1
|
Liang X, Du Y, Wen Y, Liu L, Li P, Zhao Y, Ding M, Cheng B, Cheng S, Ma M, Zhang L, Shen H, Tian Q, Guo X, Zhang F, Deng HW. Assessing the Genetic Correlations Between Blood Plasma Proteins and Osteoporosis: A Polygenic Risk Score Analysis. Calcif Tissue Int 2019; 104:171-181. [PMID: 30306195 PMCID: PMC6368453 DOI: 10.1007/s00223-018-0483-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/04/2018] [Indexed: 01/13/2023]
Abstract
Osteoporosis is a common metabolic bone disease. The impact of global blood plasma proteins on the risk of osteoporosis remains elusive now. We performed a large-scale polygenic risk score (PRS) analysis to evaluate the potential effects of blood plasma proteins on the development of osteoporosis in 2286 Caucasians, including 558 males and 1728 females. Bone mineral density (BMD) and bone areas at ulna & radius, hip, and spine were measured using Hologic 4500W DXA. BMD/bone areas values were adjusted for age, sex, height, and weight as covariates. Genome-wide SNP genotyping of 2286 Caucasian subjects was performed using Affymetrix Human SNP Array 6.0. The 267 blood plasma proteins-associated SNP loci and their genetic effects were obtained from recently published genome-wide association study (GWAS) using a highly multiplexed aptamer-based affinity proteomics platform. The polygenetic risk score (PRS) of study subjects for each blood plasma protein was calculated from the genotypes data of the 2286 Caucasian subjects by PLINK software. Pearson correlation analysis of individual PRS values and BMD/bone area value was performed using R. Additionally, gender-specific analysis also was performed by Pearson correlation analysis. 267 blood plasma proteins were analyzed in this study. For BMD, we observed association signals between 41 proteins and BMD, mainly including whole body total BMD versus Factor H (p value = 9.00 × 10-3), whole body total BMD versus BGH3 (p value = 1.40 × 10-2), spine total BMD versus IGF-I (p value = 2.15 × 10-2), and spine total BMD versus SAP (p value = 3.90 × 10-2). As for bone areas, association evidence was observed between 45 blood plasma proteins and bone areas, such as ferritin versus spine area (p value = 1.90 × 10-2), C4 versus hip area (p value = 1.25 × 10-2), and hemoglobin versus right ulna and radius area (p value = 2.70 × 10-2). Our study results suggest the modest impact of blood plasma proteins on the variations of BMD/bone areas, and identify several candidate blood plasma proteins for osteoporosis.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Miao Ding
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Population Health Promotion in Sick Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Hong-Wen Deng
- School of Basic Medical Sciences, Central South University, 410000, Changsha, People's Republic of China.
| |
Collapse
|
2
|
Jiang ZS, Hao ZH. An insertion/deletion polymorphism within the 3'‑untranslated region of COL1A2 confers susceptibility to osteoporosis. Mol Med Rep 2016; 14:4415-4421. [PMID: 27665867 DOI: 10.3892/mmr.2016.5755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/06/2015] [Indexed: 11/06/2022] Open
Abstract
Polymorphisms located in microRNA (miRNA) binding sites may interfere with the interaction between miRNAs and mRNAs, and thereby alter the expression of genes. The current study aimed to investigate the association between an insertion/deletion (INS/DEL) polymorphism in the 3'‑untranslated region (3'‑UTR) of COL1A2 and the risk of developing osteoporosis. In the present study, COL1A2 was identified as a target gene of let‑7g in osteoblast cells obtained from patients, using a luciferase reporter system. This was further confirmed by the observation that exogenous overexpression of let‑7g in the osteoblast cells downregulated the expression of COL1A2 in the cells in the INS/INS group, however not in the DEL/DEL group. In addition, a total of 487 subjects were enrolled in the present study and their bone mineral density (BMD) was measured. The BMD at the four tested sites, the femoral neck, total left hip, L1‑L4 and intertrochanteric areas, were significantly reduced in the INS/DEL or DEL/DEL group compared with the INS/INS group. Furthermore, the levels of COL1A2 and let‑7g were measured in the primary osteoblasts obtained from 48 patients with osteoporosis. While the let‑7g levels were comparable between each genotype group, the expression level of COL1A2 in the DEL/DEL and INS/DEL group was significantly greater compared with the INS/INS group. In conclusion, the present study demonstrated that the INS/DEL polymorphism in the 3'‑UTR of COL1A2 is able to interfere with the interaction between miRNA and mRNA. In addition, it is the first study, to the best of our knowledge, to indicate that the minor allele (Del) is associated with a reduced risk of developing osteoporosis.
Collapse
Affiliation(s)
- Zhen-Song Jiang
- Department of Spinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zhen-Hai Hao
- Department of Trauma Orthopedics, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
3
|
Hernandez-de Sosa N, Athanasiadis G, Malouf J, Laiz A, Marin A, Herrera S, Farrerons J, Soria JM, Casademont J. Genetic Contribution of Femoral Neck Bone Geometry to the Risk of Developing Osteoporosis: A Family-Based Study. PLoS One 2016; 11:e0154833. [PMID: 27163365 PMCID: PMC4862643 DOI: 10.1371/journal.pone.0154833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
Femoral neck geometry parameters are believed to be as good as bone mineral density as independent factors in predicting hip fracture risk. This study was conducted to analyze the roles of genetic and environmental factors in femoral properties measured in a sample of Spanish families with osteoporotic fractures and extended genealogy. The "Genetic Analysis of Osteoporosis (GAO) Project" involved 11 extended families with a total number of 376 individuals. We studied three categorical phenotypes of particular clinical interest and we used a Hip structural analysis based on DXA to analyze 17 strength and geometrical phenotypes of the hip. All the femoral properties had highly significant heritability, ranging from 0.252 to 0.586. The most significant correlations were observed at the genetic level (ρG). Osteoporotic fracture status (Affected 2) and, particularly, low bone mass and osteoporotic condition (Affected 3) had the highest number of significant genetic correlations with diverse femoral properties. In conclusion, our findings suggest that a relatively simple and easy to use method based on DXA studies can provide useful data on properties of the Hip in clinical practice. Furthermore, our results provide a strong motivation for further studies in order to improve the understanding of the pathophysiological mechanism underlying bone architecture and the genetics of osteoporosis.
Collapse
Affiliation(s)
- Nerea Hernandez-de Sosa
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| | - Georgios Athanasiadis
- Department of Genomics of Complex Diseases, Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Jorge Malouf
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Laiz
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Marin
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Herrera
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Farrerons
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Manuel Soria
- Department of Genomics of Complex Diseases, Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Casademont
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Kristianto J, Litscher SJ, Johnson MG, Patel F, Patel M, Fisher J, Zastrow RK, Radcliff AB, Blank RD. Congenic Strains Confirm the Pleiotropic Effect of Chromosome 4 QTL on Mouse Femoral Geometry and Biomechanical Performance. PLoS One 2016; 11:e0148571. [PMID: 26849124 PMCID: PMC4743951 DOI: 10.1371/journal.pone.0148571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022] Open
Abstract
A pleiotropic quantitative trait locus (QTL) for bone geometry and mechanical performance in mice was mapped to distal chromosome 4 via an intercross of recombinant congenic mice HcB-8 and HcB-23. To study the QTL in isolation, we have generated C3H.B10-(rs6355453-rs13478087) (C.B.4.3) and C3H.B10-(rs6369860-D4Mit170) (C.B.4.2) congenic strains that harbor ~20 Mb and ~3 Mb, respectively, of chromosome 4 overlapping segments from C57BL/10ScSnA (B10) within the locus on a C3H/DiSnA (C3H) background. Using 3-point bend testing and standard beam equations, we phenotyped these mice for femoral mid-diaphyseal geometry and biomechanical performance. We analyzed the results via 2-way ANOVA, using sex and genotype as factors. In the C.B.4.3 strain, we found that homozygous B10/B10 male mice had smaller cross sectional area (CSA) and reduced total displacement than homozygous C3H/C3H mice. Sex by genotype interaction was also observed for maximum load and stiffness for C3H/C3H and B10/B10 mice, respectively. In C.B.4.2 strain, we found that homozygous B10/B10 mice had lower total displacement, post-yield displacement (PYD), stiffness, yield load and maximum load than mice harboring C3H allele. Sex by genotype interaction was observed in B10/B10 mice for perimeter, outer minor axis (OMA) and CSA. There were no significant differences in tissue level mechanical performance, which suggest that the QTL acts primarily on circumferential bone size. These data confirm the prior QTL mapping data and support other work demonstrating the importance of chromosome 4 QTL on bone modeling and bone responses to mechanical loading.
Collapse
Affiliation(s)
- Jasmin Kristianto
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Suzanne J. Litscher
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael G. Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Forum Patel
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mital Patel
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jacqueline Fisher
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryley K. Zastrow
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail B. Radcliff
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert D. Blank
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
- Milwaukee VA Medical Center, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
5
|
Bauer O, Sharir A, Kimura A, Hantisteanu S, Takeda S, Groner Y. Loss of osteoblast Runx3 produces severe congenital osteopenia. Mol Cell Biol 2015; 35:1097-109. [PMID: 25605327 PMCID: PMC4355527 DOI: 10.1128/mcb.01106-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/07/2014] [Accepted: 12/30/2014] [Indexed: 11/20/2022] Open
Abstract
Congenital osteopenia is a bone demineralization condition that is associated with elevated fracture risk in human infants. Here we show that Runx3, like Runx2, is expressed in precommitted embryonic osteoblasts and that Runx3-deficient mice develop severe congenital osteopenia. Runx3-deficient osteoblast-specific (Runx3(fl/fl)/Col1α1-cre), but not chondrocyte-specific (Runx3(fl/fl)/Col1α2-cre), mice are osteopenic. This demonstrates that an osteoblastic cell-autonomous function of Runx3 is required for proper osteogenesis. Bone histomorphometry revealed that decreased osteoblast numbers and reduced mineral deposition capacity in Runx3-deficient mice cause this bone formation deficiency. Neonatal bone and cultured primary osteoblast analyses revealed a Runx3-deficiency-associated decrease in the number of active osteoblasts resulting from diminished proliferation and not from enhanced osteoblast apoptosis. These findings are supported by Runx3-null culture transcriptome analyses showing significant decreases in the levels of osteoblastic markers and increases in the levels of Notch signaling components. Thus, while Runx2 is mandatory for the osteoblastic lineage commitment, Runx3 is nonredundantly required for the proliferation of these precommitted cells, to generate adequate numbers of active osteoblasts. Human RUNX3 resides on chromosome 1p36, a region that is associated with osteoporosis. Therefore, RUNX3 might also be involved in human bone mineralization.
