHED + DMEM + FBS + ASC + βGLY + DEX; G5-MC3T3-E1 + α Minimal Essential Medium (MEM) + FBS + ASC + βGLY. DNA content, alkaline phosphatase (ALP) activity, free calcium quantification in the extracellular medium, and extracellular matrix mineralization quantification through staining with von Kossa, alizarin red, and tetracycline were performed on days 7 and 21. Osteogenic media supplemented with ASC and β-GLY demonstrated similar effects on SHED in the presence or absence of DEX for DNA content (day 21) and capacity to mineralize the extracellular matrix according to alizarin red and tetracycline quantifications (day 21). In addition, the presence of DEX in the osteogenic medium promoted less ALP activity (day 7) and extracellular matrix mineralization according to the von Kossa assay (day 21), and more free calcium quantification at extracellular medium (day 21). In summary, the presence of DEX in the osteogenic media supplementation did not interfere with SHED commitment into mineral matrix depositor cells. We suggest that DEX may be omitted from culture media supplementation for SHED osteogenic differentiation in vitro studies.
Collapse
Affiliation(s)
- Mariane Beatriz Sordi
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
| | - Raissa Borges Curtarelli
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
| | - Izabella Thaís da Silva
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
- Department of Pharmaceutics Science, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil
| | - Cesar Augusto Magalhães Benfatti
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
- Department of Dentistry, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
| | - Ricardo de Souza Magini
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
- Department of Dentistry, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- Center for Research on Dental Implants, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil.
- Laboratory of Applied Virology, Federal University of Santa Catarina, Henrique da Silva Fontes Avenue, Florianópolis, 88040-900, Brazil.
- Department of Dentistry, Federal University of Santa Catarina, Delfino Conti Street, Florianópolis, 88040-900, Brazil.
| |
Collapse
|
10
|
MicroRNA-218 competes with differentiation media in the induction of osteogenic differentiation of mesenchymal stem cell by regulating β-catenin inhibitors. Mol Biol Rep 2020; 47:8451-8463. [PMID: 33051753 DOI: 10.1007/s11033-020-05885-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/30/2020] [Indexed: 01/01/2023]
Abstract
Osteoporosis, a systemic skeletal disorder specified by low bone mass, is associated with bone fragility and the raised risk of fractures. Activation of the Wnt/β-catenin signaling pathway has been directly demonstrated as a prominent biological event in the prevention of osteoporosis. Recently, critical roles of microRNAs (miRNAs) were further revealed in Wnt/β-catenin signaling activation and thereby contributing to the development and maintenance of the human skeleton. In this study, we investigated whether miR-218 can significantly promote the osteogenic differentiation of mesenchymal stem cells in conditional media by regulating β-catenin signaling inhibitors. The pre-miRNA nucleotide sequence of miR-218 was cloned into the pEGP-miR vector. Next, human adipose tissue-derived mesenchymal stem cells (AD-MSCs) were isolated, characterized, and transfected using pEGP-miR-218.Subsequently, the osteogenic potential of AD-MSCs was investigated in different treated groups using alkaline phosphatase (ALP)activity, calcium mineral deposition, and the expression of osteogenesis-related genes. Finally, negative regulators of Wnt signaling targeted by miR-218 were bioinformatically predicted. Our results indicated a significant increase in the ALP activity, mineralization, and osteogenesis-related genes expression in the AD-MSCs transfected with pEGP-miR-218. Also, the bioinformatic surveys and gene expression results showed that adenomatosis polyposis coli (APC) and glycogen synthase kinase 3 (GSK3-β) were downregulated in the transfected AD-MSCs in both differential and conditional media. This study provided evidence that miR-218 can promote osteogenic differentiation of AD-MSCs even in conditional media. Therefore, our findings suggest miR-218 as a putative novel therapeutic candidate in the context of osteoporosis and other bone metabolism-related diseases.
Collapse
|
11
|
Wang X, Jiang M, He X, Zhang B, Peng W, Guo L. N‑acetyl cysteine inhibits the lipopolysaccharide‑induced inflammatory response in bone marrow mesenchymal stem cells by suppressing the TXNIP/NLRP3/IL‑1β signaling pathway. Mol Med Rep 2020; 22:3299-3306. [PMID: 32945495 PMCID: PMC7453581 DOI: 10.3892/mmr.2020.11433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
N-acetyl cysteine (NAC) has been used to inhibit lipopolysaccharide (LPS)-induced inflammation. However, the molecular mechanism underlying its anti-inflammatory effects remains to be elucidated. The present study aimed to determine the effect of NAC on the LPS-induced inflammatory response in bone marrow mesenchymal stem cells (BMSCs) and elucidate the underlying molecular mechanism. First, BMSCs were stimulated by LPS following pretreatment with NAC (0, 0.1, 0.5, 1 or 2 mM). A Cell Counting Kit 8 assay was used to determine the number of viable cells and 1 mM NAC was selected as the experimental concentration. Then, the secretion of inflammatory factors, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α was evaluated by enzyme-linked immunosorbent assay. Finally, the expression levels of mRNA and proteins, including apoptosis-associated speck-like protein containing a CARD (ASC), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, thioredoxin-interacting protein (TXNIP), and thioredoxin (TRX), were evaluated by reverse transcription-quantitative PCR and western blot analysis, respectively. The results demonstrated that the secretion of inflammatory factors, which was increased by the administration of LPS, was reduced by pretreatment with NAC. Furthermore, NAC reduced the expression of ASC, NLRP3, caspase-1 and TXNIP, but enhanced that of TRX. To conclude, NAC had anti-inflammatory effects on LPS-stimulated BMSCs, which was closely associated with the TXNIP/NLRP3/IL-1β signaling pathway. Thus, NAC may be a promising treatment to attenuate the inflammatory response in LPS-induced BMSCs.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mengyi Jiang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoping He
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bo Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Peng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
12
|
Human olfactory mesenchymal stromal cells co-expressing horizontal basal and ensheathing cell proteins in culture. ACTA ACUST UNITED AC 2020; 40:72-88. [PMID: 32220165 PMCID: PMC7357377 DOI: 10.7705/biomedica.4762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 12/18/2022]
Abstract
Introduction: The olfactory neuro-epithelium has an intrinsic capability of renewal during lifetime provided by the existence of globose and horizontal olfactory precursor cells. Additionally, mesenchymal stromal olfactory cells also support the homeostasis of the olfactory mucosa cell population. Under in vitro culture conditions with Dulbecco modified eagle/F12 medium supplemented with 10% fetal bovine serum, tissue biopsies from upper turbinate have generated an adherent population of cells expressing mainly mesenchymal stromal phenotypic markers. A closer examination of these cells has also found co-expression of olfactory precursors and ensheathing cell phenotypic markers. These results were suggestive of a unique property of olfactory mesenchymal stromal cells as potentially olfactory progenitor cells. Objective: To study whether the expression of these proteins in mesenchymal stromal cells is modulated upon neuronal differentiation. Materials and methods: We observed the phenotype of olfactory stromal cells under DMEM/F12 plus 10% fetal bovine serum in comparison to cells from spheres induced by serum-free medium plus growth factors inducers of neural progenitors. Results: The expression of mesenchymal stromal (CD29+, CD73+, CD90+, CD45-), horizontal basal (ICAM-1/CD54+, p63+, p75NGFr+), and ensheathing progenitor cell (nestin+, GFAP+) proteins was determined in the cultured population by flow cytometry. The determination of Oct 3/4, Sox-2, and Mash-1 transcription factors, as well as the neurotrophins BDNF, NT3, and NT4 by RT-PCR in cells, was indicative of functional heterogeneity of the olfactory mucosa tissue sample. Conclusions: Mesenchymal and olfactory precursor proteins were downregulated by serum-free medium and promoted differentiation of mesenchymal stromal cells into neurons and astroglial cells.
Collapse
|
13
|
Leśniak K, Płonka J, Śmiga-Matuszowicz M, Brzychczy-Włoch M, Kazek-Kęsik A. Functionalization of PEO layer formed on Ti-15Mo for biomedical application. J Biomed Mater Res B Appl Biomater 2019; 108:1568-1579. [PMID: 31643133 DOI: 10.1002/jbm.b.34504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/13/2019] [Accepted: 10/06/2019] [Indexed: 01/18/2023]
Abstract
In the present work, deposition of poly(sebacic anhydride) PSBA loaded by amoxicillin, cefazolin, or vancomycin on a previously anodized Ti-15Mo surface is presented. PSBA loaded by the drug was deposited so as not to lose the functionality of the porous oxide layer microstructure. The morphology was evaluated using scanning electron microscopy, surface roughness, and wettability. The drug concentration was evaluated using high-performance liquid chromatography. It was determined that the drugs were loaded into coatings in the range of 35.2-122.87 μg/cm2 of Ti sample. The drugs released more than 16% after 0.5 hr of the hybrid coating immersion in artificial saliva. After 3 days, the PSBA coatings were degraded by 51.3 mol %, and after 7 days by 77.8 mol %, which makes it possible to load the material by different, biologically active substances. An antimicrobial investigation of Staphylococcus aureus (DSM 24167) and Staphylococcus epidermidis (ATCC 700296) confirmed the activity of the hybrid layers against the pathogens. Hybrid layer with vancomycin best inhibits the adhesion of the bacteria, whereas coatings with amoxicillin and cefazolin showed a much better bactericidal activity. In this article, the difference in the obtained results is discussed, as well as the possibility of the application of this functional material in biomedicine.
