1
|
Wang R, Liu C, Wei W, Lin Y, Zhou L, Chen J, Wu D. Increased bone mass but delayed mineralization: in vivo and in vitro study for zoledronate in bone regeneration. BMC Oral Health 2024; 24:1146. [PMID: 39334089 PMCID: PMC11438265 DOI: 10.1186/s12903-024-04906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bisphosphonates (BPs) are widely used to inhibit excessive osteoclast activity. However, the potential to compromise bone defect healing has limited their broader application. To better understand the influence of BPs on bone regeneration, we established a bone grafting model with Zoledronate administration, aiming to deepen the understanding of bone remodeling and mineralization processes. METHODS A bone grafting model was established in the distal femurs of male Sprague-Dawley rats. The experimental group received systemic administration of Zoledronate (ZOL, 0.2 mg/kg, administered twice). Histological analysis and immunohistochemistry (IHC) were employed to assess osteoblastic and macrophage activity, tartrate-resistant acid phosphatase (TRAP) staining was used to evaluate osteoclastogenesis. Mineralization was assessed through Micro-CT analysis, Raman spectroscopy, and back-scatter scanning electron microscopy (BSE-SEM). Additionally, the in vitro effects of ZOL on osteoblast and osteoclast activity were investigated to further elucidate its impact on bone regeneration. RESULTS In vivo, the ZOL group showed increased bone mass, as observed in histological and radiological assessments. However, Micro-CT, Raman spectroscopy, and BSE-SEM detection revealed lower mineralization levels in ZOL group's regenerated bone. Acid-etched SEM analysis showed abnormal osteocyte characteristics in ZOL-group's regenerated bone. Simultaneously, elevated osteopontin (OPN), F4/80 expression along with reduced TRAP expressing was found in the grafting region of ZOL group. In vitro, ZOL did not negatively impact osteogenetic activity (ALP, BMP4, OCN expression) at the tested concentrations (0.02-0.5 g/ml) but significantly impaired mineralization and inhibited osteoclast formation, even at the lowest concentration. CONCLUSIONS This study highlights a less recognized negative effect of ZOL on bone mineralization during bone regeneration. More research is needed to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Rongchang Wang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Chaowei Liu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Wenwei Wei
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Yanjun Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Lin Zhou
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Dong Wu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fujian, China.
- Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fujian, China.
| |
Collapse
|
2
|
Qin L, Lu J, He Q, Wang H, Yao L, Duffy M, Guo H, Braun C, Lin Y, Zhou Y, Liang Q, Bandyopadhyay S, Tan K, Choi Y, Liu S. Bone marrow adipogenic lineage precursors are the major regulator of bone resorption in adult mice. RESEARCH SQUARE 2024:rs.3.rs-4809633. [PMID: 39257979 PMCID: PMC11384808 DOI: 10.21203/rs.3.rs-4809633/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Bone resorption by osteoclasts is a critical step in bone remodeling, a process important for maintaining bone homeostasis and repairing injured bone. We previously identified a bone marrow mesenchymal subpopulation, marrow adipogenic lineage precursors (MALPs), and showed that its production of RANKL stimulates bone resorption in young mice using Adipoq-Cre. To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone, we generated inducible reporter mice (Adipoq-CreER Tomato) and RANKL deficient mice (Adipoq-CreER RANKLflox/flox, iCKO). Single cell-RNA sequencing data analysis, lineage tracing, and in situ hybridization revealed that Adipoq+ cells contain not only MALPs but also late mesenchymal progenitors capable of osteogenic differentiation. However, RANKLmRNA was only detected in MALPs, but not in osteogenic cells. RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae within 1 month due to diminished bone resorption but had no effect on the cortical bone. Ovariectomy (OVX) induced trabecular bone loss at both sites. RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass. Furthermore, bone healing after drill-hole injury was delayed in iCKO mice. Together, our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis, postmenopausal bone loss, and injury repair.