Collapse
Affiliation(s)
- Omri Bauer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Amnon Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ayako Kimura
- Department of Orthopedics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shay Hantisteanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shu Takeda
- Department of Orthopedics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Alonso N, Ralston SH. Unveiling the mysteries of the genetics of osteoporosis. J Endocrinol Invest 2014; 37:925-34. [PMID: 25149083 DOI: 10.1007/s40618-014-0149-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Osteoporosis is a common disease characterised by low bone mineral density and an increased risk of fragility fractures. METHODS We conducted a literature review of relevant studies relating to the genetics of osteoporosis. RESULTS Family studies have revealed that bone density and fractures have a strong heritable component but environmental factors also play an important role. This makes identification of the causative genetic variants challenging. Linkage analysis has been successful in identifying the genes responsible for rare inherited diseases associated with abnormalities of bone mass but has been of limited value in osteoporosis. In contrast, genome-wide association studies in large cohort studies have identified 56 loci with robust evidence of association with bone density and 14 loci that predispose to fractures. Although the effect size of the implicated variants is small, many of the loci contain genes known to be involved in regulating bone cell activity through the RANK and Wnt signalling pathways, whereas others contain novel genes not previously implicated in bone metabolism. In a few instances, whole genome and exome sequencing have been successfully used to identify rare variants of large effect size that influence susceptibility to osteoporosis. CONCLUSION A future challenge will be to conduct fine mapping and functional analysis of the loci implicated in osteoporosis in order to identify the causal genetic variants and examine the mechanisms by which they influence bone cell function and bone mass. Ultimately this may lead to the identification of biomarkers for susceptibility to osteoporosis and fractures or new therapeutic targets.
Collapse
Affiliation(s)
- N Alonso
- Rheumatic Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | | |
Collapse
|
7
|
Hernandez-de Sosa N, Athanasiadis G, Malouf J, Laiz A, Marin A, Herrera S, Farrerons J, Soria JM, Casademont J. Heritability of bone mineral density in a multivariate family-based study. Calcif Tissue Int 2014; 94:590-6. [PMID: 24687525 DOI: 10.1007/s00223-014-9852-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/14/2014] [Indexed: 01/01/2023]
Abstract
There is evidence for a genetic contribution to bone mineral density (BMD×). Different loci affecting BMD have been identified by diverse linkage and genome-wide association studies. We studied the heritability of and the correlations among six densitometric phenotypes and four bone mass/fracture phenotypes. For this purpose, we used a family-based study of the genetics of osteoporosis, the Genetic Analysis of Osteoporosis Project. The primary aim of our study was to examine the roles of genetic and environmental factors in determining osteoporosis-related phenotypes. The project consisted of 11 extended families from Spain. All of them were selected through a proband with osteoporosis. BMD was measured using dual-energy X-ray absorptiometry. The proportion of variance of BMD attributable to significant covariates ranged from 25% (for femoral neck BMD) to 48% (for whole-body total BMD). The vast majority of the densitometric phenotypes had highly significant heritability, ranging from 0.252 (whole-body total BMD) to 0.537 (trochanteric BMD) after correcting for covariate effects. All of the densitometric phenotypes showed high and significant genetic correlations (from -0.772 to -1.000) with a low bone mass/osteopenia condition (Affected 3). Our findings provide additional evidence on the heritability of BMD and a strong genetic correlation between BMD and bone mass/fracture phenotypes in a Spanish population. Our results emphasize the importance of detecting genetic risk factors and the benefit of early diagnosis and especially therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Nerea Hernandez-de Sosa
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mullin BH, Mamotte C, Prince RL, Wilson SG. Influence of ARHGEF3 and RHOA knockdown on ACTA2 and other genes in osteoblasts and osteoclasts. PLoS One 2014; 9:e98116. [PMID: 24840563 PMCID: PMC4026532 DOI: 10.1371/journal.pone.0098116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/29/2014] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is a common bone disease that has a strong genetic component. Genome-wide linkage studies have identified the chromosomal region 3p14-p22 as a quantitative trait locus for bone mineral density (BMD). We have previously identified associations between variation in two related genes located in 3p14-p22, ARHGEF3 and RHOA, and BMD in women. In this study we performed knockdown of these genes using small interfering RNA (siRNA) in human osteoblast-like and osteoclast-like cells in culture, with subsequent microarray analysis to identify genes differentially regulated from a list of 264 candidate genes. Validation of selected findings was then carried out in additional human cell lines/cultures using quantitative real-time PCR (qRT-PCR). The qRT-PCR results showed significant down-regulation of the ACTA2 gene, encoding the cytoskeletal protein alpha 2 actin, in response to RHOA knockdown in both osteoblast-like (P<0.001) and osteoclast-like cells (P = 0.002). RHOA knockdown also caused up-regulation of the PTH1R gene, encoding the parathyroid hormone 1 receptor, in Saos-2 osteoblast-like cells (P<0.001). Other findings included down-regulation of the TNFRSF11B gene, encoding osteoprotegerin, in response to ARHGEF3 knockdown in the Saos-2 and hFOB 1.19 osteoblast-like cells (P = 0.003–0.02), and down-regulation of ARHGDIA, encoding the Rho GDP dissociation inhibitor alpha, in response to RHOA knockdown in osteoclast-like cells (P<0.001). These studies identify ARHGEF3 and RHOA as potential regulators of a number of genes in bone cells, including TNFRSF11B, ARHGDIA, PTH1R and ACTA2, with influences on the latter evident in both osteoblast-like and osteoclast-like cells. This adds further evidence to previous studies suggesting a role for the ARHGEF3 and RHOA genes in bone metabolism.
Collapse
Affiliation(s)
- Benjamin H. Mullin
- Dept. of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences and CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
- * E-mail:
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Richard L. Prince
- Dept. of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Scott G. Wilson
- Dept. of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
- Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, United Kingdom
| |
Collapse
|
9
|
Mullin BH, Mamotte C, Prince RL, Spector TD, Dudbridge F, Wilson SG. Conditional testing of multiple variants associated with bone mineral density in the FLNB gene region suggests that they represent a single association signal. BMC Genet 2013; 14:107. [PMID: 24176111 PMCID: PMC3818969 DOI: 10.1186/1471-2156-14-107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low bone mineral density (BMD) is a primary risk factor for osteoporosis and is a highly heritable trait, but appears to be influenced by many genes. Genome-wide linkage studies have highlighted the chromosomal region 3p14-p22 as a quantitative trait locus for BMD (LOD 1.1 - 3.5). The FLNB gene, which is thought to have a role in cytoskeletal actin dynamics, is located within this chromosomal region and presents as a strong candidate for BMD regulation. We have previously identified significant associations between four SNPs in the FLNB gene and BMD in women. We have also previously identified associations between five SNPs located 5' of the transcription start site (TSS) and in intron 1 of the FLNB gene and expression of FLNB mRNA in osteoblasts in vitro. The latter five SNPs were genotyped in this study to test for association with BMD parameters in a family-based population of 769 Caucasian women. RESULTS Using FBAT, significant associations were seen for femoral neck BMD Z-score with the SNPs rs11720285, rs11130605 and rs9809315 (P = 0.004 - 0.043). These three SNPs were also found to be significantly associated with total hip BMD Z-score (P = 0.014 - 0.026). We then combined the genotype data for these three SNPs with the four SNPs we previously identified as associated with BMD and performed a conditional analysis to determine whether they represent multiple independent associations with BMD. The results from this analysis suggested that these variants represent a single association signal. CONCLUSIONS The SNPs identified in our studies as associated with BMD appear to be part of a single association signal between the FLNB gene and BMD in our data. FLNB is one of several genes located in 3p14-p22 that has been identified as significantly associated with BMD in Caucasian women.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
| | - Richard L Prince
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tim D Spector
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| | - Frank Dudbridge
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| |
Collapse
|
10
|
Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet 2012; 13:576-88. [PMID: 22805710 DOI: 10.1038/nrg3228] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is among the most common and costly diseases and is increasing in prevalence owing to the ageing of our global population. Clinically defined largely through bone mineral density, osteoporosis and osteoporotic fractures have reasonably high heritabilities, prompting much effort to identify the genetic determinants of this disease. Genome-wide association studies have recently provided rapid insights into the allelic architecture of this condition, identifying 62 genome-wide-significant loci. Here, we review how these new loci provide an opportunity to explore how the genetics of osteoporosis can elucidate its pathophysiology, provide drug targets and allow for prediction of future fracture risk.