Collapse
Affiliation(s)
- Katarzyna Leśniak
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Gliwice, Poland
| | - Joanna Płonka
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Gliwice, Poland
| | - Monika Śmiga-Matuszowicz
- Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
| | | | - Alicja Kazek-Kęsik
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
14
|
Padhi A, Nain AS. ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Ann Biomed Eng 2019; 48:1071-1089. [PMID: 31485876 DOI: 10.1007/s10439-019-02337-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Stem cell regenerative potential owing to the capacity to self-renew as well as differentiate into other cell types is a promising avenue in regenerative medicine. Stem cell niche not only provides physical scaffolding but also possess instructional capacity as it provides a milieu of biophysical and biochemical cues. Extracellular matrix (ECM) has been identified as a major dictator of stem cell lineage, thus understanding the structure of in vivo ECM pertaining to specific tissue differentiation will aid in devising in vitro strategies to improve the differentiation efficiency. In this review, we summarize details about the native architecture, composition and mechanical properties of in vivo ECM of the early embryonic stages and the later adult stages. Native ECM from adult tissues categorized on their origin from respective germ layers are discussed while engineering techniques employed to facilitate differentiation of stem cells into particular lineages are noted. Overall, we emphasize that in vitro strategies need to integrate tissue specific ECM biophysical cues for developing accurate artificial environments for optimizing stem cell differentiation.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
15
|
Bolte J, Vater C, Culla AC, Ahlfeld T, Nowotny J, Kasten P, Disch AC, Goodman SB, Gelinsky M, Stiehler M, Zwingenberger S. Two-step stem cell therapy improves bone regeneration compared to concentrated bone marrow therapy. J Orthop Res 2019; 37:1318-1328. [PMID: 30628121 DOI: 10.1002/jor.24215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Adult stem cells are a promising tool to positively influence bone regeneration. Concentrated bone marrow therapy entails isolating osteoprogenitor cells during surgery with, however, only low cells yield. Two step stem cell therapy requires an additional harvesting procedure but generates high numbers of progenitor cells that facilitate osteogenic pre-differentiation. To further improve bone regeneration, stem cell therapy can be combined with growth factors from platelet rich plasma (PRP) or its lysate (PL) to potentially fostering vascularization. The aim of this study was to investigate the effects of bone marrow concentrate (BMC), osteogenic pre-differentiation of mesenchymal stromal cells (MSCs), and PL on bone regeneration and vascularization. Bone marrow from four different healthy human donors was used for either generation of BMC or for isolation of MSCs. Seventy-two mice were randomized to six groups (Control, PL, BMC, BMC + PL, pre-differentiated MSCs, pre-differentiated MSCs + PL). The influence of PL, BMC, and pre-differentiated MSCs was investigated systematically in a 2 mm femoral bone defect model. After a 6-week follow-up, the pre-differentiated MSCs + PL group showed the highest bone volume, highest grade of histological defect healing and highest number of bridged defects with measurable biomechanical stiffness. Using expanded and osteogenically pre-differentiated MSCs for treatment of a critical-size bone defect was favorable with regards to bone regeneration compared to treatment with cells from BMC. The addition of PL alone had no significant influence; therefore the role of PL for bone regeneration remains unclear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1318-1328, 2019.
Collapse
Affiliation(s)
- Julia Bolte
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Corina Vater
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Anna Carla Culla
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Jörg Nowotny
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Philip Kasten
- Orthopädisch Chirurgisches Centrum, Tübingen, Germany
| | - Alexander C Disch
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Maik Stiehler
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
16
|
Waqas M, Vierra C, Kaplan DL, Othman S. Feasibility of low field MRI and proteomics for the analysis of Tissue Engineered bone. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Andreeva ER, Matveeva DK. Multipotent Mesenchymal Stromal Cells and Extracellular Matrix: Regulation under Hypoxia. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s0362119718060038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Kamaldinov T, Erndt-Marino J, Diaz-Rodriguez P, Chen H, Gharat T, Munoz-Pinto D, Arduini B, Hahn MS. Tuning Forkhead Box D3 overexpression to promote specific osteogenic differentiation of human embryonic stem cells while reducing pluripotency in a three-dimensional culture system. J Tissue Eng Regen Med 2018; 12:2256-2265. [PMID: 30350469 DOI: 10.1002/term.2757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Clinical use of human embryonic stem cells (hESCs) in bone regeneration applications requires that their osteogenic differentiation be highly controllable as well as time- and cost-effective. The main goals of the current work were thus (a) to assess whether overexpression of pluripotency regulator Forkhead Box D3 (FOXD3) can enhance the osteogenic commitment of hESCs seeded in three-dimensional (3D) scaffolds and (b) to evaluate if the degree of FOXD3 overexpression regulates the strength and specificity of hESC osteogenic commitment. In conducting these studies, an interpenetrating hydrogel network consisting of poly(ethylene glycol) diacrylate and collagen I was utilized as a 3D culture platform. Expression of osteogenic, chondrogenic, pluripotency, and germ layer markers by encapsulated hESCs was measured after 2 weeks of culture in osteogenic medium in the presence or absence doxycycline-induced FOXD3 transgene expression. Towards the first goal, FOXD3 overexpression initiated 24 hr prior to hESC encapsulation, relative to unstimulated controls, resulted in upregulation of osteogenic markers and enhanced calcium deposition, without promoting off-target effects. However, when initiation of FOXD3 overexpression was increased from 24 to 48 hr prior to encapsulation, hESC osteogenic commitment was not further enhanced and off-target effects were noted. Specifically, relative to 24-hr prestimulation, initiation of FOXD3 overexpression 48 hr prior to encapsulation yielded increased expression of pluripotency markers while reducing mesodermal but increasing endodermal germ layer marker expression. Combined, the current results indicate that the controlled overexpression of FOXD3 warrants further investigation as a mechanism to guide enhanced hESC osteogenic commitment.