Collapse
Affiliation(s)
| | | | - Qi He
- University of Pennsylvania
| | | | | | | | | | | | | | | | | | | | - Kai Tan
- The Children's Hospital of Philadelphia
| | - Yongwon Choi
- University of Pennsylvania Perelman School of Medicine
| | | |
Collapse
|
3
|
Kwon BT, Ham DW, Park SM, Kim HJ, Yeom JS. Impact of Teriparatide and Denosumab on Clinical and Radiographic Outcomes in Osteoporotic Vertebral Compression Fractures. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1314. [PMID: 39202595 PMCID: PMC11356547 DOI: 10.3390/medicina60081314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Osteoporotic vertebral compression fractures (OVCFs) are prevalent among the elderly, often leading to significant pain, morbidity, and mortality. Effective management of underlying osteoporosis is essential to prevent subsequent fractures. This study aimed to compare the clinical and radiographic outcomes of teriparatide and denosumab treatments in patients with OVCFs to determine their relative effectiveness in improving patient outcomes. Materials and Methods: This retrospective study included 78 patients diagnosed with an acute thoracolumbar OVCF who received either teriparatide (35 patients) or denosumab (43 patients) within three months of a fracture. Clinical outcomes were assessed using the visual analog scale (VAS) for back pain, Oswestry disability index (ODI), and EQ-5D quality of life scores at baseline, 6 months, and 12 months. Bone mineral density (BMD) and radiographic outcomes were evaluated initially and at 12 months post-treatment. Results: Both treatment groups demonstrated significant improvements in VAS, ODI, and EQ-5D scores over 12 months. No significant differences were observed between the teriparatide and denosumab groups in terms of clinical outcomes or radiographic measurements at any time point. Fracture union and BMD improvements were similarly observed in both groups. The teriparatide group had a lower baseline BMD, but this did not affect the overall outcomes. Conclusions: Both teriparatide and denosumab are effective in improving clinical and radiographic outcomes in patients with OVCFs. Despite concerns about denosumab's potential to hinder fracture healing, our study found no significant differences between the two treatments. These findings support the use of denosumab for early treatment of OVCFs to prevent subsequent fractures without compromising fracture healing. Further prospective studies are needed to confirm these results.
Collapse
Affiliation(s)
- Byung-Taek Kwon
- Department of Orthopedics, Chung-Ang University College of Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 14353, Republic of Korea;
| | - Dae-Woong Ham
- Department of Orthopedics, Chung-Ang University College of Medicine, Chung-Ang University Hospital, Seoul 06973, Republic of Korea;
| | - Sang-Min Park
- Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (H.-J.K.); (J.S.Y.)
| | - Ho-Joong Kim
- Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (H.-J.K.); (J.S.Y.)
| | - Jin S. Yeom
- Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea; (H.-J.K.); (J.S.Y.)
| |
Collapse
|
4
|
Chandran M, Akesson KE, Javaid MK, Harvey N, Blank RD, Brandi ML, Chevalley T, Cinelli P, Cooper C, Lems W, Lyritis GP, Makras P, Paccou J, Pierroz DD, Sosa M, Thomas T, Silverman S. Impact of osteoporosis and osteoporosis medications on fracture healing: a narrative review. Osteoporos Int 2024; 35:1337-1358. [PMID: 38587674 PMCID: PMC11282157 DOI: 10.1007/s00198-024-07059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Antiresorptive medications do not negatively affect fracture healing in humans. Teriparatide may decrease time to fracture healing. Romosozumab has not shown a beneficial effect on human fracture healing. BACKGROUND Fracture healing is a complex process. Uncertainty exists over the influence of osteoporosis and the medications used to treat it on fracture healing. METHODS Narrative review authored by the members of the Fracture Working Group of the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF), on behalf of the IOF and the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT). RESULTS Fracture healing is a multistep process. Most fractures heal through a combination of intramembranous and endochondral ossification. Radiographic imaging is important for evaluating fracture healing and for detecting delayed or non-union. The presence of callus formation, bridging trabeculae, and a decrease in the size of the fracture line over time are indicative of healing. Imaging must be combined with clinical parameters and patient-reported outcomes. Animal data support a negative effect of osteoporosis on fracture healing; however, clinical data do not appear to corroborate with this. Evidence does not support a delay in the initiation of antiresorptive therapy following acute fragility fractures. There is no reason for suspension of osteoporosis medication at the time of fracture if the person is already on treatment. Teriparatide treatment may shorten fracture healing time at certain sites such as distal radius; however, it does not prevent non-union or influence union rate. The positive effect on fracture healing that romosozumab has demonstrated in animals has not been observed in humans. CONCLUSION Overall, there appears to be no deleterious effect of osteoporosis medications on fracture healing. The benefit of treating osteoporosis and the urgent necessity to mitigate imminent refracture risk after a fracture should be given prime consideration. It is imperative that new radiological and biological markers of fracture healing be identified. It is also important to synthesize clinical and basic science methodologies to assess fracture healing, so that a convergence of the two frameworks can be achieved.