Collapse
|
11
|
Nielson CM, Zmuda JM, Carlos AS, Wagoner WJ, Larson EA, Orwoll ES, Klein RF. Rare coding variants in ALPL are associated with low serum alkaline phosphatase and low bone mineral density. J Bone Miner Res 2012; 27:93-103. [PMID: 21956185 PMCID: PMC3810303 DOI: 10.1002/jbmr.527] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/12/2011] [Accepted: 09/22/2011] [Indexed: 12/17/2022]
Abstract
Alkaline phosphatase (ALP) plays an essential role in the regulation of tissue mineralization, and its activity is highly heritable. Guided by genetic associations discovered in a murine model, we hypothesized a role for rare coding variants in determining serum ALP level and bone mineral density (BMD) in humans. We sequenced the coding regions of the ALP gene (ALPL) in men with low and normal serum ALP activity levels. Single-nucleotide ALPL variants, including 19 rare nonsynonymous variants (minor allele frequency <1%), were much more frequent among the low ALP group (33.8%) than the normal group (1.4%, p = 1 × 10(-11)). Within the low ALP group, men with a rare, nonsynonymous variant had 11.2% lower mean serum ALP (p = 3.9 × 10(-4)), 6.7% lower BMD (p = 0.03), and 11.1% higher serum phosphate (p = 0.002) than those without. In contrast, common nonsynonymous variants had no association with serum ALP, phosphate, or BMD. Multiple rare ALPL coding variants are present in the general population, and nonsynonymous coding variants may be responsible for heritable differences in mineralization and thus BMD.
Collapse
Affiliation(s)
- Carrie M Nielson
- Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, USA
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy S Carlos
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Wendy J Wagoner
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Emily A Larson
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Eric S Orwoll
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Robert F Klein
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
- Portland Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
12
|
Beamer WG, Shultz KL, Coombs HF, Horton LG, Donahue LR, Rosen CJ. Multiple quantitative trait loci for cortical and trabecular bone regulation map to mid-distal mouse chromosome 4 that shares linkage homology to human chromosome 1p36. J Bone Miner Res 2012; 27:47-57. [PMID: 22031020 PMCID: PMC3460065 DOI: 10.1002/jbmr.515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/23/2011] [Accepted: 09/02/2011] [Indexed: 11/11/2022]
Abstract
The mid-distal region of mouse chromosome 4 (Chr 4) is homologous with human Chr 1p36. Previously, we reported that mouse Chr 4 carries a quantitative trait locus (QTL) with strong regulatory effect on volumetric bone mineral density (vBMD). The intent of this study is to utilize nested congenic strains to decompose the genetic complexity of this gene-rich region. Adult females and males from 18 nested congenic strains carrying discrete C3H sequences were phenotyped for femoral mineral and volume by pQCT and for trabecular bone volume (BV), tissue volume (TV), trabecular number (Trab.no), and trabecular thickness (Trab.thk) by MicroCT 40. Our data show that the mouse Chr 4 region consists of at least 10 regulatory QTL regions that affected either or both pQCT and MicroCT 40 phenotypes. The pQCT phenotypes were typically similar between sexes, whereas the MicroCT 40 phenotypes were divergent. Individual congenic strains contained one to seven QTL regions. These regions conferred large positive or negative effects in some congenic strains, depending on the particular bone phenotype. The QTL regions II to X are syntenic with human 1p36, containing from 1 to 102 known genes. We identified 13 candidate genes that can be linked to bone within these regions. Six of these genes were linked to osteoblasts, three linked to osteoclasts, and two linked to skeletal development. Three of these genes have been identified in Genome Wide Association Studies (GWAS) linked to 1p36. In region III, there is only one gene, Lck, which conferred negative pQCT and MicroCT 40 phenotypes in both sexes. This gene is important to development and functioning of T cells, has been associated with osteoclast activity, and represents a novel bone regulatory gene that merits further experimental evaluation. In summary, congenic strains are powerful tools for identifying regulatory regions that influence bone biology and offer models for testing hypotheses about gene-gene and gene-environment interactions that are not available to experimental work in humans.
Collapse
|
13
|
Wang C, Hu YM, He JW, Gu JM, Zhang H, Hu WW, Yue H, Gao G, Xiao WJ, Yu JB, Ke YH, Hu YQ, Li M, Liu YJ, Fu WZ, Ren Y, Zhang ZL. Association between low density lipoprotein receptor-related protein 2 gene polymorphisms and bone mineral density variation in Chinese population. PLoS One 2011; 6:e28874. [PMID: 22174918 PMCID: PMC3235174 DOI: 10.1371/journal.pone.0028874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/16/2011] [Indexed: 01/16/2023] Open
Abstract
Low density lipoprotein receptor-related protein 2 gene (LRP2) is located next to the genomic region showing suggestive linkage with both hip and wrist bone mineral density (BMD) phenotypes. LRP2 knockout mice showed severe vitamin D deficiency and bone disease, indicating the involvement of LRP2 in the preservation of vitamin D metabolites and delivery of the precursor to the kidney for the generation of 1α,25(OH)2D3. In order to investigate the contribution of LRP2 gene polymorphisms to the variation of BMD in Chinese population, a total of 330 Chinese female-offspring nuclear families with 1088 individuals and 400 Chinese male-offspring nuclear families with 1215 individuals were genotyped at six tagSNPs of the LRP2 gene (rs2389557, rs2544381, rs7600336, rs10210408, rs2075252 and rs4667591). BMD values at the lumbar spine 1–4 (L1-4) and hip sites were measured by DXA. The association between LRP2 polymorphisms and BMD phenotypes was assessed by quantitative transmission disequilibrium tests (QTDTs) in female- and male-offspring nuclear families separately. In the female-offspring nuclear families, rs2075252 and haplotype GA of rs4667591 and rs2075252 were identified in the nominally significant total association with peak BMD at L1-4; however, no significant within-family association was found between peak BMD at the L1-4 and hip sites and six tagSNPs or haplotypes. In male-offspring nuclear families, neither the six tagSNPs nor the haplotypes was in total association or within-family association with the peak BMD variation at the L1-4 and hip sites by QTDT analysis. Our findings suggested that the polymorphisms of LRP2 gene is not a major factor that contributes to the peak BMD variation in Chinese population.
Collapse
Affiliation(s)
- Chun Wang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Yi-Ming Hu
- Department of Special Medical Services, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Jin-Wei He
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Jie-Mei Gu
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Wei-Wei Hu
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Hua Yue
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Gao Gao
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Wen-Jin Xiao
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Jin-Bo Yu
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Yao-Hua Ke
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Yun-Qiu Hu
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Miao Li
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Yu-Juan Liu
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Wen-Zhen Fu
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Ying Ren
- Department of Special Medical Services, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Zhen-Lin Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Sixth People's Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Duren DL, Blangero J, Sherwood RJ, Seselj M, Dyer T, Cole SA, Lee M, Choh AC, Chumlea WC, Siervogel RM, Czerwinski SA, Towne B. Cortical bone health shows significant linkage to chromosomes 2p, 3p, and 17q in 10-year-old children. Bone 2011; 49:1213-8. [PMID: 21907839 PMCID: PMC3221785 DOI: 10.1016/j.bone.2011.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/15/2011] [Accepted: 08/23/2011] [Indexed: 11/21/2022]
Abstract
Genes play an important role in lifelong skeletal health. Genes that influence bone building during childhood have the potential to affect bone health not only throughout childhood but also into adulthood. Given that peak bone mass is a significant predictor of adult fracture risk, it is imperative that the genetic underpinnings of the normal pediatric skeleton are uncovered. In a sample of 600 10-year-old children from 144 families in the Fels Longitudinal Study, we examined radiographic cortical bone measures of the second metacarpal. Morphometic measurements included bone width, medial and lateral cortical thicknesses, and the calculated cortical index representing the amount of cortex relative to bone width. We then conducted genome-wide linkage analysis on these traits in 440 genotyped individuals using the SOLAR analytic platform. Significant quantitative trait loci (QTL) were identified for bone traits on three separate chromosomes. A QTL for medial cortical thickness was localized to chromosome 2p25.2. A QTL for lateral cortical thickness was localized to chromosomal region 3p26.1-3p25.3. Finally, a QTL detected for cortical index was localized to the 17q21.2 chromosomal region. Each region contains plausible candidate genes for pediatric skeletal health, some of which confirm findings from studies of adulthood bone, and for others represent novel candidate genes for skeletal health.
Collapse
Affiliation(s)
- Dana L Duren
- Department of Community Health, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li HYG, Kung WCA, Huang QY. Bone mineral density is linked to 1p36 and 7p15-13 in a southern Chinese population. J Bone Miner Metab 2011; 29:80-7. [PMID: 20607328 DOI: 10.1007/s00774-010-0195-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/25/2010] [Indexed: 01/13/2023]
Abstract
Genome-wide linkage scans have identified a number of quantitative trait loci (QTLs) affecting bone mineral density (BMD), mainly in the Caucasian population. In this study, we aim to determine whether seven well-replicated QTLs also contribute to BMD variation in the southern Han Chinese population. Thirty-three microsatellite markers in the proximity of seven QTLs were genotyped in 1,459 subjects from 306 families ascertained through a proband with BMD Z-score equal to or less than -1.3 at either the lumbar spine or hip. Regression-based multipoint linkage analysis was performed. In the entire study population, good linkage evidence of total hip BMD to 7p14 [maximum log of odds (LOD) score (MLS) = 2.75; nominal P = 0.0002] and 1p36 (MLS = 1.6, P = 0.003) was revealed. In the subgroup analysis of 1,166 female subjects, MLS of 3.42, 2.65, 2.42, and 1.54 were obtained on 7p12 for total hip, lumbar spine, trochanter, and femoral neck BMD, respectively. A suggestive linkage signal was achieved at 7p14-15 with a MLS of 3.38 and 3.15 for trochanter and total hip BMD in the 678 premenopausal women, and at 7p12 for femoral neck and total hip BMD with MLS of 2.22 and 3.04 in postmenopausal women. Subgroup analysis of premenopausal women also provided additional evidence of suggestive linkage of total hip BMD to 1p36, with a MLS of 2.84 at 17.07 cM. Thus, linkage of BMD to 1p36 and 7p15-13 is confirmed in southern Chinese. Computational prioritization strategy and published genome-wide association studies suggested RERE and SFRP4 as two promising candidate genes in which variants responsible for the linkage signal may be identified by follow-up gene-wide association studies.