Collapse
Affiliation(s)
- Timothy Kamaldinov
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Hongyu Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Tanmay Gharat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Dany Munoz-Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Brigitte Arduini
- Rensselaer Center for Stem Cell Research, Rensselaer Polytechnic Institute, Troy, New York
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
19
|
Zhou X, Yuan L, Wu C, Cheng Chen, Luo G, Deng J, Mao Z. Recent review of the effect of nanomaterials on stem cells. RSC Adv 2018; 8:17656-17676. [PMID: 35542058 PMCID: PMC9080527 DOI: 10.1039/c8ra02424c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 01/18/2023] Open
Abstract
The field of stem-cell-therapy offers considerable promise as a means of delivering new treatments for a wide range of diseases. Recent progress in nanotechnology has stimulated the development of multifunctional nanomaterials (NMs) for stem-cell-therapy. Several clinical trials based on the use of NMs are currently underway for stem-cell-therapy purposes, such as drug/gene delivery and imaging. However, the interactions between NMs and stem cells are far from being completed, and the effects of the NMs on cellular behavior need critical evaluation. In this review, the interactions between several types of mostly used NMs and stem cells, and their associated possible mechanisms are systematically discussed, with specific emphasis on the possible differentiation effects induced by NMs. It is expected that the enhanced understanding of NM-stem cell interactions will facilitate biomaterial design for stem-cell-therapy and regenerative medicine applications.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Ophthalmology, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Chengzhou Wu
- Department of Respiratory, Wuxi Country People's Hospital Chongqing 405800 China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
20
|
Liu L, Liu K, Yan Y, Chu Z, Tang Y, Tang C. Two Transcripts of FBXO5 Promote Migration and Osteogenic Differentiation of Human Periodontal Ligament Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7849294. [PMID: 29850565 PMCID: PMC5933072 DOI: 10.1155/2018/7849294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Enhanced migration and osteogenic differentiation of mesenchymal stem cells (MSCs) are beneficial for MSC-mediated periodontal tissue regeneration, a promising method for periodontitis treatment. FBXO5, a member of the F-box protein family, is involved in the osteogenic differentiation of MSCs. Here, we investigated the effect of FBXO5 on human periodontal ligament stem cells (hPDLSCs). MATERIALS AND METHODS hPDLSCs were isolated from periodontal ligament tissue. Lentivirus FBXO5 shRNA was used to silence FBXO5 expression. Two transcripts of FBXO5 were overexpressed and transduced into hPDLSCs via retroviral infection. Migration and osteogenic differentiation of hPDLSCs were evaluated using the scratch migration assay, alkaline phosphatase (ALP) activity, ALP staining, alizarin red staining, western blotting, and real-time polymerase chain reaction. RESULTS The expression of FBXO5 was upregulated after osteogenic induction in hPDLSCs. FBXO5 knockdown attenuated migration, inhibited ALP activity and mineralization, and decreased RUNX2, OSX, and OCN expression, while the overexpression of two transcript isoforms significantly accelerated migration, enhanced ALP activity and mineralization, and increased RUNX2, OSX, and OCN expression in hPDLSCs. CONCLUSIONS Both isoforms of FBXO5 promoted the migration and osteogenic differentiation potential of hPDLSCs, which identified a potential target for improving periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lin Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanzhe Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuangzhuang Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunbo Tang
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Li K, Hu D, Xie Y, Huang L, Zheng X. Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions. NANOTECHNOLOGY 2018; 29:084001. [PMID: 29256438 DOI: 10.1088/1361-6528/aaa2b4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomedical coatings for orthopedic implants should facilitate osseointegration and mitigate implant-induced inflammatory reactions. In our study, Ca-Si coatings with Sr-containing nanowire-like structures (NW-Sr-CS) were achieved via hydrothermal treatment. In order to identify the effect of nanowire-like topography and Sr dopant on the biological properties of Ca-Si-based coatings, the original Ca-Si coating, Ca-Si coatings modified with nanoplate (NP-CS) and similar nanowire-like structure (NW-CS) were fabricated as the control. Surface morphology, phase composition, surface area, zeta potential and ion release of these coatings were characterized. The in vitro osteogenic activities and immunomodulatory properties were evaluated with bone marrow stromal cells (BMSCs) and RAW 264.7 cells, a mouse macrophage cell line. Compared with the CS and NP-CS coatings, the NW-CS coating possessed a larger surface area and pore volume, beneficial protein adsorption, up-regulated the expression levels of integrin β1, Vinculin and focal adhesion kinase and promoted cell spreading. Furthermore, the NW-CS coating significantly enhanced the osteogenic differentiation and mineralization as indicated by the up-regulation of ALP activity, mineralized nodule formation and osteoblastogenesis-related gene expression. With the introduction of Sr, the NW-Sr-CS coatings exerted a greater effect on the BMSC proliferation rate, calcium sensitive receptor gene expression as well as PKC and ERK1/2 phosphorylation. In addition, the Sr-doped coatings significantly up-regulated the ratio of OPG/RANKL in the BMSCs. The NW-Sr-CS coatings could modulate the polarization of macrophages towards the wound-healing M2 phenotype, reduce the mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and enhance anti-inflammatory cytokines (IL-1ra, IL-10). The Sr-doped nanowire modification may be a valuable approach to enhance osteogenic activities and reduce inflammatory reactions.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Oryan A, Baghaban Eslaminejad M, Kamali A, Hosseini S, Sayahpour FA, Baharvand H. Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. J Biomed Mater Res B Appl Biomater 2018; 107:50-64. [PMID: 29468802 DOI: 10.1002/jbm.b.34094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/14/2018] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
Abstract
Critical-sized bone defects constitute a major health issue in orthopedics and usually cause mal-unions due to an inadequate number of migrated progenitor cells into the defect site or their incomplete differentiation into osteogenic precursor cells. The current study aimed to develop an optimized osteoinductive and angiogenic scaffold by incorporation of strontium (Sr) and bioglass (BG) into gelatin/nano-hydroxyapatite (G/nHAp) seeded with bone marrow mesenchymal stem cells to enhance bone regeneration. The scaffolds were fabricated by a freeze-drying technique and characterized in terms of morphology, structure, porosity and degradation rate. The effect of fabricated scaffolds on cell viability, attachment and differentiation into osteoblastic lineages was evaluated under in vitro condition. Micro computed tomography scan, histological and histomorphometric analysis were performed after implantation of scaffolds into the radial bone defects in rat. RT-PCR analysis showed that G/nHAp/BG/Sr scaffold significantly increased the expression level of osteogenic and angiogenic markers in comparison to other groups (P < 0.05). Moreover, the defects treated with the BMSCs-seeded scaffolds showed superior bone formation and mechanical properties compared to the cell-free scaffolds 4 and 12 weeks post-implantation. Finally, the BMSCs-seeded G/nHAp/BG/Sr scaffold showed the greatest bone regenerative capacity which was more similar to autograft. It is concluded that combination of Sr, BG, and nHAp can synergistically enhance the bone regeneration process. In addition, our results demonstrated that the BMSCs have the potential to considerably increase the bone regeneration ability of osteoinductive scaffolds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 50-64, 2019.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
23
|
Tew LS, Ching JY, Ngalim SH, Khung YL. Driving mesenchymal stem cell differentiation from self-assembled monolayers. RSC Adv 2018; 8:6551-6564. [PMID: 35540392 PMCID: PMC9078311 DOI: 10.1039/c7ra12234a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/27/2018] [Indexed: 12/26/2022] Open
Abstract
The utilization of self-assembled monolayer (SAM) systems to direct Mesenchymal Stem Cell (MSC) differentiation has been covered in the literature for years, but finding a general consensus pertaining to its exact role over the differentiation of stem cells had been rather challenging. Although there are numerous reports on surface functional moieties activating and inducing differentiation, the results are often different between reports due to the varying surface conditions, such as topography or surface tension. Herein, in view of the complexity of the subject matter, we have sought to catalogue the recent developments around some of the more common functional groups on predominantly hard surfaces and how these chemical groups may influence the overall outcome of the mesenchymal stem cells (MSC) differentiation so as to better establish a clearer underlying relationship between stem cells and their base substratum interactions. Graphical illustration showing the functional groups that drive MSC differentiation without soluble bioactive cues within the first 14 days.![]()
Collapse
Affiliation(s)
- L. S. Tew
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - J. Y. Ching
- Institute of Biological Science and Technology
- China Medical University
- Taichung
- Republic of China
| | - S. H. Ngalim
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Y. L. Khung
- Institute of New Drug Development
- China Medical University
- Taichung
- Republic of China
| |
Collapse
|
24
|
Li Y, Luo Z, Xu X, Li Y, Zhang S, Zhou P, Sui Y, Wu M, Luo E, Wei S. Aspirin enhances the osteogenic and anti-inflammatory effects of human mesenchymal stem cells on osteogenic BFP-1 peptide-decorated substrates. J Mater Chem B 2017; 5:7153-7163. [PMID: 32263906 DOI: 10.1039/c7tb01732d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several bone diseases, including arthritis, fracture and osteoporosis, have a pathophysiologically important inflammatory component. Sustained inflammation can result in delayed bone healing. Therefore, to promote bone repair, it is important to inhibit inflammatory bone erosion and suppress pro-inflammatory mediators. In this study, aspirin significantly enhanced immunomodulation and osteogenic differentiation in human mesenchymal stem cells (hMSCs). Additionally, an osteogenic BFP-1 peptide-decorated substrate (PS-PEP) enhanced osteogenic differentiation of aspirin-treated hMSCs compared to a pristine substrate. Alkaline phosphatase assay, quantitative real-time polymerase chain reaction, immunostaining and Alizarin Red S staining revealed that aspirin-treated hMSCs cultured on PS-PEP exhibited enhanced osteogenesis compared with untreated cells. Thus, we report here that the anti-inflammatory and osteogenic effects of aspirin promote the activity and osteogenesis of hMSCs. The combination of aspirin and an osteogenic BFP-1 peptide-decorated substrate suppresses the production of pro-inflammatory mediators and promotes osteogenic differentiation of hMSCs; therefore, this novel strategy has potential for application in cell therapy and bone tissue engineering.
