1
|
Pečar Fonović U, Kos J, Mitrović A. Compensational role between cathepsins. Biochimie 2024; 226:62-76. [PMID: 38663456 DOI: 10.1016/j.biochi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Cathepsins, a family of lysosomal peptidases, play a crucial role in maintaining cellular homeostasis by regulating protein turnover and degradation as well as many specific regulatory actions that are important for proper cell function and human health. Alterations in the activity and expression of cathepsins have been observed in many diseases such as cancer, inflammation, neurodegenerative disorders, bone remodelling-related conditions and others. These changes are not exclusively harmful, but rather appear to be a compensatory response on the lack of one cathepsin in order to maintain tissue integrity. The upregulation of specific cathepsins in response to the inhibition or dysfunction of other cathepsins suggests a fine-tuned system of proteolytic balance and understanding the compensatory role of cathepsins may improve therapeutic potential of cathepsin's inhibitors. Selectively targeting one cathepsin or modulating their activity could offer new treatment strategies for a number of diseases. This review emphasises the need for comprehensive research into cathepsin biology in the context of disease. The identification of the specific cathepsins involved in compensatory responses, the elucidation of the underlying molecular mechanisms and the development of targeted interventions could lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Kolipaka R, Magesh I, Bharathy MA, Karthik S, Saranya I, Selvamurugan N. A potential function for MicroRNA-124 in normal and pathological bone conditions. Noncoding RNA Res 2024; 9:687-694. [PMID: 38577015 PMCID: PMC10990750 DOI: 10.1016/j.ncrna.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024] Open
Abstract
Cells produce short single-stranded non-coding RNAs (ncRNAs) called microRNAs (miRNAs), which actively regulate gene expression at the posttranscriptional level. Several miRNAs have been observed to exert significant impacts on bone health and bone-related disorders. One of these, miR-124, is observed in bone microenvironments and is conserved across species. It affects bone cell growth and differentiation by activating different transcription factors and signaling pathways. In-depth functional analyses of miR-124 have revealed several physiological and pathological roles exerted through interactions with other ncRNAs. Deciphering these RNA-mediated signaling networks and pathways is essential for understanding the potential impacts of dysregulated miRNA functions on bone biology. In this review, we aim to provide a comprehensive analysis of miR-124's involvement in bone physiology and pathology. We highlight the importance of miR-124 in controlling transcription factors and signaling pathways that promote bone growth. This review reveals therapeutic implications for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Rushil Kolipaka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Induja Magesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M.R. Ashok Bharathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S. Karthik
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - I. Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - N. Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Hua R, Truong VA, Fajardo RJ, Guda T, Gu S, Jiang JX. Connexin hemichannels drive lactation-induced osteocyte acidification and perilacunar-canalicular remodeling. Cell Rep 2024; 43:114363. [PMID: 38935505 DOI: 10.1016/j.celrep.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Vu A Truong
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
4
|
Alam I, Hardman SL, Gerard-O'Riley RL, Acton D, Parker RS, Hong JM, Bruzzaniti A, Econs MJ. Effect of Roflumilast, a Selective PDE4 Inhibitor, on Bone Phenotypes in ADO2 Mice. Calcif Tissue Int 2024; 114:419-429. [PMID: 38300304 DOI: 10.1007/s00223-023-01180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption that usually results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene. We previously created mouse models of ADO2 (p.G213R) with one of the most common mutations (G215R) as found in humans and demonstrated that this mutation in mice phenocopies the human disease of ADO2. Previous studies have shown that roflumilast (RF), a selective phosphodiesterase 4 (PDE4) inhibitor that regulates the cAMP pathway, can increase osteoclast activity. We also observed that RF increased bone resorption in both wild-type and ADO2 heterozygous osteoclasts in vitro, suggesting it might rescue bone phenotypes in ADO2 mice. To test this hypothesis, we administered RF-treated diets (0, 20 and 100 mg/kg) to 8-week-old ADO2 mice for 6 months. We evaluated bone mineral density and bone micro-architecture using longitudinal in-vivo DXA and micro-CT at baseline, and 6-, 12-, 18-, and 24-week post-baseline time points. Additionally, we analyzed serum bone biomarkers (CTX, TRAP, and P1NP) at baseline, 12-, and 24-week post-baseline. Our findings revealed that RF treatment did not improve aBMD (whole body, femur, and spine) and trabecular BV/TV (distal femur) in ADO2 mice compared to the control group treated with a normal diet. Furthermore, we did not observe any significant changes in serum levels of bone biomarkers due to RF treatment in these mice. Overall, our results indicate that RF does not rescue the osteopetrotic bone phenotypes in ADO2 heterozygous mice.
Collapse
Affiliation(s)
- Imranul Alam
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Sara L Hardman
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rita L Gerard-O'Riley
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dena Acton
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Reginald S Parker
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jung Min Hong
- Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Angela Bruzzaniti
- Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Michael J Econs
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, 46202, USA
| |
Collapse
|
5
|
Hong JM, Gerard-O'Riley RL, Acton D, Alam I, Econs MJ, Bruzzaniti A. The PDE4 Inhibitors Roflumilast and Rolipram Rescue ADO2 Osteoclast Resorption Dysfunction. Calcif Tissue Int 2024; 114:430-443. [PMID: 38483547 PMCID: PMC11239147 DOI: 10.1007/s00223-024-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption caused by heterozygous missense mutations in the chloride channel 7 (CLCN7). Adenylate cyclase, which catalyzes the formation of cAMP, is critical for lysosomal acidification in osteoclasts. We found reduced cAMP levels in ADO2 osteoclasts compared to wild-type (WT) osteoclasts, leading us to examine whether regulating cAMP would improve ADO2 osteoclast activity. Although forskolin, a known activator of adenylate cyclase and cAMP levels, negatively affected osteoclast number, it led to an overall increase in ADO2 and WT osteoclast resorption activity in vitro. Next, we examined cAMP hydrolysis by the phosphodiesterase 4 (PDE4) proteins in ADO2 versus WT osteoclasts. QPCR analysis revealed higher expression of the three major PDE4 subtypes (4a, 4b, 4d) in ADO2 osteoclasts compared in WT, consistent with reduced cAMP levels in ADO2 osteoclasts. In addition, we found that the PDE4 antagonists, rolipram and roflumilast, stimulated ADO2 and WT osteoclast formation in a dose-dependent manner. Importantly, roflumilast and rolipram displayed a concentration-dependent increase in osteoclast resorption activity which was greater in ADO2 than WT osteoclasts. Moreover, treatment with roflumilast rescued cAMP levels in ADO2 OCLs. The key findings from our studies demonstrate that osteoclasts from ADO2 mice exhibit reduced cAMP levels and PDE4 inhibition rescues cAMP levels and ADO2 osteoclast activity dysfunction in vitro. The mechanism of action of PDE4 inhibitors and their ability to reduce the high bone mass of ADO2 mice in vivo are currently under investigation. Importantly, these studies advance the understanding of the mechanisms underlying the ADO2 osteoclast dysfunction which is critical for the development of therapeutic approaches to treat clinically affected ADO2 patients.
Collapse
Affiliation(s)
- Jung Min Hong
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 1121 West Michigan Street, DS266, Indianapolis, IN, 46202, USA
| | - Rita L Gerard-O'Riley
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dena Acton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Imranul Alam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Econs
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 1121 West Michigan Street, DS266, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Yun C, Kim SH, Kim KM, Yang MH, Byun MR, Kim JH, Kwon D, Pham HTM, Kim HS, Kim JH, Jung YS. Advantages of Using 3D Spheroid Culture Systems in Toxicological and Pharmacological Assessment for Osteogenesis Research. Int J Mol Sci 2024; 25:2512. [PMID: 38473760 DOI: 10.3390/ijms25052512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone differentiation is crucial for skeletal development and maintenance. Its dysfunction can cause various pathological conditions such as rickets, osteoporosis, osteogenesis imperfecta, or Paget's disease. Although traditional two-dimensional cell culture systems have contributed significantly to our understanding of bone biology, they fail to replicate the intricate biotic environment of bone tissue. Three-dimensional (3D) spheroid cell cultures have gained widespread popularity for addressing bone defects. This review highlights the advantages of employing 3D culture systems to investigate bone differentiation. It highlights their capacity to mimic the complex in vivo environment and crucial cellular interactions pivotal to bone homeostasis. The exploration of 3D culture models in bone research offers enhanced physiological relevance, improved predictive capabilities, and reduced reliance on animal models, which have contributed to the advancement of safer and more effective strategies for drug development. Studies have highlighted the transformative potential of 3D culture systems for expanding our understanding of bone biology and developing targeted therapeutic interventions for bone-related disorders. This review explores how 3D culture systems have demonstrated promise in unraveling the intricate mechanisms governing bone homeostasis and responses to pharmacological agents.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Mok Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Joung-Hee Kim
- Department of Medical Beauty Care, Dongguk University Wise, Gyeongju 38066, Republic of Korea
| | - Doyoung Kwon
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyo-Sop Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Marx D, Anglicheau D, Caillard S, Moulin B, Kochman A, Mischak H, Latosinska A, Bienaimé F, Prié D, Marquet P, Perrin P, Gwinner W, Metzger J. Urinary collagen peptides: Source of markers for bone metabolic processes in kidney transplant recipients. Proteomics Clin Appl 2023:e2200118. [PMID: 37365945 DOI: 10.1002/prca.202200118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Kidney transplant recipients (KTRs) are at an increased risk of fractures. Total urinary hydroxyproline excretion served as marker for bone resorption (BR) but was replaced by β-CrossLaps (CTX), a C-terminal collagen α-1(I) chain (COL1A1) telopeptide. We investigated the low-molecular-weight urinary proteome for peptides associated with changes in bone metabolism after kidney transplantation. METHODS Clinical and laboratory data including serum levels of CTX in 96 KTR from two nephrology centers were correlated with signal intensities of urinary peptides identified by capillary electrophoresis mass spectrometry. RESULTS Eighty-two urinary peptides were significantly correlated with serum CTX levels. COL1A1 was the predominant peptide source. Oral bisphosphonates were administered for decreased bone density in an independent group of 11 KTR and their effect was evaluated on the aforementioned peptides. Study of the peptides cleavage sites revealed a signature of Cathepsin K and MMP9. Seventeen of these peptides were significantly associated with bisphosphonate treatment, all showing a marked reduction in their excretion levels compared to baseline. DISCUSSION This study provides strong evidence for the presence of collagen peptides in the urine of KTR that are associated with BR and that are sensitive to bisphosphonate treatment. Their assessment might become a valuable tool to monitor bone status in KTR.