Collapse
Affiliation(s)
- M Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, DUKE NUS Medical School, Singapore, Singapore.
| | - K E Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - M K Javaid
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - N Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - R D Blank
- Garvan Institute of Medical Research, Medical College of Wisconsin, Darlinghurst, NSW, Australia
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - M L Brandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Largo Palagi 1, Florence, Italy
| | - T Chevalley
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - P Cinelli
- Department of Trauma Surgery, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - C Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - W Lems
- Department of Rheumatology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - G P Lyritis
- Hellenic Osteoporosis Foundation, Athens, Greece
| | - P Makras
- Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - J Paccou
- Department of Rheumatology, MABlab ULR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - D D Pierroz
- International Osteoporosis Foundation, Nyon, Switzerland
| | - M Sosa
- University of Las Palmas de Gran Canaria, Investigation Group on Osteoporosis and Mineral Metabolism, Canary Islands, Spain
| | - T Thomas
- Department of Rheumatology, North Hospital, CHU Saint-Etienne and INSERM U1059, University of Lyon-University Jean Monnet, Saint‑Etienne, France
| | - S Silverman
- Cedars-Sinai Medical Center and Geffen School of Medicine UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
Aldhilan MM, Almahamed MH, Abdel-Wanis ME. Denosumab and metatarsal fracture healing: potential benefits with delayed remodeling: a case report. Ann Med Surg (Lond) 2024; 86:3786-3790. [PMID: 38846825 PMCID: PMC11152770 DOI: 10.1097/ms9.0000000000002134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Denosumab is known to enhance callus formation while delaying remodeling. However, its effects on fracture healing are scarcely reported in the literature. This case report, to the best of our knowledge, is the first to report the potential effect of denosumab on a metatarsal fracture in an older adult patient, 4 months after administration, resulting in a favorable clinical course with early weight-bearing 17 days after the fracture. Presentation of case A 73-year-old female sustained a right-foot second metatarsal fracture due to the fall of a heavy object. She has a history of diabetes mellitus, hypertension, and osteoporosis. Prior to sustaining the fracture, she received seven doses of denosumab spaced 6 months apart, with the last dose administered 4 months earlier. Furthermore, the patient was treated with a backsplint for 6 weeks. After 17 days, follow-up radiographs showed a large callus formation, with no pain and the ability to bear weight. Subsequent radiographs revealed a large callus with delayed remodeling. Discussion This case report suggests that denosumab remains effective for promoting rapid callus formation even 4 months after administration for osteoporosis, despite delayed remodeling. This delay did not seem to have negative effects on the clinical outcomes, as the patient achieved weight-bearing within 17 days after sustaining the fracture. Conclusion Denosumab may positively influence fracture healing in older adults with metatarsal fractures, potentially leading to delayed remodeling. However, further studies are needed to confirm these observations.