Collapse
Affiliation(s)
- Yan Li
- Central Laboratory, School and Hospital of Stomatology, Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hu D, Li K, Xie Y, Pan H, Zhao J, Huang L, Zheng X. The combined effects of nanotopography and Sr ion for enhanced osteogenic activity of bone marrow mesenchymal stem cells (BMSCs). J Biomater Appl 2017; 31:1135-1147. [DOI: 10.1177/0885328217692140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both surface topography and chemistry have a significant influence on the biological performance of orthopedic implant coatings. In our study, a surface modification strategy embodying bioactive trace element incorporation and nanotopography construction was employed to enhance the osteogenic activity of calcium silicate (Ca-Si) coatings. We developed strontium-loaded nanolayer on plasma sprayed Ca-Si (CS) coating via hydrothermal treatment which was denoted as Sr-NT-CS. The original CS coating and the CS coating modified with similar nanotopography (NT-CS) were studied in parallel. We investigated the cellular effects of surface topography and released Sr ion on the adhesion, proliferation, differentiation, and mineralization of BMSCs and the associated molecular mechanisms. The results indicated that the nanotopography activated integrin β1, promoted the spread of BMSCs into a polygonal osteoblastic shape, and induced higher levels of collagen secretion. The Sr incorporation stimulated osteogenic differentiation and mineralization as indicated by the increases in ALP activity and mineralized nodules formation. The examination of gene expressions revealed that Sr ion exerted the effects by interacting with extracellular calcium sensitive receptor (CaSR), and combined with the nanotopographical cue for the up-regulation of osteogenic master transcription factor Runx2. The promoted Runx2 subsequently affected osteoblast (OB) marker genes (BMP-2, BSP, OPN, and OCN), thus driving BMSCs to differentiate into OBs. Moreover, the Sr incorporation inhibited osteoclastogenesis, as indicated by the down-regulation of interleukin-6 (IL-6) and the inhibition of RANKL/RANK system. Those results suggested that our developed Sr-NT-CS coating have combined the effects of nanotopography and Sr ion for enhanced osteogenic activity of BMSCs.
Collapse
Affiliation(s)
- Dandan Hu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youtao Xie
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Houhua Pan
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liping Huang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuebin Zheng
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Rimando MG, Wu HH, Liu YA, Lee CW, Kuo SW, Lo YP, Tseng KF, Liu YS, Lee OKS. Glucocorticoid receptor and Histone deacetylase 6 mediate the differential effect of dexamethasone during osteogenesis of mesenchymal stromal cells (MSCs). Sci Rep 2016; 6:37371. [PMID: 27901049 PMCID: PMC5128810 DOI: 10.1038/srep37371] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
Lineage commitment and differentiation of mesenchymal stromal cells (MSCs) into osteoblasts in vitro is enhanced by a potent synthetic form of glucocorticoid (GC), dexamethasone (Dex). Paradoxically, when used chronically in patients, GCs exert negative effects on bone, a phenomenon known as glucocorticoid-induced osteoporosis in clinical practice. The mechanism on how GC differentially affects bone precursor cells to become mature osteoblasts during osteogenesis remains elusive. In this study, the dose and temporal regulation of Dex on MSC differentiation into osteoblasts were investigated. We found that continuous Dex treatment led to a net reduction of the maturation potential of differentiating osteoblasts. This phenomenon correlated with a decrease in glucocorticoid receptor (GR) expression, hastened degradation, and impaired sub cellular localization. Similarly, Histone Deacetylase 6 (HDAC6) expression was found to be regulated by Dex, co-localized with GR and this GR-HDAC6 complex occupied the promoter region of the osteoblast late marker osteocalcin (OCN). Combinatorial inhibition of HDAC6 and GR enhanced OCN expression. Together, the cross-talk between the Dex effector molecule GR and the inhibitory molecule HDAC6 provided mechanistic explanation of the bimodal effect of Dex during osteogenic differentiation of MSCs. These findings may provide new directions of research to combat glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Marilyn G Rimando
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica and Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hao-Hsiang Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yu-An Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chien-Wei Lee
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| | - Shu-Wen Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yin-Ping Lo
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| | - Kuo-Fung Tseng
- Department of Orthopaedics, Cheng-Hsin General Hospital, Taipei 11220, Taiwan
| | - Yi-Shiuan Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Taipei City Hospital, Taipei 10341, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| |
Collapse
|
27
|
Lucaciu O, Crisan B, Crisan L, Baciut M, Soritau O, Bran S, Biris AR, Hurubeanu L, Hedesiu M, Vacaras S, Kretschmer W, Dirzu N, Campian RS, Baciut G. In quest of optimal drug-supported and targeted bone regeneration in the cranio facial area: a review of techniques and methods. Drug Metab Rev 2016; 47:455-69. [PMID: 26689239 DOI: 10.3109/03602532.2015.1124889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Craniofacial bone structures are frequently and extensively affected by trauma, tumors, bone infections and diseases, age-related degeneration and atrophy, as well as congenital malformations and developmental anomalies. Consequently, severe encumbrances are imposed on both patients and healthcare systems due to the complex and lengthy treatment duration. The search for alternative methods to bone transplantation, grafting and the use of homologous or heterologous bone thus responds to one of the most significant problems in human medicine. This review focuses on the current consensus of bone-tissue engineering in the craniofacial area with emphasis on drug-induced stem cell differentiation and induced bone regeneration.
Collapse
Affiliation(s)
- Ondine Lucaciu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Bogdan Crisan
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Liana Crisan
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Baciut
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Olga Soritau
- b "Ion Chiricuta" Oncological Institute , Cluj-Napoca , Romania
| | - Simion Bran
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Alexandru Radu Biris
- c National Institute for Research and Development of Isotopic and Molecular Technologies , Cluj-Napoca , Romania
| | - Lucia Hurubeanu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Hedesiu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Sergiu Vacaras
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | | | - Noemi Dirzu
- e Technical University of Cluj-Napoca , Cluj-Napoca , Romania
| | - Radu Septimiu Campian
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Grigore Baciut
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
28
|
Wu Y, Sriram G, Fawzy AS, Fuh JYH, Rosa V, Cao T, Wong YS. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts. J Biomater Appl 2016; 31:181-92. [DOI: 10.1177/0885328216652537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological function of adherent cells depends on the cell–cell and cell–matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro. We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future.
Collapse
Affiliation(s)
- Yang Wu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Gopu Sriram
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Amr S Fawzy
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Jerry YH Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Suzhou, People's Republic of China
| | - Vinicius Rosa
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Tong Cao
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yoke San Wong
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Current View on Osteogenic Differentiation Potential of Mesenchymal Stromal Cells Derived from Placental Tissues. Stem Cell Rev Rep 2016; 11:570-85. [PMID: 25381565 PMCID: PMC4493719 DOI: 10.1007/s12015-014-9569-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cells (MSC) isolated from human term placental tissues possess unique characteristics, including their peculiar immunomodulatory properties and their multilineage differentiation potential. The osteogenic differentiation capacity of placental MSC has been widely disputed, and continues to be an issue of debate. This review will briefly discuss the different MSC populations which can be obtained from different regions of human term placenta, along with their unique properties, focusing specifically on their osteogenic differentiation potential. We will present the strategies used to enhance osteogenic differentiation potential in vitro, such as through the selection of subpopulations more prone to differentiate, the modification of the components of osteo-inductive medium, and even mechanical stimulation. Accordingly, the applications of three-dimensional environments in vitro and in vivo, such as non-synthetic, polymer-based, and ceramic scaffolds, will also be discussed, along with results obtained from pre-clinical studies of placental MSC for the regeneration of bone defects and treatment of bone-related diseases.