Collapse
Affiliation(s)
- David Marx
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM UMR-S1109, FMTS, Strasbourg, France
- Hospital of Sélestat, Sélestat, France
| | - Dany Anglicheau
- INSERM U1151, Paris, France
- Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Sophie Caillard
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Bruno Moulin
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Audrey Kochman
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
| | | | | | - Frank Bienaimé
- INSERM U1151, Paris, France
- Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
- Department of Physiology, Necker Hospital, AP-HP, Paris, France
| | - Dominique Prié
- INSERM U1151, Paris, France
- Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
- Department of Physiology, Necker Hospital, AP-HP, Paris, France
| | - Pierre Marquet
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
| | - Peggy Perrin
- Department of Nephrology and Kidney Transplantation, Nouvel Hôpital Civil, Strasbourg, France
- INSERM UMR-S1109, FMTS, Strasbourg, France
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
8
|
Everts V, Jansen IDC, de Vries TJ. Mechanisms of bone resorption. Bone 2022; 163:116499. [PMID: 35872106 DOI: 10.1016/j.bone.2022.116499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Vincent Everts
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands; Department of Anatomy, Dental Faculty, Chulalongkorn University, Bangkok, Thailand.
| | - Ineke D C Jansen
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Bjelić D, Finšgar M. Bioactive coatings with anti-osteoclast therapeutic agents for bone implants: Enhanced compliance and prolonged implant life. Pharmacol Res 2022; 176:106060. [PMID: 34998972 DOI: 10.1016/j.phrs.2022.106060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
The use of therapeutic agents that inhibit bone resorption is crucial to prolong implant life, delay revision surgery, and reduce the burden on the healthcare system. These therapeutic agents include bisphosphonates, various nucleic acids, statins, proteins, and protein complexes. Their use in systemic treatment has several drawbacks, such as side effects and insufficient efficacy in terms of concentration, which can be eliminated by local treatment. This review focuses on the incorporation of osteoclast inhibitors (antiresorptive agents) into bioactive coatings for bone implants. The ability of bioactive coatings as systems for local delivery of antiresorptive agents to achieve optimal loading of the bioactive coating and its release is described in detail. Various parameters such as the suitable concentrations, release times, and the effects of the antiresorptive agents on nearby cells or bone tissue are discussed. However, further research is needed to support the optimization of the implant, as this will enable subsequent personalized design of the coating in terms of the design and selection of the coating material, the choice of an antiresorptive agent and its amount in the coating. In addition, therapeutic agents that have not yet been incorporated into bioactive coatings but appear promising are also mentioned. From this work, it can be concluded that therapeutic agents contribute to the biocompatibility of the bioactive coating by enhancing its beneficial properties.
Collapse
Affiliation(s)
- Dragana Bjelić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
10
|
Loss of mutual protection between human osteoclasts and chondrocytes in damaged joints initiates osteoclast-mediated cartilage degradation by MMPs. Sci Rep 2021; 11:22708. [PMID: 34811438 PMCID: PMC8608887 DOI: 10.1038/s41598-021-02246-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
Osteoclasts are multinucleated, bone-resorbing cells. However, they also digest cartilage during skeletal maintenance, development and in degradative conditions including osteoarthritis, rheumatoid arthritis and primary bone sarcoma. This study explores the mechanisms behind the osteoclast–cartilage interaction. Human osteoclasts differentiated on acellular human cartilage expressed osteoclast marker genes (e.g. CTSK, MMP9) and proteins (TRAP, VNR), visibly damaged the cartilage surface and released glycosaminoglycan in a contact-dependent manner. Direct co-culture with chondrocytes during differentiation increased large osteoclast formation (p < 0.0001) except when co-cultured on dentine, when osteoclast formation was inhibited (p = 0.0002). Osteoclasts cultured on dentine inhibited basal cartilage degradation (p = 0.012). RNA-seq identified MMP8 overexpression in osteoclasts differentiated on cartilage versus dentine (8.89-fold, p = 0.0133), while MMP9 was the most highly expressed MMP. Both MMP8 and MMP9 were produced by osteoclasts in osteosarcoma tissue. This study suggests that bone-resident osteoclasts and chondrocytes exert mutually protective effects on their ‘native’ tissue. However, when osteoclasts contact non-native cartilage they cause degradation via MMPs. Understanding the role of osteoclasts in cartilage maintenance and degradation might identify new therapeutic approaches for pathologies characterized by cartilage degeneration.
Collapse
|
11
|
Plasma Rich in Growth Factors in the Treatment of Endodontic Periapical Lesions in Adult Patients: A Narrative Review. Pharmaceuticals (Basel) 2021; 14:ph14101041. [PMID: 34681265 PMCID: PMC8539488 DOI: 10.3390/ph14101041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Platelet concentrates have been widely used in regenerative medicine, including endodontics. The aim of this manuscript was to assess critically the efficacy of PRF in the treatment of endodontic periapical lesions in adult patients on the basis of the literature. The PICO approach was used to properly develop literature search strategies. The PubMed database was analyzed with the keywords: "((PRP) OR (PRF) OR (PRGF) OR (CGF)) AND (endodontic) AND ((treatment) OR (therapy))". After screening of 155 results, 14 articles were included in this review. Different types of platelet concentrates are able to stimulate the processes of proliferation and differentiation of mesenchymal stem cells. Platelet rich fibrin (PRF) releases growth factors for at least 7 days at the application site. Growth factors and released cytokines stimulate the activity of osteoblasts. Moreover, the release of growth factors accelerates tissue regeneration by increasing the migration of fibroblasts. It was not possible to assess the efficacy of PRF supplementation in the treatment of endodontic periapical lesions in permanent, mature teeth with closed apexes, due to the lack of well-designed scientific research. Further studies are needed to analyze the effect of PRF on the healing processes in the periapical region.
Collapse
|
12
|
Zhu L, Tang Y, Li XY, Keller ET, Yang J, Cho JS, Feinberg TY, Weiss SJ. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med 2021; 12:12/529/eaaw6143. [PMID: 32024800 DOI: 10.1126/scitranslmed.aaw6143] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Osteoclasts actively remodel both the mineral and proteinaceous components of bone during normal growth and development as well as pathologic states ranging from osteoporosis to bone metastasis. The cysteine proteinase cathepsin K confers osteoclasts with potent type I collagenolytic activity; however, cathepsin K-null mice, as well as cathepsin K-mutant humans, continue to remodel bone and degrade collagen by as-yet-undefined effectors. Here, we identify a cathepsin K-independent collagenolytic system in osteoclasts that is composed of a functionally redundant network of the secreted matrix metalloproteinase MMP9 and the membrane-anchored matrix metalloproteinase MMP14. Unexpectedly, whereas deleting either of the proteinases individually leaves bone resorption intact, dual targeting of Mmp9 and Mmp14 inhibited the resorptive activity of mouse osteoclasts in vitro and in vivo and human osteoclasts in vitro. In vivo, Mmp9/Mmp14 conditional double-knockout mice exhibited marked increases in bone density and displayed a highly protected status against either parathyroid hormone- or ovariectomy-induced pathologic bone loss. Together, these studies characterize a collagenolytic system operative in mouse and human osteoclasts and identify the MMP9/MMP14 axis as a potential target for therapeutic interventions for bone-wasting disease states.