Collapse
Affiliation(s)
- Hoi Yee Gloria Li
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
16
|
Yu N, Liu YJ, Pei Y, Zhang L, Lei S, Kothari NR, Li DY, Papasian CJ, Hamilton J, Cai JQ, Deng HW. Evaluation of compressive strength index of the femoral neck in Caucasians and chinese. Calcif Tissue Int 2010; 87:324-32. [PMID: 20814670 PMCID: PMC4176885 DOI: 10.1007/s00223-010-9406-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Compressive strength index (CSI) of the femoral neck is a parameter that integrates the information of bone mineral density (BMD), femoral neck width (FNW), and body weight. CSI is considered to have the potential to improve the performance of assessment for hip fracture risk. However, studies on CSI have been rare. In particular, few studies have evaluated the performance of CSI, in comparison with BMD, FNW, and bending geometry, for assessment of hip fracture risk. We studied two large populations, including 1683 unrelated U.S. Caucasians and 2758 unrelated Chinese adults. For all the study subjects, CSI, femoral neck BMD (FN_BMD), FNW, and bending geometry (section modulus [Z]) of the samples were obtained from dual-energy X-ray absorptiometry scans. We investigated the age-related trends of these bone phenotypes and potential sex and ethnic differences. We further evaluated the performance of these four phenotypes for assessment of hip fracture risk by logistic regression models. Chinese had significantly lower FN_BMD, FNW, and Z, but higher CSI than sex-matched Caucasians. Logistic regression analysis showed that higher CSI was significantly associated with lower risk of hip fracture, and the significance remained after adjusting for covariates of age, sex, and height. Each standard deviation (SD) increment in CSI was associated with odds ratios of 0.765 (95% confidence interval, 0.634, 0.992) and 0.724 (95% confidence interval, 0.569, 0.921) for hip fracture risk in Caucasians and Chinese, respectively. The higher CSI in Chinese may partially help explain the lower incidence of hip fractures in this population compared to Caucasians. Further studies in larger cohorts and/or longitudinal observations are necessary to confirm our findings.
Collapse
Affiliation(s)
- Na Yu
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Osteoporosis is a common disease with a strong genetic component characterized by reduced bone mass, defects in the microarchitecture of bone tissue, and an increased risk of fragility fractures. Twin and family studies have shown high heritability of bone mineral density (BMD) and other determinants of fracture risk such as ultrasound properties of bone, skeletal geometry, and bone turnover. Osteoporotic fractures also have a heritable component, but this reduces with age as environmental factors such as risk of falling come into play. Susceptibility to osteoporosis is governed by many different genetic variants and their interaction with environmental factors such as diet and exercise. Notable successes in identification of genes that regulate BMD have come from the study of rare Mendelian bone diseases characterized by major abnormalities of bone mass where variants of large effect size are operative. Genome-wide association studies have also identified common genetic variants of small effect size that contribute to regulation of BMD and fracture risk in the general population. In many cases, the loci and genes identified by these studies had not previously been suspected to play a role in bone metabolism. Although there has been extensive progress in identifying the genes and loci that contribute to the regulation of BMD and fracture over the past 15 yr, most of the genetic variants that regulate these phenotypes remain to be discovered.
Collapse
Affiliation(s)
- Stuart H Ralston
- Rheumatic Diseases Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.
| | | |
Collapse
|
18
|
Zhang H, He JW, Gao G, Yue H, Yu JB, Hu WW, Gu JM, Hu YQ, Li M, Fu WZ, Liu YJ, Zhang ZL. Polymorphisms in the HOXD4 gene are not associated with peak bone mineral density in Chinese nuclear families. Acta Pharmacol Sin 2010; 31:977-83. [PMID: 20686522 DOI: 10.1038/aps.2010.91] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM To determine the associations between HOXD4 gene polymorphisms with peak bone mineral density (BMD) throughing measuring three tagging single nucleotide polymorphisms (tagSNPs), including rs1867863, rs13418078, and rs4972504, in HOXD4. METHODS Four hundred Chinese nuclear families with male offspring (1215 subjects) and 401 Chinese nuclear families with female offspring (1260 subjects) were recruited. BMD of the lumbar spine 1-4 (L1-4) and left proximal femur including total hip and femoral neck were measured by dual-energy X-ray absorptiometry. The quantitative transmission disequilibrium test (QTDT) was performed to investigate the association among the tagging SNPs, haplotypes and peak BMD. RESULTS Only the CC genotype was identified in rs13418078 in the Chinese population, unlike other populations. We failed to find significant within-family association among these SNPs, haplotypes and peak BMD at any bone site in either male- or female-offspring nuclear families. CONCLUSION The results suggest that genetic polymorphisms in HOXD4 may not be a major contributor to the observed variability in peak BMD in the lumbar spine and the hip in Chinese men and women.
Collapse
|
19
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Xu T, Cheng Y, Guo Y, Zhang L, Pei YF, Redger K, Liu YJ, Deng HW. Design and Interpretation of Linkage and Association Studies on Osteoporosis. Clin Rev Bone Miner Metab 2010. [DOI: 10.1007/s12018-010-9070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Li GHY, Kung AWC, Huang QY. Common variants in FLNB/CRTAP, not ARHGEF3 at 3p, are associated with osteoporosis in southern Chinese women. Osteoporos Int 2010; 21:1009-20. [PMID: 19727905 PMCID: PMC2946578 DOI: 10.1007/s00198-009-1043-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/27/2009] [Indexed: 01/30/2023]
Abstract
SUMMARY We performed an association study of five candidate genes within chromosome 3p14-25 in 1,080 Chinese female subjects. Polymorphisms in FLNB/CRTAP are associated with bone mineral density (BMD) in Chinese. INTRODUCTION Chromosomal region 3p14-25 has shown strong evidence of linkage to BMD in genome-wide linkage scans. The variants responsible for this linkage signal, nonetheless, remain obscure. METHODS Thirty SNPs in five positional and functional candidate genes within 3p14-25 (PPARG, CRTAP, TDGF1, PTHR1, and FLNB) and rs7646054 in the ARHGEF3 gene were genotyped in a case-control cohort of 1,080 Chinese females. Allelic and haplotypic association were tested using logistic regression analysis implemented in PLINK software. Potential transcription factor binding sites were predicted with MatInspector. RESULTS Multiple SNPs and haplotypes in FLNB were significantly associated with BMDs, with the strongest association between lumbar spine BMD and rs9828717 (p = 0.005). SNP rs7623768 and the haplotype G-C of rs4076086-rs7623768 in CRTAP were associated with femoral neck BMD (p = 0.009 and p = 0.003, respectively). PTHR1 showed haplotypic associations with lumbar spine and femoral neck BMD (p = 0.02 and p = 0.044, respectively). Nevertheless, the association between rs7646054 in ARHGEF3 and BMD observed in Caucasians was not replicated in our samples. Comparative genomics analysis indicated that rs9828717 is located within a highly conserved region. The minor T allele at rs9828717 may lead to loss of binding site for nuclear factor of activated T cells which binds and triggers the transcriptional program of osteoblasts. CONCLUSIONS Our data suggest that variants in FLNB and CRTAP at 3p are involved in BMD regulation in southern Chinese.
Collapse
Affiliation(s)
- G H Y Li
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
22
|
Gene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and Caucasians. J Bone Miner Res 2010; 25:339-55. [PMID: 19594299 PMCID: PMC3153389 DOI: 10.1359/jbmr.090724] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Osteoporosis is characterized mainly by low bone mineral density (BMD). Many cytokines and chemokines have been related with bone metabolism. Monocytes in the immune system are important sources of cytokines and chemokines for bone metabolism. However, no study has investigated in vivo expression of a large number of various factors simultaneously in human monocytes underlying osteoporosis. This study explored the in vivo expression pattern of general cytokines, chemokines, and their receptor genes in human monocytes and validated the significant genes by qRT-PCR and genetic association analyses. Expression profilings were performed in monocyte samples from 26 Chinese and 20 Caucasian premenopausal women with discordant BMD. Genome-wide association analysis with BMD variation was conducted in 1000 unrelated Caucasians. We selected 168 cytokines, chemokines, osteoclast-related factors, and their receptor genes for analyses. Significantly, the signal transducer and activator of transcription 1 (STAT1) gene was upregulated in the low versus the high BMD groups in both Chinese and Caucasians. We also revealed a significant association of the STAT1 gene with BMD variation in the 1000 Caucasians. Thus we conclude that the STAT1 gene is important in human circulating monocytes in the etiology of osteoporosis.
Collapse
|
23
|
Tang NLS, Liao CD, Ching JKL, Suen EWC, Chan IHS, Orwoll E, Ho SC, Chan FWK, Kwok AWL, Kwok T, Woo J, Leung PC. Sex-specific effect of Pirin gene on bone mineral density in a cohort of 4000 Chinese. Bone 2010; 46:543-50. [PMID: 19766747 DOI: 10.1016/j.bone.2009.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/22/2009] [Accepted: 09/12/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND Osteoporosis is a common condition among elderly. Genetic mapping studies repeatedly located the distal short arms of X-chromosome as the quantitative trait loci (QTL) for BMD in mice. Fine mapping of a syntenic segment on Xp22 in a Caucasian female population suggested a moderate association between lumbar spine (LS) BMD and 2 intronic SNPs in the Pirin (PIR) gene, which encodes an iron-binding nuclear protein. This study aimed to examine genetic variations in the PIR gene by a comprehensive tagging method and its sex-specific effects on BMD and osteoporotic risk. METHODS Two thousand men and 2000 women aged 65 or above were recruited from the community. BMDs at the LS, femoral neck, total hip and whole body were measured and followed up at 4-year. Genotyping was performed for tagSNPs of PIR gene including adjacent regions, and the PIR haplotypes were inferred using PHASE program. RESULTS Analysis by linear regression showed a significant association between SNP rs5935970 and LS-BMD, while haplotype T-T-A was significantly associated with BMD of all measured sites. However, none of such associations were found in men. Linear Mixed Model also confirmed the same sex-specific and site-specific effect for longitudinal BMD changes. CONCLUSION In addition to confirming the association between BMDs and the PIR gene, we also revealed that this finding is sex-specific, possibly due to an X-linked effect. This study demonstrated the importance of considering sex and genetic interactions in studies of disease predisposition and complex traits.