Collapse
|
30
|
Martins M, Ribeiro D, Martins A, Reis RL, Neves NM. Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem Cells Can Modulate Lineage Commitment. Stem Cell Reports 2016; 6:284-91. [PMID: 26923821 PMCID: PMC4788762 DOI: 10.1016/j.stemcr.2016.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 12/29/2022] Open
Abstract
The effective osteogenic commitment of human bone marrow mesenchymal stem cells (hBMSCs) is critical for bone regenerative therapies. Extracellular vesicles (EVs) derived from hBMSCs have a regenerative potential that has been increasingly recognized. Herein, the osteoinductive potential of osteogenically induced hBMSC-EVs was examined. hBMSCs secreted negatively charged nanosized vesicles (∼35 nm) with EV-related surface markers. The yield of EVs over 7 days was dependent on an osteogenic stimulus (standard chemical cocktail or RUNX2 cationic-lipid transfection). These EVs were used to sequentially stimulate homotypic uncommitted cells during 7 days, matching the seeding density of EV parent cells, culture time, and stimuli. Osteogenically committed hBMSC-EVs induced an osteogenic phenotype characterized by marked early induction of BMP2, SP7, SPP1, BGLAP/IBSP, and alkaline phosphatase. Both EV groups outperformed the currently used osteoinductive strategies. These data show that naturally secreted EVs can guide the osteogenic commitment of hBMSCs in the absence of other chemical or genetic osteoinductors. hBMSC-EV secretion during culture is osteogenic stimulus dependent Osteogenically induced hBMSC-EVs are early osteoinductors Osteogenically induced hBMSC-EVs outperform currently used osteoinductive strategies
Collapse
Affiliation(s)
- Margarida Martins
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Diana Ribeiro
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Nuno Meleiro Neves
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
31
|
Nascent osteoblast matrix inhibits osteogenesis of human mesenchymal stem cells in vitro. Stem Cell Res Ther 2015; 6:258. [PMID: 26696301 PMCID: PMC4688995 DOI: 10.1186/s13287-015-0223-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/18/2015] [Accepted: 11/03/2015] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Adult mesenchymal stem cells (MSCs) are considered promising candidates for cell-based therapies. Their potential utility derives primarily from their immunomodulatory activity, multi-lineage differentiation potential, and likely progenitor cell function in wound healing and repair of connective tissues. However, in vitro, MSCs often senesce and spontaneously differentiate into osteoblasts after prolonged expansion, likely because of lack of regulatory microenvironmental signals. In vivo, osteoblasts that line the endosteal bone marrow surface are in close proximity to MSCs in the marrow stroma and thus may help to regulate MSC fate. METHODS We examined here how osteogenic differentiation of MSCs in vitro is affected by exposure to osteoblastic cells (OBCs). Human bone marrow MSCs were exposed to OBCs, derived by induced osteogenic differentiation of MSCs, either directly in contact co-cultures, or indirectly to OBC-conditioned medium or decellularized OBC extracellular matrix (ECM). RESULTS Our results showed that OBCs can act as negative regulators of MSC osteogenesis. mRNA expression profiling revealed that OBCs did not affect MSC osteogenesis in direct contact cultures or via secreted factors. However, seeding MSCs on decellularized OBC ECM significantly decreased expression of several osteogenic genes and maintained their fibroblastic morphologies. Proteomic analysis identified some of the candidate protein regulators of MSC osteogenesis. CONCLUSIONS These findings provide the basis for future studies to elucidate the signaling mechanisms responsible for osteoblast matrix-mediated regulation of MSC osteogenesis and to better manipulate MSC fate in vitro to minimize their spontaneous differentiation.
Collapse
|
32
|
Rao V, Shih YRV, Kang H, Kabra H, Varghese S. Adenosine Signaling Mediates Osteogenic Differentiation of Human Embryonic Stem Cells on Mineralized Matrices. Front Bioeng Biotechnol 2015; 3:185. [PMID: 26618155 PMCID: PMC4639610 DOI: 10.3389/fbioe.2015.00185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022] Open
Abstract
Human embryonic stem cells (hESCs) are attractive cell sources for tissue engineering and regenerative medicine due to their self-renewal and differentiation ability. Design of biomaterials with an intrinsic ability that promotes hESC differentiation to the targeted cell type boasts significant advantages for tissue regeneration. We have previously developed biomineralized calcium phosphate (CaP) matrices that inherently direct osteogenic differentiation of hESCs without the need of osteogenic-inducing chemicals or growth factors. Here, we show that CaP matrix-driven osteogenic differentiation of hESCs occurs through A2b adenosine receptor (A2bR). The inhibition of the receptor with an A2bR-specific antagonist attenuated mineralized matrix-mediated osteogenic differentiation of hESCs. In addition, when cultured on matrices in an environment deficient of CaP minerals, exogenous adenosine promoted osteogenic differentiation of hESCs, but was attenuated by the inhibition of A2bR. Such synthetic matrices that intrinsically support osteogenic commitment of hESCs are not only beneficial for bone tissue engineering but can also be used as a platform to study the effect of the physical and chemical cues to the extracellular milieu on stem cell commitment. Insights into the cell signaling during matrix-induced differentiation of stem cells will also help define the key processes and enable discovery of new targets that promote differentiation of pluripotent stem cells for bone tissue engineering.
Collapse
Affiliation(s)
- Vikram Rao
- Department of Bioengineering, University of California San Diego , La Jolla, CA , USA
| | - Yu-Ru V Shih
- Department of Bioengineering, University of California San Diego , La Jolla, CA , USA
| | - Heemin Kang
- Materials Science and Engineering Program, University of California San Diego , La Jolla, CA , USA
| | - Harsha Kabra
- Department of Bioengineering, University of California San Diego , La Jolla, CA , USA
| | - Shyni Varghese
- Department of Bioengineering, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
33
|
Jung YT, Yoo KY, Lee HS. Bone formation of embryonic stem cell-derived mesenchymal stem cells. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-014-0425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Cuadros TR, Erices AA, Aguilera JM. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J Mech Behav Biomed Mater 2015; 46:331-42. [DOI: 10.1016/j.jmbbm.2014.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
35
|
Goltzman D. Inferences from genetically modified mouse models on the skeletal actions of vitamin D. J Steroid Biochem Mol Biol 2015; 148:219-24. [PMID: 25237033 DOI: 10.1016/j.jsbmb.2014.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 02/04/2023]
Abstract
Vitamin D has pleiotropic extra-skeletal effects which have been noted in mouse models of deletion of either the 25-hydroxy vitamin D 1α-hydroxylase enzyme, cyp27b1 (1OHase(-/-) mice) or of the vitamin D receptor (Vdr(-/-) mice); these may be preventable or reversible by either restoring normal signaling of the 1,25(OH)2D/VDR system, or in some cases by restoring normal mineral homeostasis. However, effects on skeletal and mineral homeostasis are clearly the major phenotype observed in humans with loss-of-function mutations in either CYP27B1 or VDR. In mouse phenocopies of these human disorders, correction of hypocalcemia and hypophosphatemia reduce elevated circulating parathyroid hormone concentrations and normalize impaired bone mineralization, but restoration of normal 1,25(OH)2D/VDR signaling may be required for optimal bone formation. Induction of high endogenous 1,25(OH)2D concentrations in genetically modified mouse models may cause increased bone resorption and decreased mineralization. Transgenic Vdr overexpression and conditional Vdr deletion in cells of the osteoblastic lineage have also provided insights into the stages of osteoblast differentiation which may mediate these actions. These anabolic and catabolic effects of the 1,25(OH)2D system on bone may therefore be a function of both the ambient concentration of circulating 1,25(OH)2D and the stage of differentiation of the osteoblast. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- D Goltzman
- Calcium Research Laboratory, Departments of Medicine and Physiology, McGill University Health Centre, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
36
|
Wang M, Deng Y, Zhou P, Luo Z, Li Q, Xie B, Zhang X, Chen T, Pei D, Tang Z, Wei S. In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4560-4572. [PMID: 25671246 DOI: 10.1021/acsami.5b00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising cell source with pluripotency and capacity to differentiate into all human somatic cell types. Designing simple and safe biomaterials with an innate ability to induce osteoblastic lineage from hPSCs is desirable to realize their clinical adoption in bone regenerative medicine. To address the issue, here we developed a fully defined synthetic peptides-decorated two-dimensional (2D) microenvironment via polydopamine (pDA) chemistry and subsequent carboxymethyl chitosan (CMC) grafting to enhance the culture and osteogenic potential of hPSCs in vitro. The hPSCs including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) were successfully cultured on the peptides-decorated surface without Matrigel and ECM protein coating and underwent promoted osteogenic differentiation in vitro, determined from the alkaline phosphate (ALP) activity, gene expression, and protein production as well as calcium deposit amount. It was found that directed osteogenic differentiation of hPSCs was achieved through a peptides-decorated niche. This chemically defined and safe 2D microenvironment, which facilitates proliferation and osteo-differentiation of hPSCs, not only helps to accelerate the translational perspectives of hPSCs but also provides tissue-specific functions such as directing stem cell differentiation commitment, having great potential in bone tissue engineering and opening new avenues for bone regenerative medicine.