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China. .,Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan T Keller
- Department of Pathology, Department of Urology and the Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingwen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamar Y Feinberg
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen J Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA. .,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Elson A, Stein M, Rabie G, Barnea-Zohar M, Winograd-Katz S, Reuven N, Shalev M, Sekeres J, Kanaan M, Tuckermann J, Geiger B. Sorting Nexin 10 as a Key Regulator of Membrane Trafficking in Bone-Resorbing Osteoclasts: Lessons Learned From Osteopetrosis. Front Cell Dev Biol 2021; 9:671210. [PMID: 34095139 PMCID: PMC8173195 DOI: 10.3389/fcell.2021.671210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022] Open
Abstract
Bone homeostasis is a complex, multi-step process, which is based primarily on a tightly orchestrated interplay between bone formation and bone resorption that is executed by osteoblasts and osteoclasts (OCLs), respectively. The essential physiological balance between these cells is maintained and controlled at multiple levels, ranging from regulated gene expression to endocrine signals, yet the underlying cellular and molecular mechanisms are still poorly understood. One approach for deciphering the mechanisms that regulate bone homeostasis is the characterization of relevant pathological states in which this balance is disturbed. In this article we describe one such “error of nature,” namely the development of acute recessive osteopetrosis (ARO) in humans that is caused by mutations in sorting nexin 10 (SNX10) that affect OCL functioning. We hypothesize here that, by virtue of its specific roles in vesicular trafficking, SNX10 serves as a key selective regulator of the composition of diverse membrane compartments in OCLs, thereby affecting critical processes in the sequence of events that link the plasma membrane with formation of the ruffled border and with extracellular acidification. As a result, SNX10 determines multiple features of these cells either directly or, as in regulation of cell-cell fusion, indirectly. This hypothesis is further supported by the similarities between the cellular defects observed in OCLs form various models of ARO, induced by mutations in SNX10 and in other genes, which suggest that mutations in the known ARO-associated genes act by disrupting the same plasma membrane-to-ruffled border axis, albeit to different degrees. In this article, we describe the population genetics and spread of the original arginine-to-glutamine mutation at position 51 (R51Q) in SNX10 in the Palestinian community. We further review recent studies, conducted in animal and cellular model systems, that highlight the essential roles of SNX10 in critical membrane functions in OCLs, and discuss possible future research directions that are needed for challenging or substantiating our hypothesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Grace Rabie
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Juraj Sekeres
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Moien Kanaan
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Benjamin Geiger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Moscatelli I, Almarza E, Schambach A, Ricks D, Schulz A, Herzog CD, Henriksen K, Askmyr M, Schwartz JD, Richter J. Gene therapy for infantile malignant osteopetrosis: review of pre-clinical research and proof-of-concept for phenotypic reversal. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:389-397. [PMID: 33575431 PMCID: PMC7848732 DOI: 10.1016/j.omtm.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infantile malignant osteopetrosis is a devastating disorder of early childhood that is frequently fatal and for which there are only limited therapeutic options. Gene therapy utilizing autologous hematopoietic stem and progenitor cells represents a potentially advantageous therapeutic alternative for this multisystemic disease. Gene therapy can be performed relatively rapidly following diagnosis, will not result in graft versus host disease, and may also have potential for reduced incidences of other transplant-related complications. In this review, we have summarized the past sixteen years of research aimed at developing a gene therapy for infantile malignant osteopetrosis; these efforts have culminated in the first clinical trial employing lentiviral-mediated delivery of TCIRG1 in autologous hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Ilana Moscatelli
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund, Sweden
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Ricks
- Rocket Pharmaceuticals, Inc., New York, NY, USA
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | | | | | - Maria Askmyr
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund, Sweden
| | | | - Johan Richter
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Ihn HJ, Kim YS, Lim S, Bae JS, Jung JC, Kim YH, Park JW, Wang Z, Koh JT, Bae YC, Baek MC, Park EK. PF-3845, a Fatty Acid Amide Hydrolase Inhibitor, Directly Suppresses Osteoclastogenesis through ERK and NF-κB Pathways In Vitro and Alveolar Bone Loss In Vivo. Int J Mol Sci 2021; 22:ijms22041915. [PMID: 33671948 PMCID: PMC7919013 DOI: 10.3390/ijms22041915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Alveolar bone loss, the major feature of periodontitis, results from the activation of osteoclasts, which can consequently cause teeth to become loose and fall out; the development of drugs capable of suppressing excessive osteoclast differentiation and function is beneficial for periodontal disease patients. Given the difficulties associated with drug discovery, drug repurposing is an efficient approach for identifying alternative uses of commercially available compounds. Here, we examined the effects of PF-3845, a selective fatty acid amide hydrolase (FAAH) inhibitor, on receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis, its function, and the therapeutic potential for the treatment of alveolar bone destruction in experimental periodontitis. PF-3845 significantly suppressed osteoclast differentiation and decreased the induction of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and the expression of osteoclast-specific markers. Actin ring formation and osteoclastic bone resorption were also reduced by PF-3845, and the anti-osteoclastogenic and anti-resorptive activities were mediated by the suppression of phosphorylation of rapidly accelerated fibrosarcoma (RAF), mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase, (ERK) and nuclear factor κB (NF-κB) inhibitor (IκBα). Furthermore, the administration of PF-3845 decreased the number of osteoclasts and the amount of alveolar bone destruction caused by ligature placement in experimental periodontitis in vivo. The present study provides evidence that PF-3845 is able to suppress osteoclastogenesis and prevent alveolar bone loss, and may give new insights into its role as a treatment for osteoclast-related diseases.
Collapse
Affiliation(s)
- Hye-Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Yi-Seul Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
| | - Soomin Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Chang Jung
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Yeo-Hyang Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Zhao Wang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (Z.W.); (J.-T.K.)
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (Z.W.); (J.-T.K.)
| | - Yong-Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.-C.B.); (E.-K.P.); Tel.: +82-53-420-4948 (M.-C.B.); +82-53-420-4995 (E.-K.P.)
| | - Eui-Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
- Correspondence: (M.-C.B.); (E.-K.P.); Tel.: +82-53-420-4948 (M.-C.B.); +82-53-420-4995 (E.-K.P.)
| |
Collapse
|
16
|
Aesculetin Inhibits Osteoclastic Bone Resorption through Blocking Ruffled Border Formation and Lysosomal Trafficking. Int J Mol Sci 2020; 21:ijms21228581. [PMID: 33203061 PMCID: PMC7696459 DOI: 10.3390/ijms21228581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
For the optimal resorption of mineralized bone matrix, osteoclasts require the generation of the ruffled border and acidic resorption lacuna through lysosomal trafficking and exocytosis. Coumarin-type aesculetin is a naturally occurring compound with anti-inflammatory and antibacterial effects. However, the direct effects of aesculetin on osteoclastogenesis remain to be elucidated. This study found that aesculetin inhibited osteoclast activation and bone resorption through blocking formation and exocytosis of lysosomes. Raw 264.7 cells were differentiated in the presence of 50 ng/mL receptor activator of nuclear factor-κB ligand (RANKL) and treated with 1–10 μM aesculetin. Differentiation, bone resorption, and lysosome biogenesis of osteoclasts were determined by tartrate-resistance acid phosphatase (TRAP) staining, bone resorption assay, Western blotting, immunocytochemical analysis, and LysoTracker staining. Aesculetin inhibited RANKL-induced formation of multinucleated osteoclasts with a reduction of TRAP activity. Micromolar aesculetin deterred the actin ring formation through inhibition of induction of αvβ3 integrin and Cdc42 but not cluster of differentiation 44 (CD44) in RANKL-exposed osteoclasts. Administering aesculetin to RANKL-exposed osteoclasts attenuated the induction of autophagy-related proteins, microtubule-associated protein light chain 3, and small GTPase Rab7, hampering the lysosomal trafficking onto ruffled border crucial for bone resorption. In addition, aesculetin curtailed cellular induction of Pleckstrin homology domain-containing protein family member 1 and lissencephaly-1 involved in lysosome positioning to microtubules involved in the lysosomal transport within mature osteoclasts. These results demonstrate that aesculetin retarded osteoclast differentiation and impaired lysosomal trafficking and exocytosis for the formation of the putative ruffled border. Therefore, aesculetin may be a potential osteoprotective agent targeting RANKL-induced osteoclastic born resorption for medicinal use.