Collapse
|
6
|
Jeon S, Yu D, Kim S, Kim SW, Jeon I. Comparison of radiological and functional outcomes of conservative treatment with teriparatide and denosumab in thoracolumbar osteoporotic vertebral fracture. Osteoporos Int 2024; 35:795-804. [PMID: 38261013 DOI: 10.1007/s00198-024-07025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Teriparatide and denosumab, anti-osteoporosis medications with different mechanisms, have been widely used in the patients with osteoporotic vertebral fracture (OVF) considered as advanced osteoporosis. Teriparatide has been shown to enhance bone formation and fracture healing in OVF, but there are still no sufficient evidences discussing about the role of denosumab in newly developed OVF. In this study, we found the similar radiological deformation and functional outcomes of conservative treatment with teriparatide and denosumab in thoracolumbar (TL) OVF, and teriparatide showed a more frequent incidence of fracture union with paravertebral bone bridge formation compared to denosumab. INTRODUCTION Teriparatide and denosumab have been widely used to treat advanced osteoporosis and prevent subsequent fractures in patients with OVCF. Unlike teriparatide, which is considered to be effective in fracture healing, there is still no clear role and evidence for the effect of denosumab in acute OVCF. This study compared the radiological and functional outcomes of conservative treatment with teriparatide and denosumab in TL-OVF. METHODS This retrospective study enrolled 78 women with mean age of 74.69 ± 7.66 (60-92) years diagnosed as a TL-OVF with no neurological deficits. All patients were treated conservatively with teriparatide (34 of group T, once-daily 20 μg) or denosumab (44 of group D, once-6 months 60 mg) for 6 months. We evaluated the radiological deformation (kyphotic angle, segmental vertebral kyphotic angle, and compression ratio) and the incidence of fracture union with paravertebral bone bridge formation (FUPB) and functional outcomes using the visual analog scale (VAS) and Oswestry Disability Index (ODI) at 0, 3, and 6 months. RESULTS In the radiological deformation and functional outcomes, there were no significant differences at 0, 3, and 6 months between the two groups (P > 0.05). However, the incidence of FUPB at 6 months was higher in group T (20/34, 58.8%) compared to group D (11/44, 25.0%) (P = 0.004), and teriparatide was the most statistically significant factor for achieving FUPB (OR 4.486, P = 0.012) in multivariable logistic analysis. CONCLUSIONS Teriparatide and denosumab, despite of their different pharmacological mechanisms, showed similar radiological deformation and functional outcomes in the conservative treatment of TL-OVF. However, teriparatide showed a significantly higher incidence of fracture union with paravertebral bone bridge formation.
Collapse
Affiliation(s)
- Seongmin Jeon
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, 170, Hyeonchung street, Nam-Gu, Daegu, 42415, South Korea
| | - Dongwoo Yu
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, 170, Hyeonchung street, Nam-Gu, Daegu, 42415, South Korea
| | - Sungho Kim
- Department of Neurosurgery, Bogang Hospital, Daegu, South Korea
| | - Sang Woo Kim
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, 170, Hyeonchung street, Nam-Gu, Daegu, 42415, South Korea
| | - Ikchan Jeon
- Department of Neurosurgery, Yeungnam University Hospital, Yeungnam University College of Medicine, 170, Hyeonchung street, Nam-Gu, Daegu, 42415, South Korea.