Collapse
Affiliation(s)
- Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Poor femoral neck bone geometry at the femur is an important risk factor for hip fracture. We conducted a genome-wide association study (GWAS) of femoral neck bone geometry, examining approximately 379,000 eligible single-nucleotide polymorphisms (SNPs) in 1000 Caucasians. A common genetic variant, rs7430431 in the receptor transporting protein 3 (RTP3) gene, was identified in strong association with the buckling ratio (BR, P = 1.6 x 10(-7)), an index of bone structural instability, and with femoral cortical thickness (CT, P = 1.9 x 10(-6)). The RTP3 gene is located in 3p21.31, a region that we found to be linked with CT (LOD = 2.19, P = 6.0 x 10(-4)) in 3998 individuals from 434 pedigrees. The replication analyses in 1488 independent Caucasians and 2118 Chinese confirmed the association of rs7430431 to BR and CT (combined P = 7.0 x 10(-3) for BR and P = 1.4 x 10(-2) for CT). In addition, 350 hip fracture patients and 350 healthy control individuals were genotyped to assess the association of the RTP3 gene with the risk of hip fracture. Significant association between a nearby common SNP, rs10514713 of the RTP3 gene, and hip fracture (P = 1.0 x 10(-3)) was found. Our observations suggest that RTP3 may be a novel candidate gene for femoral neck bone geometry.
Collapse
|
25
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
26
|
Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS One 2009; 4:e6827. [PMID: 19714249 PMCID: PMC2730014 DOI: 10.1371/journal.pone.0006827] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/04/2009] [Indexed: 01/21/2023] Open
Abstract
Background Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically. Principal Findings To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat. Conclusions Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.
Collapse
|
27
|
Lindahl K, Rubin CJ, Brändström H, Karlsson MK, Holmberg A, Ohlsson C, Mellström D, Orwoll E, Mallmin H, Kindmark A, Ljunggren Ö. Heterozygosity for a coding SNP in COL1A2 confers a lower BMD and an increased stroke risk. Biochem Biophys Res Commun 2009; 384:501-5. [DOI: 10.1016/j.bbrc.2009.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
|
28
|
Huang QY, Li GHY, Kung AWC. Multiple osteoporosis susceptibility genes on chromosome 1p36 in Chinese. Bone 2009; 44:984-8. [PMID: 19442614 DOI: 10.1016/j.bone.2009.01.368] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Chromosome 1p36 is a region that has previously shown good evidence of linkage to bone mineral density (BMD) in multiple studies, but the genes that are responsible for the linkage signals are unknown. MATERIALS AND METHODS We performed a gene-wide and tag SNP-based association study of four positional and functional candidate genes (TNFRSF1B, PLOD, CNR2, and MTHFR) at 1p36 in 1, 243 case-control Chinese subjects. Twenty-three tag SNPs were selected and genotyped using the high-throughput Sequenom genotyping platform. Binary logistic regression analyses were performed to test for genotype associations between each SNP and BMD. Allelic and haplotype association analyses were conducted by Haploview. Gene-gene interactions were investigated using multifactor dimensionality reduction method. RESULTS The PLOD rs7529452 (C385T; F98F) and MTHFR rs1801133 (C677T; A429E) showed significant genotypic/allelic associations with BMDs at all sites measured (P=0.08-0.001), and a promising two-locus gene-gene interaction for femoral neck BMD. The CNR2 rs2501431 (A592G; G155G) showed nominally significant allelic associations with trochanter and hip BMD. The TNFRSF1B rs976881 showed genotypic associations with BMDs (P=0.08-0.04). CONCLUSIONS Our results suggest that multiple genes at 1p36, individually or in different combinations, contribute to osteoporosis susceptibility in Chinese.
Collapse
Affiliation(s)
- Qing-Yang Huang
- Department of Medicine, The University of Hong Kong, Hong Kong.
| | | | | |
Collapse
|
29
|
Yan H, Liu YJ, Zhou Q, Xiao P, Recker RR, Deng HW. Comparison of whole genome linkage scans in premenopausal and postmenopausal women: no bone-loss-specific QTLs were implicated. Osteoporos Int 2009; 20:771-7. [PMID: 18766293 DOI: 10.1007/s00198-008-0723-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 06/24/2008] [Indexed: 11/24/2022]
Abstract
UNLABELLED This study was conducted to investigate if there exist bone-loss-specific quantitative trait loci (QTLs) for females. Genome-wide linkage scans were conducted in total, premenopausal, and postmenopausal women, respectively. No QTLs exclusively were found in postmenopausal women, suggesting that no bone-loss-specific QTL was implicated independent of BMD in our sample. INTRODUCTION Bone mineral density (BMD) in elderly women is determined jointly by peak bone mass achieved before menopause and by subsequent bone loss upon and after menopause. Peak bone mass is under strong genetic control, but whether bone loss has genetic determination independent of peak BMD is unknown. MATERIALS AND METHODS To investigate if there exist bone-loss-specific quantitative trait loci (QTLs) for females, we conducted genome-wide linkage scans in 2,582 Caucasian females from 451 pedigrees including 1,486 premenopausal and 1,096 postmenopausal women. Linkage analyses were performed in the total sample and premenopausal and postmenopausal women subgroups, respectively, and the results were compared. RESULTS No linkage evidence was found exclusively in postmenopausal women. Linkage signals identified are largely consistent in the total, premenopausal, and postmenopausal samples. For example, for spine BMD, for the total sample, a significant linkage was obtained on 15q13 (LOD = 3.67), and LOD scores of 1.52 and 2.49 were achieved on 15q13 in premenopausal and postmenopausal women, respectively. CONCLUSIONS We did not find any QTLs exclusively in postmenopausal women; hence, no specific QTL for bone loss was implicated independent of BMD in our female sample.
Collapse
Affiliation(s)
- H Yan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Lei S, Deng F, Xiao P, Zhong K, Deng H, Recker RR, Deng H. Bivariate whole-genome linkage scan for bone geometry and total body fat mass. J Genet Genomics 2009; 36:89-97. [PMID: 19232307 DOI: 10.1016/s1673-8527(08)60095-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 02/05/2023]
Abstract
To quantify the genetic correlations between total body fat mass (TBFM) and femoral neck geometric parameters (FNGPs) and, if possible, to detect the specific genomic regions shared by them, bivariate genetic analysis and bivariate whole-genome linkage scan were carried out in a large Caucasian population. All the phenotypes studied were significantly controlled by genetic factors (P < 0.001) with the heritabilities ranging from 0.45 to 0.68. Significantly genetic correlations were found between TBFM and CSA (cross-section area), W (sub-periosteal diameter), Z (section modulus) and CT (cortical thickness) except between TBFM and BR (buckling ratio). The peak bivariate LOD scores were 3.23 (20q12), 2.47 (20p11), 3.19 (6q27), 1.68 (20p12), and 2.47 (7q11) for the five pairs of TBFM and BR, CSA, CT, W, and Z in the entire sample, respectively. Gender-specific bivariate linkage evidences were also found for the five pairs. 6p25 had complete pleiotropic effects on the variations of TBFM & Z in the female sub-population, and 6q27 and 17q11 had coincident linkages for TBFM & CSA and TBFM & Z in the entire population. We identified moderate genetic correlations and several shared genomic regions between TBFM and FNGPs in a large Caucasian population.
Collapse
|
31
|
Shaffer JR, Kammerer CM, Bruder JM, Cole SA, Dyer TD, Almasy L, Maccluer JW, Blangero J, Bauer RL, Mitchell BD. Quantitative trait locus on chromosome 1q influences bone loss in young Mexican American adults. Calcif Tissue Int 2009; 84:75-84. [PMID: 19067020 PMCID: PMC2680710 DOI: 10.1007/s00223-008-9197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
Bone loss occurs as early as the third decade and its cumulative effect throughout adulthood may impact risk for osteoporosis in later life, however, the genes and environmental factors influencing early bone loss are largely unknown. We investigated the role of genes in the change in bone mineral density (BMD) in participants in the San Antonio Family Osteoporosis Study. BMD change in 327 Mexican Americans (ages 25-45 years) from 32 extended pedigrees was calculated from DXA measurements at baseline and follow-up (3.5 to 8.9 years later). Family-based likelihood methods were used to estimate heritability (h(2)) and perform autosome-wide linkage analysis for BMD change of the proximal femur and forearm and to estimate heritability for BMD change of lumbar spine. BMD change was significantly heritable for total hip, ultradistal radius, and 33% radius (h(2) = 0.34, 0.34, and 0.27, respectively; p < 0.03 for all), modestly heritable for femoral neck (h(2) = 0.22; p = 0.06) and not heritable for spine BMD. Covariates associated with BMD change included age, sex, baseline BMD, menopause, body mass index, and interim BMI change, and accounted for 6% to 24% of phenotype variation. A significant quantitative trait locus (LOD = 3.6) for femoral neck BMD change was observed on chromosome 1q23. In conclusion, we observed that change in BMD in young adults is heritable and performed one of the first linkage studies for BMD change. Linkage to chromosome 1q23 suggests that this region may harbor one or more genes involved in regulating early BMD change of the femoral neck.