Collapse
|
17
|
Khan YA, Maurya SK, Kulkarni C, Tiwari MC, Nagar GK, Chattopadhyay N. Fasciola
helminth defense molecule‐1 protects against experimental arthritis by inhibiting osteoclast formation and function without modulating the systemic immune response. FASEB J 2019; 34:1091-1106. [DOI: 10.1096/fj.201901480rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yasir Akhtar Khan
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
- Section of Parasitology Department of Zoology Aligarh Muslim University Aligarh India
| | | | - Chirag Kulkarni
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research CSIR‐Central Drug Research Institute Lucknow India
| | | | - Geet Kumar Nagar
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
| | - Naibedya Chattopadhyay
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research CSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
18
|
Löfvall H, Katri A, Dąbrowska A, Karsdal MA, Luo Y, He Y, Manon-Jensen T, Dziegiel MH, Bay-Jensen AC, Thudium CS, Henriksen K. GPDPLQ 1237-A Type II Collagen Neo-Epitope Biomarker of Osteoclast- and Inflammation-Derived Cartilage Degradation in vitro. Sci Rep 2019; 9:3050. [PMID: 30816326 PMCID: PMC6395810 DOI: 10.1038/s41598-019-39803-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/31/2019] [Indexed: 01/21/2023] Open
Abstract
C-telopeptide of type II collagen (CTX-II) has been shown to be a highly relevant biomarker of cartilage degradation in human rheumatic diseases, if measured in synovial fluid or urine. However, serum or plasma CTX-II have not been demonstrated to have any clinical utility to date. Here, we describe the GPDPLQ1237 ELISA which targets the EKGPDPLQ↓ neo-epitope, an elongated version of the CTX-II neo-epitope (EKGPDP↓), speculated to be a blood-precursor of CTX-II generated by the cysteine protease cathepsin K. Human osteoclast cartilage resorption cultures as well as oncostatin M and tumour necrosis factor α-stimulated bovine cartilage explant cultures were used to validate GPDPLQ1237 biologically by treating the cultures with the cysteine protease inhibitor E-64 and/or the matrix metalloproteinase (MMP) inhibitor GM6001 to assess the potential contributions of these two protease classes to GPDPLQ1237 release. Cartilage resorption-derived GPDPLQ1237 release was inhibited by E-64 (72.1% inhibition), GM6001 (75.5%), and E-64/GM6001 (91.5%), whereas CTX-II release was inhibited by GM6001 (87.0%) but not by E-64 (5.5%). Cartilage explant GPDPLQ1237 and CTX-II release were both fully inhibited by GM6001 but were not inhibited by E-64. No clinically relevant GPDPLQ1237 reactivity was identified in human serum, plasma, or urine from healthy donors or arthritis patients. In conclusion, the GPDPLQ1237 biomarker is released during osteoclast-derived cysteine protease- and MMP-mediated cartilage degradation in vitro, whereas CTX-II release is mediated by MMPs and not by cysteine proteases, as well as from MMP-mediated cartilage degradation under a pro-inflammatory stimulus. These findings suggest that GPDPLQ1237 may be relevant in diseases with pathological osteoclast activity and cartilage degradation. Further studies are required to validate the neo-epitope in human samples.
Collapse
Affiliation(s)
- Henrik Löfvall
- Nordic Bioscience, Herlev, Denmark.,Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund, Sweden
| | - Anna Katri
- Nordic Bioscience, Herlev, Denmark.,Department of Drug Design and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | | | | | | | - Yi He
- Nordic Bioscience, Herlev, Denmark
| | | | - Morten H Dziegiel
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | |
Collapse
|
19
|
Chaweewannakorn W, Ariyoshi W, Okinaga T, Fujita Y, Maki K, Nishihara T. Ameloblastin attenuates RANKL-mediated osteoclastogenesis by suppressing activation of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1). J Cell Physiol 2018; 234:1745-1757. [PMID: 30105896 DOI: 10.1002/jcp.27045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023]
Abstract
Ameloblastin (Ambn) is an extracellular matrix protein and member of the family of enamel-related gene products. Like amelogenin, Ambn is mainly associated with tooth development, especially biomineralization of enamel. Previous studies have shown reductions in the skeletal dimensions of Ambn-deficient mice, suggesting that the protein also has effects on the differentiation of osteoblasts and/or osteoclasts. However, the specific pathways used by Ambn to influence osteoclast differentiation have yet to be identified. In the present study, two cellular models, one based on bone marrow cells and another on RAW264.7 cells, were used to examine the effects of Ambn on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. The results showed that Ambn suppresses osteoclast differentiation, cytoskeletal organization, and osteoclast function by the downregulation of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts, actin ring formation, and areas of pit resorption. The expression of the osteoclast-specific genes TRAP, MMP9, cathepsin K, and osteoclast stimulatory transmembrane protein (OC-STAMP) was abolished in the presence of Ambn, while that of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), the master regulatory factor of osteoclastogenesis, was also attenuated by the downregulation of c-Fos expression. In Ambn-induced RAW264.7 cells, phosphorylation of cAMP-response element-binding protein (CREB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), but not extracellular signal-regulated kinase 1/2 (ERK1/2), was reduced. Calcium oscillation was also decreased in the presence of Ambn, suggesting its involvement in both RANKL-induced osteoclastogenesis and costimulatory signaling. B-lymphocyte-induced maturation protein-1 (Blimp1), a transcriptional repressor of negative regulators of osteoclastogenesis, was also downregulated by Ambn, resulting in the elevated expression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MafB), B-cell lymphoma 6 (Bcl6), and interferon regulatory factor-8 (Irf8). Taken together, these findings suggest that Ambn suppresses RANKL-induced osteoclastogenesis by modulating the NFATc1 axis.
Collapse
Affiliation(s)
- Wichida Chaweewannakorn
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan.,Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Yuko Fujita
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Kenshi Maki
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
20
|
Jung YK, Kwon KT, Jang JA, Han MS, Kim GW, Han S. Enhanced Activation of Rac1/Cdc42 and MITF Leads to Augmented Osteoclastogenesis in Autosomal Dominant Osteopetrosis Type II. JBMR Plus 2018; 3:e10070. [PMID: 30828687 PMCID: PMC6383696 DOI: 10.1002/jbm4.10070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/28/2018] [Accepted: 06/10/2018] [Indexed: 11/23/2022] Open
Abstract
The autosomal dominant osteopetrosis type II (ADOII) caused by the mutation of chloride channel 7 (ClC‐7) gene is the most common form of adult‐onset osteopetrosis. Despite dysfunctional bone resorption, an augmented osteoclast differentiation was reported recently in ADOII patients. DNA sequencing analysis of the ADOII patient's ClC‐7 gene identified a known heterozygous mutation, c.643G>A in exon 7, encoding p.Gly215Arg. In vitro osteoclast differentiation from the ADOII patient's peripheral blood mononuclear cells (PBMCs) increased compared with control despite their dysfunctional bone resorbing capacity. Osteoclasts from the ADOII patient's PBMCs and ClC‐7 knockdown bone marrow monocytes (BMMs) showed an enhanced Ser‐71 phosphorylation of Rac1/Cdc42 and increase of the microphthalmia‐associated transcription factor (MITF) and receptor activator of NF‐κB (RANK) that can be responsible for the enhanced osteoclast differentiation. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Youn-Kwan Jung
- Laboratory for Arthritis and Bone Biology Fatima Research Institute Daegu Fatima Hospital Daegu Republic of Korea
| | - Ki-Tae Kwon
- Department of Internal Medicine Kyungpook National University Hospital Daegu Republic of Korea
| | - Ji-Ae Jang
- Laboratory for Arthritis and Bone Biology Fatima Research Institute Daegu Fatima Hospital Daegu Republic of Korea
| | - Min-Su Han
- Laboratory for Arthritis and Bone Biology Fatima Research Institute Daegu Fatima Hospital Daegu Republic of Korea
| | - Gun-Woo Kim
- Laboratory for Arthritis and Bone Biology Fatima Research Institute Daegu Fatima Hospital Daegu Republic of Korea.,Department of Internal Medicine Daegu Fatima Hospital Daegu Republic of Korea
| | - Seungwoo Han
- Laboratory for Arthritis and Bone Biology Fatima Research Institute Daegu Fatima Hospital Daegu Republic of Korea.,Department of Internal Medicine Kyungpook National University Hospital Daegu Republic of Korea
| |
Collapse
|
21
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
22
|
Löfvall H, Newbould H, Karsdal MA, Dziegiel MH, Richter J, Henriksen K, Thudium CS. Osteoclasts degrade bone and cartilage knee joint compartments through different resorption processes. Arthritis Res Ther 2018; 20:67. [PMID: 29636095 PMCID: PMC5894194 DOI: 10.1186/s13075-018-1564-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
Background Osteoclasts have been strongly implicated in osteoarthritic cartilage degradation, at least indirectly via bone resorption, and have been shown to degrade cartilage in vitro. The osteoclast resorption processes required to degrade subchondral bone and cartilage—the remodeling of which is important in the osteoarthritic disease process—have not been previously described, although cathepsin K has been indicated to participate. In this study we profile osteoclast-mediated degradation of bovine knee joint compartments in a novel in vitro model using biomarkers of extracellular matrix (ECM) degradation to assess the potential of osteoclast-derived resorption processes to degrade different knee joint compartments. Methods Mature human osteoclasts were cultured on ECMs isolated from bovine knees—articular cartilage, cortical bone, and osteochondral junction ECM (a subchondral bone-calcified cartilage mixture)—in the presence of inhibitors: the cystein protease inhibitor E-64, the matrix metalloproteinase (MMP) inhibitor GM6001, or the vacuolar-type H+-ATPase (V-ATPase) inhibitor diphyllin. Biomarkers of bone (calcium and C-terminal type I collagen (CTX-I)) and cartilage (C2M) degradation were measured in the culture supernatants. Cultures without osteoclasts were used as background samples. Background-subtracted biomarker levels were normalized to the vehicle condition and were analyzed using analysis of variance with Tukey or Dunnett’s T3 post hoc test, as applicable. Results Osteochondral CTX-I release was inhibited by E-64 (19% of vehicle, p = 0.0008), GM6001 (51% of vehicle, p = 0.013), and E-64/GM6001 combined (4% of vehicle, p = 0.0007)—similarly to bone CTX-I release. Diphyllin also inhibited osteochondral CTX-I release (48% of vehicle, p = 0.014), albeit less than on bone (4% of vehicle, p < 0.0001). Osteochondral C2M release was only inhibited by E-64 (49% of vehicle, p = 0.07) and GM6001 (14% of vehicle, p = 0.006), with complete abrogation when combined (0% of vehicle, p = 0.004). Cartilage C2M release was non-significantly inhibited by E-64 (69% of vehicle, p = 0.98) and was completely abrogated by GM6001 (0% of vehicle, p = 0.16). Conclusions Our study supports that osteoclasts can resorb non-calcified and calcified cartilage independently of acidification. We demonstrated both MMP-mediated and cysteine protease-mediated resorption of calcified cartilage. Osteoclast functionality was highly dependent on the resorbed substrate, as different ECMs required different osteoclast processes for degradation. Our novel culture system has potential to facilitate drug and biomarker development aimed at rheumatic diseases, e.g. osteoarthritis, where pathological osteoclast processes in specific joint compartments may contribute to the disease process. Electronic supplementary material The online version of this article (10.1186/s13075-018-1564-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henrik Löfvall