Collapse
Affiliation(s)
- Mengke Wang
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University , Beijing 100081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shanbhag S, Shanbhag V, Stavropoulos A. Genomic analyses of early peri-implant bone healing in humans: a systematic review. Int J Implant Dent 2015; 1:5. [PMID: 27747627 PMCID: PMC5005705 DOI: 10.1186/s40729-015-0006-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/27/2015] [Indexed: 01/22/2023] Open
Abstract
Objective The objective of the study was to systematically review the literature for studies reporting gene expression analyses (GEA) of the biological processes involved in early human peri-implant bone healing. Methods Electronic databases (MEDLINE, EMBASE) were searched in duplicate. Controlled and uncontrolled studies reporting GEA of human peri-implant tissues - including ≥5 patients and ≥2 time points - during the first 4 weeks of healing were eligible for inclusion. Methodological quality and risk of bias were also assessed. Results Four exploratory studies were included in reporting GEA of either tissues attached to SLA or SLActive implants after 4 to 14 days or cells attached to TiOBlast or Osseospeed implants after 3 to 7 days. A total of 111 implants from 43 patients were analyzed using validated array methods; however, considerable heterogeneity and risk of bias were detected. A consistent overall pattern of gene expression was observed; genes representing an immuno-inflammatory response were overexpressed at days 3 to 4, followed by genes representing osteogenic processes at day 7. Genes representing bone remodeling, angiogenesis, and neurogenesis were expressed concomitantly with osteogenesis. Several regulators of these processes, such as cytokines, growth factors, transcription factors, and signaling pathways, were identified. Implant surface properties seemed to influence the healing processes at various stages via differential gene expression. Conclusion Limited evidence from gene expression studies in humans indicates that osteogenic processes commence within the first post-operative week and they appear influenced at various stages by implant surface properties.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Periodontology, Faculty of Odontology, Malmö University, Carl Gustafs väg 34, 214 21, Malmö, Sweden.,Centre for Oral Rehabilitation & Implant Dentistry, 1 Laxmi Niwas, 87 Bajaj Road, Vile Parle West, Mumbai, 400056, India
| | - Vivek Shanbhag
- Centre for Oral Rehabilitation & Implant Dentistry, 1 Laxmi Niwas, 87 Bajaj Road, Vile Parle West, Mumbai, 400056, India
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Carl Gustafs väg 34, 214 21, Malmö, Sweden.
| |
Collapse
|
38
|
Rutledge K, Cheng Q, Pryzhkova M, Harris GM, Jabbarzadeh E. Enhanced differentiation of human embryonic stem cells on extracellular matrix-containing osteomimetic scaffolds for bone tissue engineering. Tissue Eng Part C Methods 2014; 20:865-74. [PMID: 24634988 DOI: 10.1089/ten.tec.2013.0411] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Current methods of treating critical size bone defects include autografts and allografts, however, both present major limitations including donor-site morbidity, risk of disease transmission, and immune rejection. Tissue engineering provides a promising alternative to circumvent these shortcomings through the use of autologous cells, three-dimensional scaffolds, and growth factors. We investigated the development of a scaffold with native bone extracellular matrix (ECM) components for directing the osteogenic differentiation of human embryonic stem cells (hESCs). Toward this goal, a microsphere-sintering technique was used to fabricate poly(lactic-co-glycolic acid) (PLGA) scaffolds with optimum mechanical and structural properties. Human osteoblasts (hOBs) were seeded on these scaffolds to deposit bone ECM for 14 days. This was followed by a decellularization step leaving the mineralized matrix intact. Characterization of the decellularized PLGA scaffolds confirmed the deposition of calcium, collagen II, and alkaline phosphatase by osteoblasts. hESCs were seeded on the osteomimetic substrates in the presence of osteogenic growth medium, and osteogenicity was determined according to calcium content, osteocalcin expression, and bone marker gene regulation. Cell proliferation studies showed a constant increase in number for hESCs seeded on both PLGA and ECM-coated PLGA scaffolds. Calcium deposition by hESCs was significantly higher on the osteomimetic scaffolds compared with the control groups. Consistently, immunofluorescence staining demonstrated an increased expression of osteocalcin in hESCs seeded on ECM-coated osteomimetic PLGA scaffolds. Gene expression analysis of RUNX2 and osteocalcin further confirmed osteogenic differentiation of hESCs at the highest expression level on osteomimetic PLGA. These results together demonstrate the potential of PLGA scaffolds with native bone ECM components to direct osteogenic differentiation of hESCs and induce bone formation.
Collapse
Affiliation(s)
- Katy Rutledge
- 1 Department of Chemical Engineering, University of South Carolina , Columbia, South Carolina
| | | | | | | | | |
Collapse
|
39
|
Bradamante S, Barenghi L, Maier JAM. Stem Cells toward the Future: The Space Challenge. Life (Basel) 2014; 4:267-80. [PMID: 25370198 PMCID: PMC4187162 DOI: 10.3390/life4020267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Astronauts experience weightlessness-induced bone loss due to an unbalanced process of bone remodeling that involves bone mesenchymal stem cells (bMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of bone MSCs. These live in adult bone marrow niches, are characterized by their self-renewal and multipotent differentiation capacities, and the published data indicate that they may lead to interesting returns in the biomedical/bioengineering fields. This review describes the published findings concerning bMSCs exposed to simulated/real microgravity, mainly concentrating on how mechanosignaling, mechanotransduction and oxygen influence their proliferation, senescence and differentiation. A comprehensive understanding of bMSC behavior in microgravity and their role in preventing bone loss will be essential for entering the future age of long-lasting, manned space exploration.
Collapse
Affiliation(s)
- Silvia Bradamante
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Livia Barenghi
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Jeanette A M Maier
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy.
| |
Collapse
|
40
|
Senarath-Yapa K, McArdle A, Renda A, Longaker MT, Quarto N. Adipose-derived stem cells: a review of signaling networks governing cell fate and regenerative potential in the context of craniofacial and long bone skeletal repair. Int J Mol Sci 2014; 15:9314-30. [PMID: 24865492 PMCID: PMC4100096 DOI: 10.3390/ijms15069314] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 02/07/2023] Open
Abstract
Improvements in medical care, nutrition and social care are resulting in a commendable change in world population demographics with an ever increasing skew towards an aging population. As the proportion of the world's population that is considered elderly increases, so does the incidence of osteodegenerative disease and the resultant burden on healthcare. The increasing demand coupled with the limitations of contemporary approaches, have provided the impetus to develop novel tissue regeneration therapies. The use of stem cells, with their potential for self-renewal and differentiation, is one potential solution. Adipose-derived stem cells (ASCs), which are relatively easy to harvest and readily available have emerged as an ideal candidate. In this review, we explore the potential for ASCs to provide tangible therapies for craniofacial and long bone skeletal defects, outline key signaling pathways that direct these cells and describe how the developmental signaling program may provide clues on how to guide these cells in vivo. This review also provides an overview of the importance of establishing an osteogenic microniche using appropriately customized scaffolds and delineates some of the key challenges that still need to be overcome for adult stem cell skeletal regenerative therapy to become a clinical reality.
Collapse
Affiliation(s)
- Kshemendra Senarath-Yapa
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305-2200, USA; E-Mails: (K.S.-Y.); (A.M.)
| | - Adrian McArdle
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305-2200, USA; E-Mails: (K.S.-Y.); (A.M.)
| | - Andrea Renda
- Dipartimento di Scienze Biomediche Avanzate, Universita’ degli Studi di Napoli Federico II, Napoli 80131, Italy; E-Mail:
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305-2200, USA; E-Mails: (K.S.-Y.); (A.M.)
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305-2200, USA; E-Mails: (K.S.-Y.); (A.M.)
- Dipartimento di Scienze Biomediche Avanzate, Universita’ degli Studi di Napoli Federico II, Napoli 80131, Italy; E-Mail:
| |
Collapse
|
41
|
Pereira IHL, Ayres E, Averous L, Schlatter G, Hebraud A, de Paula ACC, Viana PHL, Goes AM, Oréfice RL. Differentiation of human adipose-derived stem cells seeded on mineralized electrospun co-axial poly(ε-caprolactone) (PCL)/gelatin nanofibers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1137-1148. [PMID: 24378848 DOI: 10.1007/s10856-013-5133-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Mineralized poly(ε-caprolactone)/gelatin core-shell nanofibers were prepared via co-axial electrospinning and subsequent incubation in biomimetic simulated body fluid containing ten times the calcium and phosphate ion concentrations found in human blood plasma. The deposition of calcium phosphate on the nanofiber surfaces was investigated through scanning electronic microscopy and X-ray diffraction. Energy dispersive spectroscopy results indicated that calcium-deficient hydroxyapatite had grown on the fibers. Fourier transform infrared spectroscopy analysis suggested the presence of hydroxyl-carbonate-apatite. The results of a viability assay (MTT) and alkaline phosphatase activity analysis suggested that these mineralized matrices promote osteogenic differentiation of human adipose-derived stem cells (hASCs) when cultured in an osteogenic medium and have the potential to be used as a scaffold in bone tissue engineering. hASCs cultured in the presence of nanofibers in endothelial differentiation medium showed lower rates of proliferation than cells cultured without the nanofibers. However, endothelial cell markers were detected in cells cultured in the presence of nanofibers in endothelial differentiation medium.