Collapse
Affiliation(s)
- John R Shaffer
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto Street, A300 Crabtree Hall, GSPH, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang H, Sol-Church K, Rydbeck H, Stabley D, Spotila LD, Devoto M. High resolution linkage and linkage disequilibrium analyses of chromosome 1p36 SNPs identify new positional candidate genes for low bone mineral density. Osteoporos Int 2009; 20:341-6. [PMID: 18597038 DOI: 10.1007/s00198-008-0668-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 05/12/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED A quantitative trait locus (QTL) for BMD maps to chromosome 1p36. We have analyzed a high density SNP panel from this region for linkage and association to BMD in 39 osteoporosis pedigrees. Our results support the presence of genes controlling BMD on 1p36 and indicate new candidates for further analyses. INTRODUCTION Low BMD is one of the major risk factors for osteoporosis. Following a genome scan in a sample of Caucasian families recruited through probands with low BMD, a region on 1p36 near marker D1S214 received support as a QTL for BMD from linkage (maximum lod-score = 2.87) and linkage disequilibrium (LD) analysis (p < 0.01). METHODS To better characterize the genetic risk factors for low BMD located in this genomic region, we have genotyped the same group of families for 1095 SNPs located across 11 Mb on 1p36. Linkage and LD analyses have been performed using the variance component approach. RESULTS Multivariate linkage analysis indicated two QTLs for femoral neck BMD, lumbar spine BMD and trochanter BMD simultaneously on 1p36, with maximum lod-scores of 4.37 at 12 cM and 3.59 at 22 cM. LD analysis identified several SNPs potentially associated with BMD, including the RERE gene SNP rs11121179 (p = 0.000005 for lumbar spine BMD). Other candidate genes include G1P2, SSU72 and CCDC27 (each containing 1 SNP with p < 0.001 for at least one BMD trait). CONCLUSIONS This study supports the presence in 1p36 of QTLs affecting BMD at multiple skeletal sites. Replication of our results in other independent cohorts is warranted.
Collapse
Affiliation(s)
- H Zhang
- Division of Human Genetics, The Children's Hospital of Philadelphia, PA 19104-4399, USA
| | | | | | | | | | | |
Collapse
|
33
|
Karasik D, Shimabuku NA, Zhou Y, Zhang Y, Cupples LA, Kiel DP, Demissie S. A genome wide linkage scan of metacarpal size and geometry in the Framingham Study. Am J Hum Biol 2009; 20:663-70. [PMID: 18449921 DOI: 10.1002/ajhb.20791] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bone geometry is a significant component of bone strength, and has a clinical utility in predicting fractures and quantifying bone loss. Bone geometry is known to have a substantial genetic component. We performed linkage analysis to identify chromosomal regions governing metacarpal bone geometry. A genome-wide scan (with a set of 615 markers with spacing of approximately 5.7 cM) was performed on 1,702 individuals from 330 extended families of the Framingham Study. Midshaft width was measured and several indices calculated, namely Metacarpal Cortical Thickness (MCT), Cortical Index (MCI), and Section Modulus (MZ), using digitized X-rays of 1,380 participants (men, n = 666, mean age 55.2 yr, women, n = 714, 55.5 yr). Metacarpals 2, 3, and 4 were averaged. Heritability was significant for all indices, ranging from 0.51 to 0.72. Linkage analysis of indices adjusted for age, age(2), and estrogen status in women, identified chromosomal regions 6p21, 9p21, 11q21-q22, and Xq26-Xq27, with LOD scores >2.0. Additional adjustment for smoking, height, and BMI, generally reduced the LOD scores. Finally, bivariate linkage analysis confirmed that a QTL on chr. 6 (51 cM) was shared by midshaft width and MZ (LOD = 2.40, adjusted for all covariates). Neither MCT nor MCI shared linkage loci with width or MZ. In conclusion, we have identified chromosomal regions potentially linked to bone geometry. Genes in these regions may regulate bone geometry via effects on body size. Identification and subsequent characterization of loci for bone geometry can further elucidate the genetic contributions to bone's resistance to stress.
Collapse
Affiliation(s)
- David Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts 02131, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
A bivariate whole genome linkage study identified genomic regions influencing both BMD and bone structure. J Bone Miner Res 2008; 23:1806-14. [PMID: 18597637 PMCID: PMC2685488 DOI: 10.1359/jbmr.080614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Areal BMD (aBMD) and areal bone size (ABS) are biologically correlated traits and are each important determinants of bone strength and risk of fractures. Studies showed that aBMD and ABS are genetically correlated, indicating that they may share some common genetic factors, which, however, are largely unknown. To study the genetic factors influencing both aBMD and ABS, bivariate whole genome linkage analyses were conducted for aBMD-ABS at the femoral neck (FN), lumbar spine (LS), and ultradistal (UD)-forearm in a large sample of 451 white pedigrees made up of 4498 individuals. We detected significant linkage on chromosome Xq27 (LOD = 4.89) for LS aBMD-ABS. In addition, we detected suggestive linkages at 20q11 (LOD = 3.65) and Xp11 (LOD = 2.96) for FN aBMD-ABS; at 12p11 (LOD = 3.39) and 17q21 (LOD = 2.94) for LS aBMD-ABS; and at 5q23 (LOD = 3.54), 7p15 (LOD = 3.45), Xq27 (LOD = 2.93), and 12p11 (LOD = 2.92) for UD-forearm aBMD-ABS. Subsequent discrimination analyses indicated that quantitative trait loci (QTLs) at 12p11 and 17q21 may have pleiotropic effects on aBMD and ABS. This study identified several genomic regions that may contain QTLs important for both aBMD and ABS. Further endeavors are necessary to follow these regions to eventually pinpoint the genetic variants affecting bone strength and risk of fractures.
Collapse
|
35
|
Liu YZ, Wilson SG, Wang L, Liu XG, Guo YF, Li J, Yan H, Deloukas P, Soranzo N, Chinnapen-Horsley U, Cervino A, Williams FM, Xiong DH, Zhang YP, Jin TB, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Spector TD, Deng HW. Identification of PLCL1 gene for hip bone size variation in females in a genome-wide association study. PLoS One 2008; 3:e3160. [PMID: 18776929 PMCID: PMC2522269 DOI: 10.1371/journal.pone.0003160] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 08/18/2008] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis, the most prevalent metabolic bone disease among older people, increases risk for low trauma hip fractures (HF) that are associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of the key measurable risk factors for HF. Although hip BS is highly genetically determined, genetic factors underlying the trait are still poorly defined. Here, we performed the first genome-wide association study (GWAS) of hip BS interrogating ∼380,000 SNPs on the Affymetrix platform in 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, PLCL1 (phospholipase c-like 1), that had four SNPs associated with hip BS at, or approaching, a genome-wide significance level in our female subjects; the most significant SNP, rs7595412, achieved a p value of 3.72×10−7. The gene's importance to hip BS was replicated using the Illumina genotyping platform in an independent UK cohort containing 1,216 Caucasian females. Two SNPs of the PLCL1 gene, rs892515 and rs9789480, surrounded by the four SNPs identified in our GWAS, achieved p values of 8.62×10−3 and 2.44×10−3, respectively, for association with hip BS. Imputation analyses on our GWAS and the UK samples further confirmed the replication signals; eight SNPs of the gene achieved combined imputed p values<10−5 in the two samples. The PLCL1 gene's relevance to HF was also observed in a Chinese sample containing 403 females, including 266 with HF and 177 control subjects. A SNP of the PLCL1 gene, rs3771362 that is only ∼0.6 kb apart from the most significant SNP detected in our GWAS (rs7595412), achieved a p value of 7.66×10−3 (odds ratio = 0.26) for association with HF. Additional biological support for the role of PLCL1 in BS comes from previous demonstrations that the PLCL1 protein inhibits IP3 (inositol 1,4,5-trisphosphate)-mediated calcium signaling, an important pathway regulating mechanical sensing of bone cells. Our findings suggest that PLCL1 is a novel gene associated with variation in hip BS, and provide new insights into the pathogenesis of HF.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Scott G. Wilson
- School of Medicine and Pharmacology, The University of Western Australia and Department of Endocrinology and Diabetes, Sir Charles Gairder Hospital, Nedlands, Western Australia
- Twin Research and Genetic Epidemiology Unit, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Liang Wang
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiao-Gang Liu
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan-Fang Guo
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jian Li
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Han Yan
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Panos Deloukas
- Twin Research and Genetic Epidemiology Unit, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Nicole Soranzo
- Twin Research and Genetic Epidemiology Unit, St Thomas' Hospital, King's College London, London, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | | | - Alesandra Cervino
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Frances M. Williams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, United States of America
| | - Yin-Ping Zhang
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Tian-Bo Jin
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shawn Levy
- Vanderbilt Microarray Shared Resource, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Christopher J. Papasian
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Betty M. Drees
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - James J. Hamilton
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Robert R. Recker
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, United States of America
| | - Tim D. Spector
- Twin Research and Genetic Epidemiology Unit, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Hong-Wen Deng
- School of Medicine, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, United States of America
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
- * E-mail:
| |
Collapse
|
36
|
Huang QY, Li GHY, Cheung WMW, Song YQ, Kung AWC. Prediction of osteoporosis candidate genes by computational disease-gene identification strategy. J Hum Genet 2008; 53:644-655. [PMID: 18463784 DOI: 10.1007/s10038-008-0295-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/08/2008] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a complex disease with a strong genetic component. To date, more than 20 genome-wide linkage scans across multiple populations have been launched to hunt for osteoporosis susceptibility genes. Some significant or suggestive chromosomal regions of linkage to bone mineral density have been identified and replicated in genome-wide linkage screens. However, identification of key candidate genes within these confirmed regions is challenging. We used five freely available bioinformatics tools (Prioritizer, GeneSeeker, PROSPECTR and SUSPECTS, Disease Gene Prediction, and Endeavor) to analyze the 13 well-replicated osteoporosis susceptibility loci: 1p36, 1q21-25, 2p22-24, 3p14-25, 4q25-34, 6p21, 7p14-21, 11q14-25, 12q23-24, 13q14-34, 20p12, 2q24-32, and 5q12-21. Pathways and regulatory network analyses were performed using the Ingenuity Pathways Analysis (IPA) software. We identified a subset of most likely candidate osteoporosis susceptibility genes that are largely involved in transforming growth factor (TGF)-beta signaling, granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling, axonal guidance signaling, peroxisome proliferator-activated receptor (PPAR) signaling, and Wnt/beta-catenin signaling pathway. Six nonoverlapping networks were generated by IPA 5.0 from 88 out of the 91 candidate genes. The list of most likely candidate genes and the associated pathway identified will assist researchers in prioritizing candidate disease genes for further empirical analysis and understanding the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Qing-Yang Huang
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Gloria H Y Li
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - You-Qiang Song
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China
| | - Annie W C Kung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Abstract
Common diseases result from the complex relationship between genetic and environmental factors. The aim of this review is to provide perspective for a conceptual framework aimed at studying the interplay of gender-specific genetic and environmental factors in the etiology of complex disease, using osteoporosis as an example. In recent years, gender differences in the heritability of the osteoporosis-related phenotypes have been reported and sex-specific quantitative-trait loci were discovered by linkage studies in humans and mice. Results of numerous allelic association studies also differed by gender. In most cases, it was not clear whether or not this phenomenon should be attributed to the effect of sex-chromosomes, sex hormones, or other intrinsic or extrinsic differences between the genders, such as the level of bioavailable estrogen and of physical activity. We conclude that there is need to consider gender-specific genetic and environmental factors in the planning of future association studies on the etiology of osteoporosis and other complex diseases prevalent in the general population.