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.,Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund, Sweden
| | - Hannah Newbould
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Morten H Dziegiel
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Johan Richter
- Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund, Sweden
| | - Kim Henriksen
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | | |
Collapse
|
23
|
Wang C, He H, Wang L, Jiang Y, Xu Y. Reduced miR-144-3p expression in serum and bone mediates osteoporosis pathogenesis by targeting RANK. Biochem Cell Biol 2018; 96:627-635. [PMID: 29334613 DOI: 10.1139/bcb-2017-0243] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoblasts and osteoclasts are responsible for the formation and resorption of bone, respectively. An imbalance between these two processes results in a disease called osteoporosis, in which a decreased level of bone strength increases the risk of a bone fracture. MicroRNAs (miRNAs) are small non-coding RNA molecules of 18-25 nucleotides that have been previously shown to control bone metabolism by regulating osteoblast and osteoclast differentiation. In this study, we detected the expression pattern of 10 miRNAs in serum samples from patients with osteoporosis, and identified the altered expression of 6 miRNAs by comparison with patients without osteoporosis. We selected miR-144-3p for further investigation, and showed that it regulates osteoclastogenesis by targeting RANK, and that it is conserved amongst vertebrates. Disrupted expression of miR-144-3p in CD14+ peripheral blood mononuclear cells changed TRAP activity and the osteoclast-specific genes TRAP, cathepsin K (CTSK), and NFATC. TRAP staining, CCK-8, and flow cytometry analyses revealed that miR-144-3p also affects osteoclast formation, proliferation, and apoptosis. Together, these results indicate that miR-144-3p critically mediates bone homeostasis, and thus, represents a promising novel therapeutic candidate for the treatment of this disease.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.,Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Hanliang He
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.,Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Liang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.,Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Yu Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.,Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.,Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| |
Collapse
|
24
|
Green D, Mohorianu I, McNamara I, Dalmay T, Fraser WD. miR-16 is highly expressed in Paget's associated osteosarcoma. Endocr Relat Cancer 2017; 24:L27-L31. [PMID: 28377382 DOI: 10.1530/erc-16-0487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Darrell Green
- Norwich Medical SchoolUniversity of East Anglia, Norwich Research Park, Norwich, UK
| | - Irina Mohorianu
- School of Biological SciencesUniversity of East Anglia, Norwich Research Park, Norwich, UK
| | - Iain McNamara
- Department of Orthopaedics and TraumaNorfolk and Norwich University Hospital, Norwich Research Park, Norwich, UK
| | - Tamas Dalmay
- School of Biological SciencesUniversity of East Anglia, Norwich Research Park, Norwich, UK
| | - William D Fraser
- Norwich Medical SchoolUniversity of East Anglia, Norwich Research Park, Norwich, UK
- Department of Diabetes and EndocrinologyNorfolk and Norwich University Hospital, Norwich Research Park, Norwich, UK
| |
Collapse
|
25
|
Chiu YH, Schwarz E, Li D, Xu Y, Sheu TR, Li J, de Mesy Bentley KL, Feng C, Wang B, Wang JC, Albertorio-Saez L, Wood R, Kim M, Wang W, Ritchlin CT. Dendritic Cell-Specific Transmembrane Protein (DC-STAMP) Regulates Osteoclast Differentiation via the Ca 2+ /NFATc1 Axis. J Cell Physiol 2017; 232:2538-2549. [PMID: 27723141 DOI: 10.1002/jcp.25638] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
DC-STAMP is a multi-pass transmembrane protein essential for cell-cell fusion between osteoclast precursors during osteoclast (OC) development. DC-STAMP-/- mice have mild osteopetrosis and form mononuclear cells with limited resorption capacity. The identification of an Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM) on the cytoplasmic tail of DC-STAMP suggested a potential signaling function. The absence of a known DC-STAMP ligand, however, has hindered the elucidation of downstream signaling pathways. To address this problem, we engineered a light-activatable DC-STAMP chimeric molecule in which light exposure mimics ligand engagement that can be traced by downstream Ca2+ signaling. Deletion of the cytoplasmic ITIM resulted in a significant elevation in the amplitude and duration of intracellular Ca2+ flux. Decreased NFATc1 expression in DC-STAMP-/- cells was restored by DC-STAMP over-expression. Multiple biological phenotypes including cell-cell fusion, bone erosion, cell mobility, DC-STAMP cell surface distribution, and NFATc1 nuclear translocation were altered by deletion of the ITIM and adjacent amino acids. In contrast, mutations on each of the tyrosine residues surrounding the ITIM showed no effect on DC-STAMP function. Collectively, our results suggest that the ITIM on DC-STAMP is a functional motif that regulates osteoclast differentiation through the NFATc1/Ca2+ axis. J. Cell. Physiol. 232: 2538-2549, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ya-Hui Chiu
- Division of Allergy/Immunology and Rheumatology, The University of Rochester, Rochester, New York
| | - Edward Schwarz
- The Center for Musculoskeletal Research, The University of Rochester, Rochester, New York
| | - Dongge Li
- Division of Allergy/Immunology and Rheumatology, The University of Rochester, Rochester, New York
| | - Yuexin Xu
- Microbiology and Immunology, The University of Rochester, Rochester, New York
| | - Tzong-Ren Sheu
- The Center for Musculoskeletal Research, The University of Rochester, Rochester, New York
| | - Jinbo Li
- Pathology and Laboratory Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Karen L de Mesy Bentley
- Microbiology and Immunology, The University of Rochester, Rochester, New York.,Pathology and Laboratory Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Changyong Feng
- Biostatistic, The University of Rochester, Rochester, New York
| | - Baoli Wang
- Hormones and Development, Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jhih-Cheng Wang
- Institution of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Liz Albertorio-Saez
- Division of Allergy/Immunology and Rheumatology, The University of Rochester, Rochester, New York
| | - Ronald Wood
- OB/GYN, Urology, Neuroscience, The University of Rochester, Rochester, New York
| | - Minsoo Kim
- Microbiology and Immunology, The University of Rochester, Rochester, New York
| | - Wensheng Wang
- 1st Affiliated Hospital, Xinxiang Medical University, Weihui City, Henan Province, China
| | - Christopher T Ritchlin
- Division of Allergy/Immunology and Rheumatology, The University of Rochester, Rochester, New York
| |
Collapse
|
26
|
Cline-Smith A, Gibbs J, Shashkova E, Buchwald ZS, Novack DV, Aurora R. Pulsed low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis. JCI Insight 2016; 1. [PMID: 27570837 DOI: 10.1172/jci.insight.88839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A number of studies in model animal systems and in the clinic have established that RANKL promotes bone resorption. Paradoxically, we found that pulsing ovariectomized mice with low-dose RANKL suppressed bone resorption, decreased the levels of proinflammatory effector T cells and led to increased bone mass. This effect of RANKL is mediated through the induction of FoxP3+CD25+ regulatory CD8+ T cells (TcREG) by osteoclasts. Here, we show that pulses of low-dose RANKL are needed to induce TcREG, as continuous infusion of identical doses of RANKL by pump did not induce TcREG. We also show that low-dose RANKL can induce TcREG at 2, 3, 6, and 10 weeks after ovariectomy. Our results show that low-dose RANKL treatment in ovariectomized mice is optimal at once-per-month doses to maintain the bone mass. Finally, we found that treatment of ovariectomized mice with the Cathepsin K inhibitor odanacatib also blocked TcREG induction by low-dose RANKL. We interpret this result to indicate that antigens presented to CD8+ T cells by osteoclasts are derived from the bone protein matrix because Cathepsin K degrades collagen in the bone. Taken together, our studies provide a basis for using low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jesse Gibbs
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elena Shashkova
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Zachary S Buchwald
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Lutter AH, Hempel U, Anderer U, Dieter P. Biphasic influence of PGE2 on the resorption activity of osteoclast-like cells derived from human peripheral blood monocytes and mouse RAW264.7 cells. Prostaglandins Leukot Essent Fatty Acids 2016; 111:1-7. [PMID: 27499447 DOI: 10.1016/j.plefa.2016.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 10/21/2022]
Abstract
Osteoclasts are large bone-resorbing cells of hematopoietic origin. Their main function is to dissolve the inorganic component hydroxyapatite and to degrade the organic bone matrix. Prostaglandin E2 (PGE2) indirectly affects osteoclasts by stimulating osteoblasts to release factors that influence osteoclast activity. The direct effect of PGE2 on osteoclasts is still controversial. To study the influence of PGE2 on osteoclast activity, human peripheral blood monocytes (hPBMC) and mouse RAW264.7 cells were cultured on osteoblast-derived extracellular matrix. hPBMC and RAW264.7 cells were differentiated by the addition of macrophage colony-stimulation factor and receptor activator of NFκB ligand and treated with PGE2 before and after differentiation induction. The pit area, an indicator of resorption activity, and the activity of tartrate-resistant acid phosphatase were dose-dependently inhibited when PGE2 was present ab initio, whereas the resorption activity remained unchanged when the cells were exposed to PGE2 from day 4 of culture. These results lead to the conclusion that PGE2 treatment inhibits only the differentiation of precursor osteoclasts whereas differentiated osteoclasts are not affected.