Collapse
Affiliation(s)
- Ildeu H L Pereira
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais (UFMG), Pampulha, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang L, Xu X, Huo N, Guo H, Wang D, Liu H. A combination of insulin and ubiquitin A20 promotes osteocalcin expression in adipose-derived stem cells. Biochem Cell Biol 2013; 91:513-8. [PMID: 24219294 DOI: 10.1139/bcb-2013-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osteocyte generation can be used in bone defect repair; the generation efficiency needs to be further improved. This study aims to evaluate the role of ubiquitin A20 (A20) in facilitating the expression of osteocalcin in adipose-derived stem cells (ADSCs). In this study, adipose tissue was obtained from 10 healthy human subjects; ADSCs were isolated from the adipose samples. The ADSCs were transfected with core binding factor alpha 1 (Cbfa1) and/or insulin-like growth factor-1 receptor (IGF-1R). Expression of osteocalcin, A20 in ADSCs was assessed by quantitative RT-PCR (qRT-PCR) and Western blotting. Apoptosis of ADSCs was analyzed by flow cytometry. The results showed that after the gene transfection and stimulation of insulin, the ADSCs expressed high levels of osteocalcin. However, apoptotic ADSCs were induced by the activation of IGF-1R. Exposure to insulin down-regulated the expression of Bcl-xL and A20, and increased Bax, in ADSCs. The addition of exogenous A20 prevented the ADSC apoptosis. We conclude that activation of IGF-1R can induce apoptosis in ADSCs, which can be prevented by addition of exogenous A20.
Collapse
Affiliation(s)
- Lin Wang
- Department of Stomatology, General Hospital of PLA, Beijing 100853, China
| | - Xia Xu
- Department of Stomatology, General Hospital of PLA, Beijing 100853, China
| | - Na Huo
- Department of Stomatology, General Hospital of PLA, Beijing 100853, China
| | - Huiling Guo
- Department of Ophthalmology, Chinese PLA 306 Hospital, Beijing 100853, China
| | - Dongshen Wang
- Department of Stomatology, General Hospital of PLA, Beijing 100853, China
| | - Hongchen Liu
- Department of Stomatology, General Hospital of PLA, Beijing 100853, China
| |
Collapse
|
43
|
Shin Kang K, Hun Jeong Y, Min Hong J, Yong WJ, Rhie JW, Cho DW. Flexure-Based Device for Cyclic Strain-Mediated Osteogenic Differentiation. J Biomech Eng 2013; 135:114501. [DOI: 10.1115/1.4025103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 07/29/2013] [Indexed: 12/31/2022]
Abstract
Application of low-magnitude strains to cells on small-thickness scaffolds, such as those for rodent calvarial defect models, is problematic, because general translation systems have limitations in terms of generating low-magnitude smooth signals. To overcome this limitation, we developed a cyclic strain generator using a customized, flexure-based, translational nanoactuator that enabled generation of low-magnitude smooth strains at the subnano- to micrometer scale to cells on small-thickness scaffolds. The cyclic strain generator we developed showed predictable operational characteristics by generating a sinusoidal signal of a few micrometers (4.5 μm) without any distortion. Three-dimensional scaffolds fitting the critical-size rat calvarial defect model were fabricated using poly(caprolactone), poly(lactic-co-glycolic acid), and tricalcium phosphate. Stimulation of human adipose–derived stem cells (ASCs) on these fabricated scaffolds using the cyclic strain generator we developed resulted in upregulated osteogenic marker expression compared to the nonstimulated group. These preliminary in vitro results suggest that the cyclic strain generator successfully provided mechanical stimulation to cells on small-thickness scaffolds, which influenced the osteogenic differentiation of ASCs.
Collapse
Affiliation(s)
- Kyung Shin Kang
- Department of Mechanical Engineering, POSTECH, Pohang 790-751, South Korea
| | - Young Hun Jeong
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung 429-793, South Korea
| | - Jung Min Hong
- Department of Mechanical Engineering, POSTECH, Pohang 790-751, South Korea
| | - Woon-Jae Yong
- Department of Mechanical Engineering, POSTECH, Pohang 790-751, South Korea
| | - Jong-Won Rhie
- Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, Pohang 790-751, South Korea
| |
Collapse
|
44
|
Kidwai FK, Movahednia MM, Iqbal K, Jokhun DS, Cao T, Fawzy AS. Human embryonic stem cell differentiation into odontoblastic lineage: anin vitrostudy. Int Endod J 2013; 47:346-55. [DOI: 10.1111/iej.12150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 06/11/2013] [Indexed: 11/30/2022]
Affiliation(s)
- F. K. Kidwai
- Discipline of Oral Sciences; Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - M. M. Movahednia
- Discipline of Oral Sciences; Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - K. Iqbal
- Discipline of Prosthodontics, Endodontics and Operative Dentistry; Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - D. S. Jokhun
- Department of Biological Sciences; Faculty of Science; National University of Singapore; Singapore Singapore
| | - T. Cao
- Discipline of Oral Sciences; Faculty of Dentistry; National University of Singapore; Singapore Singapore
| | - A. S. Fawzy
- Discipline of Oral Sciences; Faculty of Dentistry; National University of Singapore; Singapore Singapore
| |
Collapse
|
45
|
Kang KS, Hong JM, Kang JA, Rhie JW, Cho DW. Osteogenic differentiation of human adipose-derived stem cells can be accelerated by controlling the frequency of continuous ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2013; 32:1461-1470. [PMID: 23887957 DOI: 10.7863/ultra.32.8.1461] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVES The purpose of this study was to demonstrate that the effects of continuous ultrasound on the osteogenic differentiation of human adipose-derived stem cells (hASCs) are dependent on the frequency in vitro. METHODS Before stimulation, we characterized the hASCs using cluster of differentiation marker profiles and tridifferentiation. Then we selected effective frequencies in the range of 0.5 to 1.5 MHz (with a peak negative pressure of 52 kPa), which upregulated runt-related transcription factor 2 messenger RNA expression. Next, the effects of ultrasound at the selected frequencies on the osteogenic differentiation were evaluated at the protein level. Alkaline phosphatase activity and the formation of mineralized nodules were measured. We additionally identified the cellular mechanisms underlying the effects of ultrasound stimulation using Western blotting. RESULTS The hASCs showed general cluster of differentiation marker profiles of stem cells and confirmed their potentials to yield adipogenic, chondrogenic, and osteogenic differentiation. Frequencies of 0.5, 1.0, and 1.5 MHz were selected for higher runt-related transcription factor 2 expression in the range of 0.5 to 1.5 MHz. Among the 3 groups, alkaline phosphatase activity and the formation of mineralized nodules were increased in cells exposed to 1.5-MHz ultrasound compared with cells exposed to 0.5-or 1.0-MHz ultrasound and nontreated control cells. We additionally confirmed that this acceleration of osteogenic differentiation was related to p38 and protein kinase B signaling pathways. CONCLUSIONS In this study, we found that, in the selected range, 1.5 MHz was the most effective frequency for inducing the osteogenic differentiation of hASCs.
Collapse
Affiliation(s)
- Kyung Shin Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | |
Collapse
|
46
|
Li M, Li X, Meikle MC, Islam I, Cao T. Short periods of cyclic mechanical strain enhance triple-supplement directed osteogenesis and bone nodule formation by human embryonic stem cells in vitro. Tissue Eng Part A 2013; 19:2130-7. [PMID: 23614666 DOI: 10.1089/ten.tea.2012.0308] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem cells (hESCs) are uniquely endowed with a capacity for both self-renewal and multilineage differentiation. The aim of this investigation was to determine if short periods of cyclic mechanical strain enhanced dexamethasone, ascorbic acid, and β-glycerophosphate (triple-supplement)-induced osteogenesis and bone nodule formation by hESCs. Colonies were cultured for 21 days and divided into control (no stretch) and three treatment groups; these were subjected to in-plane deformation of 2% for 5 s (0.2 Hertz) every 60 s for 1 h on alternate days in BioFlex plates linked to a Flexercell strain unit over the following periods (day 7-13), (day 15-21), and (day 7-21). Numerous bone nodules were formed, which stained positively for osteocalcin and type I collagen; in addition, MTS assays for cell number as well as total collagen assays showed a significant increase in the day 7-13 group compared to controls and other treatment groups. Alizarin Red staining further showed that cyclic mechanical stretching significantly increased the nodule size and mineral density between days 7-13 compared to control cultures and the other two experimental groups. We then performed a real-time polymerase chain reaction (PCR) microarray on the day 7-13 treatment group to identify mechanoresponsive osteogenic genes. Upregulated genes included the transcription factors RUNX2 and SOX9, bone morphogenetic proteins BMP1, BMP4, BMP5, and BMP6, transforming growth factor-β family members TGFB1, TGFB2, and TGFB3, and three genes involved in mineralization-ALPL, BGLAP, and VDR. In conclusion, this investigation has demonstrated that four 1-h episodes of cyclic mechanical strain acted synergistically with triple supplement to enhance osteogenesis and bone nodule formation by cultured hESCs. This suggests the development of methods to engineer three-dimensional constructs of mineralized bone in vitro, could offer an alternative approach to osseous regeneration by producing a biomaterial capable of providing stable surfaces for osteoblasts to synthesize new bone, while at the same time able to be resorbed by an osteoclastic activity-in other words, one that can recapitulate the remodeling dynamics of a naturally occurring bone matrix.