Collapse
Affiliation(s)
- D Karasik
- Hebrew SeniorLife/IFAR and Harvard Medical School, Boston, MA 02131, USA.
| | | |
Collapse
|
38
|
In vivo genome-wide expression study on human circulating B cells suggests a novel ESR1 and MAPK3 network for postmenopausal osteoporosis. J Bone Miner Res 2008; 23:644-54. [PMID: 18433299 PMCID: PMC2674539 DOI: 10.1359/jbmr.080105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Osteoporosis is characterized by low BMD. Studies have shown that B cells may participate in osteoclastogenesis through expression of osteoclast-related factors, such as RANKL, transforming growth factor beta (TGFB), and osteoprotegerin (OPG). However, the in vivo significance of B cells in human bone metabolism and osteoporosis is still largely unknown, particularly at the systematic gene expression level. MATERIALS AND METHODS In this study, Affymetrix HG-U133A GeneChip arrays were used to identify genes differentially expressed in B cells between 10 low and 10 high BMD postmenopausal women. Significance of differential expression was tested by t-test and adjusted for multiple testing with the Benjamini and Hochberg (BH) procedure (adjusted p </= 0.05). RESULTS Twenty-nine genes were downregulated in the low versus high BMD group. These genes were further analyzed using Ingenuity Pathways Analysis (Ingenuity Systems). A network involving estrogen receptor 1 (ESR1) and mitogen activated protein kinase 3 (MAPK3) was identified. Real-time RT-PCR confirmed differential expression of eight genes, including ESR1, MAPK3, methyl CpG binding protein 2 (MECP2), proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1), Scr-like-adaptor (SLA), serine/threonine kinase 11 (STK11), WNK lysine-deficient protein kinase 1 (WNK1), and zinc finger protein 446 (ZNF446). CONCLUSIONS This is the first in vivo genome-wide expression study on human B cells in relation to osteoporosis. Our results highlight the significance of B cells in the etiology of osteoporosis and suggest a novel mechanism for postmenopausal osteoporosis (i.e., that downregulation of ESR1 and MAPK3 in B cells regulates secretion of factors, leading to increased osteoclastogenesis or decreased osteoblastogenesis).
Collapse
|
39
|
Chromosomal regions 22q13 and 3p25 may harbor quantitative trait loci influencing both age at menarche and bone mineral density. Hum Genet 2008; 123:419-27. [PMID: 18379822 DOI: 10.1007/s00439-008-0490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
Late age at menarche (AAM), an important type of endocrinopathy in females, is associated with lower bone mineral density (BMD), a major risk factor for osteoporosis. The correlation is mainly mediated through common genetic factors, which are largely unknown. A bivariate genome-wide linkage scan was conducted on 2,522 females from 414 Caucasian pedigrees to identify quantitative trait loci influencing both AAM and BMD. The strongest linkage signal was detected on chromosome 22q13. Other regions such as the 3q13, 3p25, 7p15, and 15q13 were also suggested. The inferred promising candidate genes in the linkage regions may contribute to our understanding of pathogenesis of endocrinopathy and osteoporosis in females.
Collapse
|
40
|
Zhang F, Xiao P, Yang F, Shen H, Xiong DH, Deng HY, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Deng HW. A whole genome linkage scan for QTLs underlying peak bone mineral density. Osteoporos Int 2008; 19:303-10. [PMID: 17882466 DOI: 10.1007/s00198-007-0468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/31/2007] [Indexed: 01/28/2023]
Abstract
UNLABELLED We conducted a whole genome linkage scan for quantitative trait loci (QTLs) underlying peak bone mineral density (PBMD). Our efforts identified several potential genomic regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation. INTRODUCTION Peak bone mineral density (PBMD) is an important clinical risk predictor of osteoporosis and explains a large part of bone mineral density (BMD) variation. METHODS To detect susceptive quantitative trait loci (QTLs) for PBMD variation including consideration of epistatic and sex-specific effects, we conducted a whole genome linkage scan (WGLS) for PBMD using 2,200 Caucasians from 207 pedigrees, aged 20-50 years. All the individuals were genotyped with 410 microsatellite markers. In addition to WGLS in the total combined sample of males and females, we conducted epistatic interaction analyses, and sex-specific subgroup linkage analyses. RESULTS We identified several potential genomic regions that met the criteria for suggestive linkage. The most impressing region is 12p12 for hip PBMD (LOD = 2.79) in the total sample. Epistatic interaction analyses found a significant epistatic interaction between 12p12 and 22q13 (p = 0.0021) for hip PBMD. Additionally, we detected suggestive linkage evidence at 15q26 (LOD = 2.93), 2p13 (LOD = 2.64), and Xq27 (LOD = 2.64). Sex-specific analyses suggested the presence of sex-specific QTLs for PBMD variation. CONCLUSIONS Our efforts identified several potential regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation.
Collapse
Affiliation(s)
- F Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Guo Y, Yang TL, Pan F, Xu XH, Dong SS, Deng HW. Molecular genetic studies of gene identification for osteoporosis. Expert Rev Endocrinol Metab 2008; 3:223-267. [PMID: 30764094 DOI: 10.1586/17446651.3.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yan Guo
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tie-Lin Yang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Pan
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiang-Hong Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shan-Shan Dong
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hong-Wen Deng
- b The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China and Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
42
|
Wang XL, Deng FY, Tan LJ, Deng HY, Liu YZ, Papasian CJ, Recker RR, Deng HW. Bivariate whole genome linkage analyses for total body lean mass and BMD. J Bone Miner Res 2008; 23:447-52. [PMID: 17967140 PMCID: PMC2669157 DOI: 10.1359/jbmr.071033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/22/2007] [Accepted: 10/26/2007] [Indexed: 01/09/2023]
Abstract
UNLABELLED A genome-wide bivariate analysis was conducted for TBLM and BMD at the spine and hip in a large white sample. We found some QTLs shared by TBLM and BMD in the entire sample and the sex-specific subgroups, and QTLs with potential pleiotropy were disclosed. INTRODUCTION Previous studies suggested that total body lean mass (TBLM) and BMD are highly genetically correlated. However, the specific shared genetic factors between TBLM and BMD are unknown. MATERIALS AND METHODS To identify the specific quantitative trait loci (QTLs) shared by TBLM and BMD at the spine (L1-L4) and total hip, we performed bivariate whole genome linkage analysis (WGLA) in a large sample involving 4498 white subjects of European origin. RESULTS Multipoint bivariate linkage analyses for 22 autosomes showed evidence of significant linkage with an LOD score of 4.86 at chromosome region 15q13 for TBLM and spine BMD in women, and suggestive linkage findings (LOD > 2.2) at 7p22 for TBLM and spine BMD for the entire sample, at 7q32 for TBLM and BMD at both spine and hip in women, and at 7q21 and 13p11 for TBLM and BMD at both spine and hip in men. Two-point linkage analyses for chromosome X also showed significant linkage signals at several regions such as Xq25. Complete pleiotropy (a single locus influencing both traits) was suggested at 7q32 and 13q11 for TBLM and BMD. Additionally, complete co-incident linkage (separate tightly clustered loci each influencing a single trait) was detected at 7p22 for TBLM and spine BMD. CONCLUSIONS We identified several genomic regions shared by TBLM and BMD in whites. Further studies may focus on fine mapping and identification of the specific QTLs in these candidate genomic regions.