Collapse
Affiliation(s)
- Anne-Helen Lutter
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, 01307 Dresden, Germany; Department of Cell Biology and Tissue Engineering, Brandenburg University of Technology Cottbus-Senftenberg, Großenhainer Straße 57, 01968 Senftenberg, Germany.
| | - Ute Hempel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Ursula Anderer
- Department of Cell Biology and Tissue Engineering, Brandenburg University of Technology Cottbus-Senftenberg, Großenhainer Straße 57, 01968 Senftenberg, Germany
| | - Peter Dieter
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, 01307 Dresden, Germany
| |
Collapse
|
28
|
Touaitahuata H, Cres G, de Rossi S, Vives V, Blangy A. The mineral dissolution function of osteoclasts is dispensable for hypertrophic cartilage degradation during long bone development and growth. Dev Biol 2014; 393:57-70. [PMID: 24992711 DOI: 10.1016/j.ydbio.2014.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022]
Abstract
During long bone development and post-natal growth, the cartilaginous model of the skeleton is progressively replaced by bone, a process known as endochondral ossification. In the primary spongiosa, osteoclasts degrade the mineralized cartilage produced by hypertrophic chondrocytes to generate cartilage trabeculae that osteoblasts embed in bone matrix. This leads to the formation of the trabecular bone network of the secondary spongiosa that will undergo continuous remodeling. Osteoclasts are specialized in mineralized tissue degradation, with the combined ability to solubilize hydroxyapatite and to degrade extracellular matrix proteins. We reported previously that osteoclasts lacking Dock5 could not degrade bone due to abnormal podosome organization and absence of sealing zone formation. Consequently, adult Dock5(-/-) mice have increased trabecular bone mass. We used Dock5(-/-) mice to further investigate the different functions of osteoclast during endochondral bone formation. We show that long bones are overall morphologically normal in developing and growing Dock5(-/-) mice. We demonstrate that Dock5(-/-) mice also have normal hypertrophic cartilage and cartilage trabecular network. Conversely, trabecular bone volume increased progressively in the secondary spongiosa of Dock5(-/-) growing mice as compared to Dock5(+/+) animals, even though their osteoclast numbers were the same. In vitro, we show that Dock5(-/-) osteoclasts do present acidic compartments at the ventral plasma membrane and produce normal amounts of active MMP9, TRAP and CtsK for matrix protein degradation but they are unable to solubilize minerals. These observations reveal that contrarily to bone resorption, the ability of osteoclasts to dissolve minerals is dispensable for the degradation of mineralized hypertrophic cartilage during endochondral bone formation.
Collapse
Affiliation(s)
- Heiani Touaitahuata
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 route de Mende, 34295 Montpellier, France; Montpellier University, France
| | - Gaelle Cres
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 route de Mende, 34295 Montpellier, France; Montpellier University, France
| | | | - Virginie Vives
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 route de Mende, 34295 Montpellier, France; Montpellier University, France
| | - Anne Blangy
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 1919 route de Mende, 34295 Montpellier, France; Montpellier University, France.
| |
Collapse
|
29
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
30
|
Lacombe J, Karsenty G, Ferron M. Regulation of lysosome biogenesis and functions in osteoclasts. Cell Cycle 2013; 12:2744-52. [PMID: 23966172 DOI: 10.4161/cc.25825] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In order to resorb the mineralized bone extracellular matrix, the osteoclast relies on the generation of a resorption lacuna characterized by the presence of specific proteases and a low pH. Hence, bone resorption by osteoclasts is highly dependent on lysosomes, the organelles specialized in intra- and extracellular material degradation. This is best illustrated by the fact that multiple forms of human osteopetrosis are caused by mutations in genes encoding for lysosomal proteins. Yet, until recently, the molecular mechanisms regulating lysosomal biogenesis and function in osteoclasts were poorly understood. Here we review the latest developments in the study of lysosomal biogenesis and function in osteoclasts with an emphasis on the transcriptional control of these processes.
Collapse
Affiliation(s)
- Julie Lacombe
- Institut de Recherches Cliniques de Montréal; Montréal, Québec, Canada
| | | | | |
Collapse
|
31
|
Adamts1 is highly induced in rachitic bones of FGF23 transgenic mice and participates in degradation of non-mineralized bone matrix collagen. Biochem Biophys Res Commun 2013; 430:901-6. [DOI: 10.1016/j.bbrc.2012.12.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 11/20/2022]
|
32
|
Henriksen K, Andreassen KV, Thudium CS, Gudmann KNS, Moscatelli I, Crüger-Hansen CE, Schulz AS, Dziegiel MH, Richter J, Karsdal MA, Neutzsky-Wulff AV. A specific subtype of osteoclasts secretes factors inducing nodule formation by osteoblasts. Bone 2012; 51:353-61. [PMID: 22722081 DOI: 10.1016/j.bone.2012.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/07/2012] [Accepted: 06/09/2012] [Indexed: 12/19/2022]
Abstract
Osteoclasts are known to be important for the coupling process between bone resorption and formation. The aim of this study was to address when osteoclasts are anabolically active. Human monocytes were differentiated into mature osteoclasts by treatment with M-CSF and RANKL. Conditioned medium was collected from macrophages, pre-osteoclasts, and mature functional or non-resorbing osteopetrotic osteoclasts on either bone, plastic, decalcified bone or dentine with or without diphyllin, E64 or GM6001. Osteoclasts numbers were measured by TRACP activity. Bone resorption was evaluated by CTX-I and calcium release. The osteoblastic cell line 2T3 was treated with 50% of CM or non-CM for 12days. Bone formation was assessed by Alizarin Red extraction. CM from mature osteoclasts induced bone formation, while CM from macrophages did not. Non-resorbing osteoclasts generated from osteopetrosis patients showed little resorption, but still an induction of bone formation by osteoblasts. Mimicking the reduction in bone resorption using the V-ATPase inhibitor Diphyllin, the cysteine proteinase inhibitor E64 and the MMP-inhibitor GM6001 showed that CM from diphyllin and E64 treated osteoclasts showed reduced ability to induce bone formation compared to CM from vehicle treated osteoclasts, while CM from GM6001 treated osteoclasts equaled vehicle CM. Osteoclasts on either dentine or decalcified bone showed strongly attenuated anabolic capacities. In conclusion, we present evidence that osteoclasts, both dependent and independent of their resorptive activity, secrete factors stimulating osteoblastic bone formation.
Collapse
Affiliation(s)
- Kim Henriksen
- Nordic Bioscience A/S, Bone Biology and Biomarkers, Herlev, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Karsdal MA, Schett G, Emery P, Harari O, Byrjalsen I, Kenwright A, Bay-Jensen AC, Platt A. IL-6 receptor inhibition positively modulates bone balance in rheumatoid arthritis patients with an inadequate response to anti-tumor necrosis factor therapy: biochemical marker analysis of bone metabolism in the tocilizumab RADIATE study (NCT00106522). Semin Arthritis Rheum 2012; 42:131-9. [PMID: 22397953 DOI: 10.1016/j.semarthrit.2012.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To evaluate changes in biochemical markers of bone metabolism in response to tocilizumab in patients with anti-tumor necrosis factor-refractory rheumatoid arthritis (RA). METHODS RADIATE was a randomized, double-blind, placebo-controlled, parallel-group phase 3 trial. C-reactive protein, osteocalcin (OC), C-terminal telopeptides of type-I collagen (C-terminal telopeptides of type-1 collagen (CTX-I) and type-I collagen degradation product), and matrix metalloproteinase-3 (MMP-3) serum levels were analyzed from 299 RA patients. Patients were randomly assigned to either tocilizumab (4 or 8 mg/kg) or placebo intravenously every 4 weeks, along with concomitant stable methotrexate (10 to 25 mg weekly) in all treatment arms. The change in biochemical markers CTX-I and OC in combination was evaluated as a measure of net bone balance, a reflection of the change in equilibrium between resorption and formation. RESULTS Both tocilizumab doses decreased C-reactive protein levels and significantly inhibited cathepsin K-mediated bone resorption in RADIATE subjects, as measured by a decrease in CTX-I. There was a significant overall improvement in net bone balance at week 16 as measured by a decrease in the CTX-I:OC ratio (-25%, P < 0.01). Furthermore, a significant reduction in MMP-3 (43%, P < 0.001) and type-I collagen degradation product levels (18%, P < 0.001) were observed following treatment, both consistent with decreased MMP-mediated type-I collagen catabolism in joint tissue. CONCLUSIONS In anti-tumor necrosis factor-refractory patients, tocilizumab significantly reduced the levels of biochemical markers of cathepsin K-mediated bone resorption and MMP-mediated tissue degradation and remodeling. These observations suggest that tocilizumab has a positive effect on bone balance, which could in part explain the retardation of progressive structural damage observed with tocilizumab. Clinical trial registry number: NCT00106522.