Collapse
Affiliation(s)
- Mingming Li
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore
| | | | | | | | | |
Collapse
|
47
|
Hwang NS, Varghese S, Lee HJ, Zhang Z, Elisseeff J. Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. Tissue Eng Part A 2013; 19:1723-32. [PMID: 23510052 DOI: 10.1089/ten.tea.2013.0064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spontaneous differentiation of human embryonic stem cells (hESCs) is generally inefficient and leads to a heterogeneous population of differentiated and undifferentiated cells, limiting the potential use of hESCs for cell-based therapy and studies of specific differentiation programs. Here, we demonstrate biomaterial-dependent commitment of a mesenchymal cell population derived from hESCs toward the osteogenic lineage in vivo. In skeletal development, bone formation from condensing mesenchymal cells involves two distinct pathways: endochondral and intramembraneous bone formation. In this study, we demonstrate that the hESC-derived mesenchymal cells differentiate and regenerate in vivo bone tissues through two different pathways depending upon the local cues present in a scaffold microenvironment. Hydroxyapatite (HA) was incorporated into biodegradable poly(lactic-co-glycolic acid)/poly(l-lactic acid) (PLGA/PLLA) scaffolds to enhance bone formation. The HA microenvironment stabilized the β-catenin and upregulated Runx2, resulting in faster bone formation through intramembraneous ossification. hESC-derived mesenchymal cells seeded on the PLGA/PLLA scaffold without HA, however, showed minimal levels Runx2, and differentiated via endochondral ossification, as evidenced by formation of cartilaginous tissue, followed by calcification and increased blood vessel invasion. These results indicate that the ossification mechanisms of the hESC-derived mesenchymal stem cells can be regulated by the scaffold-mediated microenvironments, and bone tissue can be formed.
Collapse
Affiliation(s)
- Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute for Chemical Processing, Seoul National University, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|
48
|
Gopinathan G, Kolokythas A, Luan X, Diekwisch TGH. Epigenetic marks define the lineage and differentiation potential of two distinct neural crest-derived intermediate odontogenic progenitor populations. Stem Cells Dev 2013; 22:1763-78. [PMID: 23379639 DOI: 10.1089/scd.2012.0711] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic mechanisms, such as histone modifications, play an active role in the differentiation and lineage commitment of mesenchymal stem cells. In the present study, epigenetic states and differentiation profiles of two odontogenic neural crest-derived intermediate progenitor populations were compared: dental pulp (DP) and dental follicle (DF). ChIP on chip assays revealed substantial H3K27me3-mediated repression of odontoblast lineage genes DSPP and dentin matrix protein 1 (DMP1) in DF cells, but not in DP cells. Mineralization inductive conditions caused steep increases of mineralization and patterning gene expression levels in DP cells when compared to DF cells. In contrast, mineralization induction resulted in a highly dynamic histone modification response in DF cells, while there was only a subdued effect in DP cells. Both DF and DP progenitors featured H3K4me3-active marks on the promoters of early mineralization genes RUNX2, MSX2, and DLX5, while OSX, IBSP, and BGLAP promoters were enriched for H3K9me3 or H3K27me3. Compared to DF cells, DP cells expressed higher levels of three pluripotency-associated genes, OCT4, NANOG, and SOX2. Finally, gene ontology comparison of bivalent marks unique for DP and DF cells highlighted cell-cell attachment genes in DP cells and neurogenesis genes in DF cells. In conclusion, the present study indicates that the DF intermediate odontogenic neural crest lineage is distinguished from its DP counterpart by epigenetic repression of DSPP and DMP1 genes and through dynamic histone enrichment responses to mineralization induction. Findings presented here highlight the crucial role of epigenetic regulatory mechanisms in the terminal differentiation of odontogenic neural crest lineages.
Collapse
Affiliation(s)
- Gokul Gopinathan
- UIC Brodie Laboratory for Craniofacial Genetics, UIC College of Dentistry, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
49
|
Chen W, Zhou H, Weir MD, Tang M, Bao C, Xu HHK. Human embryonic stem cell-derived mesenchymal stem cell seeding on calcium phosphate cement-chitosan-RGD scaffold for bone repair. Tissue Eng Part A 2013; 19:915-27. [PMID: 23092172 DOI: 10.1089/ten.tea.2012.0172] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Calcium phosphate cement (CPC) has in situ-setting ability and excellent osteoconductivity. Human embryonic stem cells (hESCs) are exciting for regenerative medicine due to their strong proliferative ability and multilineage differentiation capability. However, there has been no report on hESC seeding with CPC. The objectives of this study were to obtain hESC-derived mesenchymal stem cells (hESCd-MSCs), and to investigate hESCd-MSC proliferation and osteogenic differentiation on novel CPC with chitosan immobilized with RGD (CPC-chitosan-RGD). RGD was covalently bonded with chitosan, which was then incorporated into CPC. The CPC-chitosan-RGD scaffold had higher strength and toughness than CPC-chitosan control without RGD (p<0.05). hESCs were cultured to form embryoid bodies (EBs), and the MSCs were then migrated out of the EBs. Flow cytometry indicated that the hESCd-MSCs expressed typical surface antigen profile of MSCs. hESCd-MSCs had good viability when seeded on CPC scaffolds. The percentage of live cells and the cell density were significantly higher on CPC-chitosan-RGD than CPC-chitosan control. Scanning electron microscope examination showed hESCd-MSCs with a healthy spreading morphology adherent to CPC. hESCd-MSCs expressed high levels of osteogenic markers, including alkaline phosphatase, osteocalcin, collagen I, and Runx2. The mineral synthesis by the hESCd-MSCs on the CPC-chitosan-RGD scaffold was twice that for CPC-chitosan control. In conclusion, hESCs were successfully seeded on CPC scaffolds for bone tissue engineering. The hESCd-MSCs had good viability and osteogenic differentiation on the novel CPC-chitosan-RGD scaffold. RGD incorporation improved the strength and toughness of CPC, and greatly enhanced the hESCd-MSC attachment, proliferation, and bone mineral synthesis. Therefore, the hESCd-MSC-seeded CPC-chitosan-RGD construct is promising to improve bone regeneration in orthopedic and craniofacial applications.
Collapse
Affiliation(s)
- Wenchuan Chen
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
50
|
Peng H, Yin Z, Liu H, Chen X, Feng B, Yuan H, Su B, Ouyang H, Zhang Y. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. NANOTECHNOLOGY 2012; 23:485102. [PMID: 23128604 DOI: 10.1088/0957-4484/23/48/485102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Engaging functional biomaterial scaffolds to regulate stem cell differentiation has drawn a great deal of attention in the tissue engineering and regenerative medicine community. In this study, biomimetic composite nanofibrous scaffolds of hydroxyapatite/chitosan (HAp/CTS) were prepared to investigate their capacity for inducing murine mesenchymal stem cells (mMSCs) to differentiate into the osteogenic lineage, in the absence and presence of an osteogenic supplementation (i.e., ascorbic acid, β-glycerol phosphate, and dexamethasone), respectively. Using electrospun chitosan (CTS) nanofibrous scaffolds as the control, cell morphology, growth, specific osteogenic genes expression, and quantified proteins secretion on the HAp/CTS scaffolds were sequentially examined and assessed. It appeared that the HAp/CTS scaffolds supported better attachment and proliferation of the mMSCs. Most noteworthy was that in the absence of the osteogenic supplementation, expression of osteogenic genes including collagen I (Col I), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were significantly upregulated in mMSCs cultured on the HAp/CTS nanofibrous scaffolds. Also increased secretion of the osteogenesis protein markers of alkaline phosphatase and collagen confirmed that the HAp/CTS nanofibrous scaffold markedly promoted the osteogenic commitment in the mMSCs. Moreover, the presence of osteogenic supplementation proved an enhanced efficacy of mMSC osteogenesis on the HAp/CTS nanofibrous scaffolds. Collectively, this study demonstrated that the biomimetic nanofibrous HAp/CTS scaffolds could support and enhance the adhesion, proliferation, and particularly osteogenic differentiation of the mMSCs. It also substantiated the potential of using biomimetic nanofibrous scaffolds of HAp/CTS for functional bone repair and regeneration applications.
Collapse
Affiliation(s)
- Hongju Peng
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|