Collapse
Affiliation(s)
- Xiang-Li Wang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Fei-Yan Deng
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hong-Yi Deng
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Yao-Zhong Liu
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Christopher J Papasian
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Robert R Recker
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
- Institute of Molecular Genetics and the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an, Shanxi, China
| |
Collapse
|
43
|
Willaert A, Van Pottelbergh I, Zmierczak H, Goemaere S, Kaufman JM, De Paepe A, Coucke P. A genome-wide linkage scan for low spinal bone mineral density in a single extended family confirms linkage to 1p36.3. Eur J Hum Genet 2008; 16:970-6. [PMID: 18285824 DOI: 10.1038/ejhg.2008.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Osteoporotic fractures are an increasing cause of mortality and morbidity in ageing populations. A major risk determinant for these fractures is bone mineral density (BMD). Variation on BMD is thought, on the basis of twin and family studies, to be subject to a large amount of genetic variation and it has been hypothesised that this may be due to the influence of multiple genes. However, in families showing segregation of low or high BMD, single major genes have been shown to play a crucial role. We performed a genome-wide screen using 380 microsatellite markers in a single extended family (n=34) in which early-onset low spinal areal BMD segregates in an autosomal dominant-like fashion. A two-point linkage analysis was performed, revealing a maximum LOD score of 3.07 on 1p36.3 (D1S468), confirming results of previous linkage studies of BMD, while no other suggestive linkage peaks (LOD>2.2) were detected elsewhere in the genome. Microsatellite markers were subsequently genotyped for a +/-6.9 Mb region surrounding D1S468. This revealed critical recombination events restricting the candidate region to 1.2 Mb and 19 genes. Sequencing analysis of the coding region of candidate genes WDR8 and EGFL3 revealed no mutations or disease-associated polymorphisms. Our results provide some evidence supporting the hypothesis that there are genetic determinants for spinal BMD on 1p36.3. Although no specific disease causing mutation has yet been found, the delineation of a relatively small candidate region in a single extended family opens perspectives to identify a major gene for spinal BMD.
Collapse
Affiliation(s)
- Andy Willaert
- Department of Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang ZL, He JW, Qin YJ, Hu YQ, Li M, Zhang H, Hu WW, Liu YJ, Gu JM. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos Int 2008; 19:39-47. [PMID: 17703271 DOI: 10.1007/s00198-007-0435-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/01/2007] [Indexed: 12/15/2022]
Abstract
UNLABELLED We identified 17 polymorphisms in myostatin by sequencing, and three informative single nucleotide polymorphisms (SNPs) were selected for further observation for their association with peak BMD of women in 401 Chinese nuclear families. Our results suggest that genetic polymorphisms in myostatin likely play a role in attainment of peak BMD in Chinese women. INTRODUCTION Myostatin is a TGF-beta family member that is a negative regulator of skeletal muscle growth. MATERIALS AND METHODS We identified SNPs in myostatin by direct sequencing. Furthermore, using a quantitative transmission disequilibrium test (QTDT). we tested and further test whether SNPs were associated with peak bone mineral density (BMD) variation at the spines and hips of 401 Chinese nuclear families. We identified 17 polymorphisms in myostatin by sequencing. Next, we selected three informative SNPs for further observation of an association with peak BMD of premenopausal women in 401 Chinese nuclear families. RESULTS Using QTDT for the within-family association, we found significant association between rs2293284 and total hip, femoral neck, and trochanter BMD (all p < 0.05), while rs7570532 was associated with total hip and trochanter BMD (p = 0.034 and p = 0.035, respectively). The within-family association was significant between BMI and +2278G > A (p = 0.022). Subsequent permutations were in agreement with these significant within-family association results. Moreover, analyses of the haplotypes confer further evidence for association of rs2293284 and rs7570532 with hip peak BMD variation. CONCLUSIONS These results suggest, for the first time, the genetic polymorphisms in myostatin likely play a role in attainment of peak BMD in Chinese women.
Collapse
Affiliation(s)
- Z-L Zhang
- The Department of Osteoporosis, Osteoporosis Research Unit, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 600 Yi-Shan Rd, Shanghai, 200233, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang L, Liu YJ, Xiao P, Shen H, Deng HY, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Deng HW. Chromosome 2q32 may harbor a QTL affecting BMD variation at different skeletal sites. J Bone Miner Res 2007; 22:1672-8. [PMID: 17680728 DOI: 10.1359/jbmr.070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED BMDs at different skeletal sites share some common genetic determinants. Using PCA and bivariate linkage analysis, we identified a QTL on chromosome 2q32 with significant pleiotropic effects on BMDs at different skeletal sites. INTRODUCTION BMDs at the hip, spine, and forearm are genetically correlated, suggesting the existence of quantitative trait loci (QTLs) with concurrent effects on BMDs at these three skeletal sites. Consequently, it is important to identify these QTLs in the human genome and, for those implicated QTLs, it is important to differentiate between pleiotropic effects, caused by a single gene that concurrently effects these traits, and co-incident linkage, caused by multiple, closely linked, genes that independently effect these traits. MATERIALS AND METHODS For a sample of 451 American white pedigrees made up of 4,498 individuals, we evaluated the correlations between BMDs at the three skeletal sites. We carried out principal component analysis (PCA) for the three correlated traits and obtained a major component, PC1, which accounts for >75% of the co-variation of BMDs at the three sites. We subsequently conducted a whole genome linkage scan for PC1 and performed bivariate linkage analysis for pairs of the three traits (i.e., forearm/spine BMD, hip/forearm BMD, and hip/spine BMD). RESULTS Chromosome region 2q32, near the marker GATA65C03M, showed strong linkage to PC1 (LOD = 3.35). Subsequent bivariate linkage analysis substantiated linkage at 2q32 for each trait pair (LOD scores were 2.65, 2.42, and 2.13 for forearm/spine BMD, hip/forearm BMD, and hip/spine BMD, respectively). Further analyses rejected the hypothesis of co-incident linkage (p(0)[forearm/spine] = 0.0005, p(0)[hip/forearm] = 0.004, p(0)(hip/spine] = 0.001) but failed to reject the hypothesis of pleiotropy (p(1)[forearm/spine] = 0.35, p(1)[hip/forearm] = 0.07, p(1)[hip/spine] = 0.15). CONCLUSIONS Our results strongly support the conclusion that chromosome region 2q32 may harbor a QTL with pleiotropic effects on BMDs at different skeletal sites.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tang ZH, Xiao P, Lei SF, Deng FY, Zhao LJ, Deng HY, Tan LJ, Shen H, Xiong DH, Recker RR, Deng HW. A bivariate whole-genome linkage scan suggests several shared genomic regions for obesity and osteoporosis. J Clin Endocrinol Metab 2007; 92:2751-7. [PMID: 17473065 DOI: 10.1210/jc.2006-2607] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT A genome-wide bivariate analysis was conducted for body fat mass (BFM) and bone mineral density (BMD) in a large Caucasian sample. We found some quantitative trait loci shared by BFM and BMD in the total sample and the gender-specific subgroups, and quantitative trait loci with potential pleiotropy were disclosed. BFM and BMD, as the respective measure for obesity and osteoporosis, are phenotypically and genetically correlated. However, specific genomic regions accounting for their genetic correlation are unknown. OBJECTIVE To identify systemically the shared genomic regions for BFM and BMD, we performed a bivariate whole-genome linkage scan in 4498 Caucasian individuals from 451 families for BFM and BMD at the hip, spine, and wrist, respectively. Linkage analyses were performed in the total sample and the male and female subgroups, respectively. RESULTS In the entire sample, suggestive linkages were detected at 7p22-p21 (LOD 2.69) for BFM and spine BMD, 6q27 (LOD 2.30) for BFM and hip BMD, and 11q13 (LOD 2.64) for BFM and wrist BMD. Male-specific suggestive linkages were found at 13q12 (LOD 3.23) for BFM and spine BMD and at 7q21 (LOD 2.59) for BFM and hip BMD. Female-specific suggestive LOD scores were 3.32 at 15q13 for BFM and spine BMD and 3.15 at 6p25-24 for BFM and wrist BMD. CONCLUSIONS Several shared genomic regions for BFM and BMD were identified here. Our data may benefit further positional and functional studies, aimed at eventually uncovering the complex mechanism underlying the shared genetic determination of obesity and osteoporosis.
Collapse
Affiliation(s)
- Zi-Hui Tang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Deng FY, Xiao P, Lei SF, Zhang L, Yang F, Tang ZH, Liu PY, Liu YJ, Recker RR, Deng HW. Bivariate whole genome linkage analysis for femoral neck geometric parameters and total body lean mass. J Bone Miner Res 2007; 22:808-16. [PMID: 17352645 DOI: 10.1359/jbmr.070303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED A genome-wide bivariate analysis was conducted for femoral neck GPs and TBLM in a large white sample. We found QTLs shared by GPs and TBLM in the total sample and the sex-specific samples. QTLs with potential pleiotropy were also disclosed. INTRODUCTION Previous studies have suggested that femoral neck cross-section geometric parameters (FNCS-GPs), including periosteal diameter (W), cross-sectional area (CSA), cortical thickness (CT), buckling ratio (BR), and section modulus (Z), are genetically correlated with total body lean mass (TBLM). However, the shared genetic factors between them are unknown. MATERIALS AND METHODS To identify the specific QTLs shared by FNCS-GPs and TBLM, we performed bivariate whole genome linkage analysis (WGLA) in a large sample of 451 white families made up of 4498 subjects. RESULTS Multipoint bivariate linkage analyses for 22 autosomes showed evidence of suggestive or significant linkages (thresholds of LOD = 2.3 and 3.7, respectively) to chromosomes 3q12 and 20q13 in the entire sample, 6p25 and 10q24 in women, and 4p15, 5q34-35 and 7q21 in men. Two-point linkage analyses for chromosome X showed strong linkage to Xp22.13, Xp11.4, Xq22.3, Xq23-24, and Xq25. Complete pleiotropy was identified on 10q24 and 5q35 for TBLM and BR in women and for TBLM and CT in men, respectively. Furthermore, chromosomes 5q34-35, 7q21, 10q24, 20q13, Xp22.13, Xp11.4, and Xq25 are also of importance because of their linkage to multiple trait pairs. For example, linkage to chromosome 10q24 was found for TBLM x W (LOD = 2.31), TBLM x CT (LOD = 2.51), TBLM x CSA (LOD = 2.51), TBLM x BR (LOD = 2.64), and TBLM x Z (LOD = 2.55) in women. CONCLUSIONS In this study, we identified several genomic regions (e.g., 3q12 and 20q13) that seem to be linked to both FNCS-GPs and TBLM. These regions are of interesting because they may harbor genes that may contribute to variation in both FNCS-GPs and TBLM.
Collapse
Affiliation(s)
- Fei-Yan Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|