Collapse
|
34
|
Henriksen K, Karsdal MA, Taylor A, Tosh D, Coxon FP. Generation of human osteoclasts from peripheral blood. Methods Mol Biol 2012; 816:159-75. [PMID: 22130928 DOI: 10.1007/978-1-61779-415-5_11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoclasts are multi-nucleated cells that have the unique ability to resorb calcified bone matrix. They derive from haematopoietic precursor cells, and can be generated in vitro by stimulation of peripheral blood mononuclear cells with the cytokines M-CSF and RANKL. In this chapter, we describe the method for generating human osteoclast from peripheral blood or buffy coats, as well as methods for studying both the differentiation and resorbing activity of these cells.
Collapse
|
35
|
Skjøt-Arkil H, Barascuk N, Larsen L, Dziegiel M, Henriksen K, Karsdal MA. Tumor necrosis factor-α and receptor activator of nuclear factor-κB ligand augment human macrophage foam-cell destruction of extracellular matrix through protease-mediated processes. Assay Drug Dev Technol 2011; 10:69-77. [PMID: 22053710 DOI: 10.1089/adt.2010.0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By secreting proteases such as cathepsins and matrix metalloproteinases (MMPs), macrophage foam cells may be a major cause of ruptured atherosclerotic plaques. The aims of the present study were to investigate in vitro role of human macrophage foam cells in degrading type I collagen, a major component of extracellular matrix (ECM) in plaques, and to establish whether the pro-inflammatory molecules, tumor necrosis factor (TNF)-alpha, and receptor activator of nuclear factor-κB ligand (RANK-L) increase this degradation. CD14+ monocytes isolated from peripheral blood were differentiated into macrophage foam cells and cultured on a type I collagen matrix in the presence of TNF-alpha and RANK-L. Matrix degradation was measured by the cathepsin K-generated C-terminal cross-linked telopeptide of type I collagen (CTX-I) and the MMP-generated carboxyterminal telopeptide of type I collagen (ICTP) in supernatants showing that macrophage foam cells secrete MMPs and cathepsin K, resulting in release of ICTP and CTX-I. Stimulation with TNF-alpha increased CTX-I and ICTP dose dependently, with ICTP levels increasing by 59% and CTX-I levels increasing by 43%. RANK-L enhanced the release of CTX-I and ICTP by 56% and 72%, respectively. This is, to our knowledge, the first data describing a simple in vitro system in which macrophage foam cells degradation of matrix proteins can be monitored. This degradation can be enhanced by cytokines since TNF-alpha and RANK-L significantly increased the matrix degradation. This in vitro system in part is a model system for the macrophage-mediated proteolytic degradation of the ECM, which is found in many diseases with an inflammatory component.
Collapse
|
36
|
Protein fingerprints — Relying on and understanding the information of serological protein measurements. Clin Biochem 2011; 44:1278-9. [DOI: 10.1016/j.clinbiochem.2011.08.1135] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/20/2011] [Indexed: 01/13/2023]
|
37
|
Karsdal MA, Woodworth T, Henriksen K, Maksymowych WP, Genant H, Vergnaud P, Christiansen C, Schubert T, Qvist P, Schett G, Platt A, Bay-Jensen AC. Biochemical markers of ongoing joint damage in rheumatoid arthritis--current and future applications, limitations and opportunities. Arthritis Res Ther 2011; 13:215. [PMID: 21539724 PMCID: PMC3132026 DOI: 10.1186/ar3280] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease associated with potentially debilitating joint inflammation, as well as altered skeletal bone metabolism and co-morbid conditions. Early diagnosis and aggressive treatment to control disease activity offers the highest likelihood of preserving function and preventing disability. Joint inflammation is characterized by synovitis, osteitis, and/or peri-articular osteopenia, often accompanied by development of subchondral bone erosions, as well as progressive joint space narrowing. Biochemical markers of joint cartilage and bone degradation may enable timely detection and assessment of ongoing joint damage, and their use in facilitating treatment strategies is under investigation. Early detection of joint damage may be assisted by the characterization of biochemical markers that identify patients whose joint damage is progressing rapidly and who are thus most in need of aggressive treatment, and that, alone or in combination, identify those individuals who are likely to respond best to a potential treatment, both in terms of limiting joint damage and relieving symptoms. The aims of this review are to describe currently available biochemical markers of joint metabolism in relation to the pathobiology of joint damage and systemic bone loss in RA; to assess the limitations of, and need for additional, novel biochemical markers in RA and other rheumatic diseases, and the strategies used for assay development; and to examine the feasibility of advancement of personalized health care using biochemical markers to select therapeutic agents to which a patient is most likely to respond.
Collapse
Affiliation(s)
- Morten A Karsdal
- Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark
- Southern University of Denmark (SDU), Campusvej 55DK-5230 Odense M Denmark
| | - Thasia Woodworth
- Leading Edge Clinical Research LLC, 3901 SE St Lucie Blvd unit 20, Stuart, Florida 34997, USA
| | - Kim Henriksen
- Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| | - Walter P Maksymowych
- University of Alberta, 562 Heritage Medical Research Building, Edmonton, AB T6G 2S2, Canada
| | | | | | | | | | - Per Qvist
- Nordic Bioscience, Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| | - Georg Schett
- University of Erlangen-Nurnberg Department of Internal Medicine, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Adam Platt
- Roche Products Limited, 6 Falcon Way, Shire Park, Welwyn Garden City, AL7 1TW, UK
| | | |
Collapse
|
38
|
Henriksen K, Bollerslev J, Everts V, Karsdal MA. Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis. Endocr Rev 2011; 32:31-63. [PMID: 20851921 DOI: 10.1210/er.2010-0006] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoclasts have traditionally been associated exclusively with catabolic functions that are a prerequisite for bone resorption. However, emerging data suggest that osteoclasts also carry out functions that are important for optimal bone formation and bone quality. Moreover, recent findings indicate that osteoclasts have different subtypes depending on their location, genotype, and possibly in response to drug intervention. The aim of the current review is to describe the subtypes of osteoclasts in four different settings: 1) physiological, in relation to turnover of different bone types; 2) pathological, as exemplified by monogenomic disorders; 3) pathological, as identified by different disorders; and 4) in drug-induced situations. The profiles of these subtypes strongly suggest that these osteoclasts belong to a heterogeneous cell population, namely, a diverse macrophage-associated cell type with bone catabolic and anabolic functions that are dependent on both local and systemic parameters. Further insight into these osteoclast subtypes may be important for understanding cell-cell communication in the bone microenvironment, treatment effects, and ultimately bone quality.
Collapse
Affiliation(s)
- K Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
39
|
Henriksen K, Bay-Jensen AC, Christiansen C, Karsdal MA. Oral salmon calcitonin--pharmacology in osteoporosis. Expert Opin Biol Ther 2010; 10:1617-29. [PMID: 20932224 DOI: 10.1517/14712598.2010.526104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IMPORTANCE OF THE FIELD Osteoporosis is a slow progressive disease with develops over decades, and where intervention is needed for an extended number of years. This highlights the need for safe intervention possibilities, which have sustained beneficial effects post-treatment. AREAS COVERED IN THIS REVIEW Articles on salmon calcitonin appearing on Pubmed from 1960 until today, with focus on a newly developed oral formulation showing increased exposure and efficacy compared with nasal formulation is reviewed. The second half focuses on long-term phenomena, such as bone quality and resolution effects. The final part discusses potential additional benefits of salmon calcitonin. WHAT THE READER WILL GAIN Insight into the clinical development of an orally formulated peptide, as well as a detailed understanding of why this approach could revive salmon calcitonin as a treatment for osteoporosis. TAKE HOME MESSAGE The oral formulation of salmon calcitonin provides additional benefits and increased efficacy on bone based on Phase I and II clinical trials data, as compared with the nasal formulation. Hence, the results on the ongoing Phase III fracture trial are awaited with great interest.
Collapse
Affiliation(s)
- Kim Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
40
|
Neutzsky-Wulff A, Sims N, Supanchart C, Kornak U, Felsenberg D, Poulton I, Martin T, Karsdal M, Henriksen K. Severe developmental bone phenotype in ClC-7 deficient mice. Dev Biol 2010; 344:1001-10. [DOI: 10.1016/j.ydbio.2010.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 12/31/2022]
|
41
|
Lutter AH, Hempel U, Wolf-Brandstetter C, Garbe AI, Goettsch C, Hofbauer LC, Jessberger R, Dieter P. A novel resorption assay for osteoclast functionality based on an osteoblast-derived native extracellular matrix. J Cell Biochem 2010; 109:1025-32. [PMID: 20108253 DOI: 10.1002/jcb.22485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Osteoclasts are large, mobile, bone-resorbing cells and play a critical role in bone remodeling and catabolic bone diseases. The major function of osteoclasts is to hydrolyze inorganic hydroxyapatite and degrade organic bone matrix, mainly collagen. For evaluation of differentiation to fully functional osteoclasts in vitro, a quantitative functional resorption assay is essential. Currently available commercial test systems are either based on the organic or the inorganic part of the bone matrix. The novel resorption assay presented here is based on decellularized osteoblast-derived matrix. SaOS-2 cells were used for the synthesis of a densely mineralized extracellular bone matrix (ECM) in alpha-MEM medium, which strongly accelerates their matrix synthesis. After removal of the SaOS-2 cells, osteoclast precursors are plated on the osteoblast-derived matrix and stained by von Kossa. Subsequently, resorption pits were quantified by densitometry using an imaging program. Using this novel assay, we show that (i) RAW 264.7 cells resorbed the osteoblast-derived matrix continuously from day 6 until day 9 of culture, a process that is dose dependent on the macrophage colony-stimulating factor (M-CSF) concentration, (ii) the resorption performance of RAW 264.7 was dose-dependently inhibited by IFN-gamma, and (iii) the assay is working with primary human and mouse osteoclast precursors as well. In conclusion, this quantitative, functional, easy-to-use, inexpensive assay will advance analysis of osteoclast biology.
Collapse
Affiliation(s)
- Anne-Helen Lutter
- Medical Faculty Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, Fiedlerstrasse 42, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption--implications for osteoclast quality. BMC Musculoskelet Disord 2010; 11:109. [PMID: 20515459 PMCID: PMC2891608 DOI: 10.1186/1471-2474-11-109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 06/01/2010] [Indexed: 01/23/2023] Open
Abstract
Background Normal osteoclasts resorb bone by secretion of acid and proteases. Recent studies of patients with loss of function mutations affecting either of these processes have indicated a divergence in osteoclastic phenotypes. These difference in osteoclast phenotypes may directly or indirectly have secondary effects on bone remodeling, a process which is of importance for the pathogenesis of both osteoporosis and osteoarthritis. We treated human osteoclasts with different inhibitors and characterized their resulting function. Methods Human CD14 + monocytes were differentiated into mature osteoclasts using RANKL and M-CSF. The osteoclasts were cultured on bone in the presence or absence of various inhibitors: Inhibitors of acidification (bafilomycin A1, diphyllin, ethoxyzolamide), inhibitors of proteolysis (E64, GM6001), or a bisphosphonate (ibandronate). Osteoclast numbers and bone resorption were monitored by measurements of TRACP activity, the release of calcium, CTX-I and ICTP, as well as by counting resorption pits. Results All inhibitors of acidification were equally potent with respect to inhibition of both organic and inorganic resorption. In contrast, inhibition of proteolysis by E64 potently reduced organic resorption, but only modestly suppressed inorganic resorption. GM6001 alone did not greatly affect bone resorption. However, when GM6001 and E64 were combined, a complete abrogation of organic bone resorption was observed, without a great effect on inorganic resorption. Ibandronate abrogated both organic and inorganic resorption at all concentrations tested [0.3-100 μM], however, this treatment dramatically reduced TRACP activity. Conclusions We present evidence highlighting important differences with respect to osteoclast function, when comparing the different types of osteoclast inhibitors. Each class of osteoclast inhibitors will lead to different alterations in osteoclast quality, which secondarily may lead to different bone qualities.
Collapse
|
43
|
Frodge BD, Ebersole JL, Kryscio RJ, Thomas MV, Miller CS. Letter to the Editor: Authors' Response. J Periodontol 2009. [DOI: 10.1902/jop.2009.090299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Alroy J, Pfannl R, Ucci A, Lefranc G, Frattini A, Mégarbané A. Electron Microscopic Findings in Skin Biopsies from Patients with Infantile Osteopetrosis and Neuronal Storage Disease. Ultrastruct Pathol 2009; 31:333-8. [DOI: 10.1080/01913120701578098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Karsdal M, Henriksen K, Leeming D, Mitchell P, Duffin K, Barascuk N, Klickstein L, Aggarwal P, Nemirovskiy O, Byrjalsen I, Qvist P, Bay-Jensen A, Dam E, Madsen S, Christiansen C. Biochemical markers and the FDA Critical Path: How biomarkers may contribute to the understanding of pathophysiology and provide unique and necessary tools for drug development. Biomarkers 2009; 14:181-202. [DOI: 10.1080/13547500902777608] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Atp6v1c1 is an essential component of the osteoclast proton pump and in F-actin ring formation in osteoclasts. Biochem J 2009; 417:195-203. [PMID: 18657050 DOI: 10.1042/bj20081073] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone resorption relies on the extracellular acidification function of V-ATPase (vacuolar-type proton-translocating ATPase) proton pump(s) present in the plasma membrane of osteoclasts. The exact configuration of the osteoclast-specific ruffled border V-ATPases remains largely unknown. In the present study, we found that the V-ATPase subunit Atp6v1c1 (C1) is highly expressed in osteoclasts, whereas subunits Atp6v1c2a (C2a) and Atp6v1c2b (C2b) are not. The expression level of C1 is highly induced by RANKL [receptor activator for NF-kappaB (nuclear factor kappaB) ligand] during osteoclast differentiation; C1 interacts with Atp6v0a3 (a3) and is mainly localized on the ruffled border of activated osteoclasts. The results of the present study show for the first time that C1-silencing by lentivirus-mediated RNA interference severely impaired osteoclast acidification activity and bone resorption, whereas cell differentiation did not appear to be affected, which is similar to a3 silencing. The F-actin (filamentous actin) ring formation was severely defected in C1-depleted osteoclasts but not in a3-depleted and a3(-/-) osteoclasts. C1 co-localized with microtubules in the plasma membrane and its vicinity in mature osteoclasts. In addition, C1 co-localized with F-actin in the cytoplasm; however, the co-localization chiefly shifted to the cell periphery of mature osteoclasts. The present study demonstrates that Atp6v1c1 is an essential component of the osteoclast proton pump at the osteoclast ruffled border and that it may regulate F-actin ring formation in osteoclast activation.
Collapse
|
47
|
Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7. Biochem Biophys Res Commun 2009; 378:804-9. [DOI: 10.1016/j.bbrc.2008.11.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 11/25/2008] [Indexed: 02/05/2023]
|
48
|
Neutzsky-Wulff AV, Karsdal MA, Henriksen K. Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int 2008; 83:425-37. [PMID: 18958510 DOI: 10.1007/s00223-008-9185-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/04/2008] [Indexed: 02/04/2023]
Abstract
Mice deficient in the chloride channel ClC-7, which is likely involved in acidification of the resorption lacuna, display severe osteopetrosis. To fully characterize the osteopetrotic phenotype, the phenotypes of osteoclasts and osteoblasts were evaluated. ClC-7(-/-) mice and their corresponding wild-type littermates were killed at 4-5 weeks of age. Biochemical markers of bone resorption (CTX-I), osteoclast number (TRAP5b), and osteoblast activity (ALP) were evaluated in serum. Splenocytes were differentiated into osteoclasts using M-CSF and RANKL. Mature osteoclasts were seeded on calcified or decalcified bone slices, and CTX-I, Ca(2+), and TRAP were measured. Acidification rates in membrane vesicles from bone cells were measured using acridine orange. Osteoblastogenesis and nodule formation in vitro were investigated using calvarial osteoblasts. ClC-7(-/-) osteoclasts were unable to resorb calcified bone in vitro. However, osteoclasts were able to degrade decalcified bone. Acid influx in bone membrane vesicles was reduced by 70% in ClC-7(-/-) mice. Serum ALP was increased by 30% and TRAP5b was increased by 250% in ClC-7(-/-) mice, whereas the CTX/TRAP5b ratio was reduced to 50% of the wild-type level. Finally, evaluation of calvarial ClC-7(-/-) osteoblasts showed normal osteoblastogenesis. In summary, we present evidence supporting a pivotal role for ClC-7 in acidification of the resorption lacuna and evidence indicating that bone formation and bone resorption are no longer balanced in ClC-7(-/-) mice.
Collapse
|
49
|
Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet 2008; 124:561-77. [DOI: 10.1007/s00439-008-0583-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/28/2008] [Indexed: 02/05/2023]
|
50
|
Coxon FP, Taylor A. Vesicular trafficking in osteoclasts. Semin Cell Dev Biol 2008; 19:424-33. [DOI: 10.1016/j.semcdb.2008.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/04/2008] [Accepted: 08/08/2008] [Indexed: 11/24/2022]
|