| |
Collapse
|
7
|
Menger MM, Emmerich M, Scheuer C, Hans S, Braun BJ, Herath SC, Rollmann MF, Menger MD, Laschke MW, Histing T. Sildenafil delays bone remodeling of fractured femora in aged mice by reducing the number and activity of osteoclasts within the callus tissue. Biomed Pharmacother 2024; 173:116291. [PMID: 38442669 DOI: 10.1016/j.biopha.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
The elderly exhibit a reduced healing capacity after fracture, which is often associated with delayed or failed bone healing. This is due to a plethora of factors, such as an impaired bone vascular system and delayed angiogenesis. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil exerts pro-angiogenic and pro-osteogenic effects. Hence, we herein investigated in aged mice whether sildenafil can improve fracture healing. For this purpose, 40 aged CD-1 mice (16-18 months) were daily treated with 5 mg/kg body weight sildenafil (n = 20) or vehicle (control, n = 20) by oral gavage. The callus tissue of their femora was analyzed at 2 and 5 weeks after fracture by X-ray, biomechanics, micro-computed tomography (µCT), histology, immunohistochemistry as well as Western blotting. These analyses revealed a significantly increased bone volume and higher ratio of callus to femoral bone diameter in sildenafil-treated mice at 5 weeks after fracture when compared to controls. This was associated with a reduced number and activity of osteoclasts at 2 weeks after fracture, most likely caused by an increased expression of osteoprotegerin (OPG). Taken together, these findings indicate that sildenafil does not improve fracture healing in the elderly but delays the process of bone remodeling most likely by reducing the number and activity of osteoclasts within the callus tissue.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany; Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany.
| | - Maximilian Emmerich
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| | - Mika F Rollmann
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg 66421, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
8
|
Hino M, Tanaka M, Kamoi F, Joko I, Kasuga K, Tsukahara Y, Takahashi J, Uchiyama S. Does early administration of denosumab delay bone healing after intertrochanteric femoral fractures? J Orthop Sci 2024:S0949-2658(24)00050-2. [PMID: 38519378 DOI: 10.1016/j.jos.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Hip fractures are commonly associated with osteoporosis and pose a risk for secondary fractures. Although the administration of anti-osteoporotic drugs is recommended after fractures to mitigate this risk, the potential effect of strong anti-resorptive drugs (e.g., denosumab) on fracture healing processes have not been extensively studied. This prospective study aimed to evaluate the feasibility of early denosumab administration after femoral intertrochanteric fracture surgery and to compare its effect on fracture healing to that of bisphosphonate-treated patients. MATERIALS AND METHODS Patients who underwent surgery for intertrochanteric femoral fragility fractures between November 2018 and November 2020 were prospectively examined. Patients were randomized into two groups (denosumab [DSM] and ibandronate [IBN] groups) using a simple randomization procedure. Physical findings, plain radiographs, and computed tomography (CT) were used to evaluate fracture healing at 3 months postoperatively. RESULTS Physical findings showed no significant differences between the two groups in pain on loading, tenderness at fracture site, or walking ability. There were inter-rater differences in radiological fracture healing rate: plain radiographs, 57.5%-81.8% in the DSM group and 51.5%-90.9% in the IBN group; CT, 51.5%-72.7% in the DSM group and 45.4%-81.8% in the IBN group. Although there were variations, there were no significant differences in the fracture healing rate between groups on plain radiographs or CT among all three raters. CONCLUSIONS Early administration of denosumab after intertrochanteric femoral fracture surgery did not delay radiological or clinical fracture healing times when compared with ibandronate administration.
Collapse
Affiliation(s)
- Masahito Hino
- Department of Orthopaedic Surgery, Okaya City Hospital, Japan.
| | - Manabu Tanaka
- Department of Orthopaedic Surgery, Okaya City Hospital, Japan
| | | | - Itsuo Joko
- Department of Orthopaedic Surgery, Okaya City Hospital, Japan
| | - Kazuo Kasuga
- Department of Orthopaedic Surgery, Okaya City Hospital, Japan
| | | | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Japan
| | | |
Collapse
|
9
|
Strunz F, Gentil-Perret S, Siegrist M, Bohner M, Saulacic N, Hofstetter W. Bisphosphonates do not affect healing of a critical-size defect in estrogen-deficient mice. Bone Rep 2024; 20:101739. [PMID: 38304619 PMCID: PMC10831175 DOI: 10.1016/j.bonr.2024.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Bisphosphonates (BP) are anti-resorptive drugs that are widely used to prevent bone loss in osteoporosis. Since inhibition of bone resorption will cause a decrease in bone formation through a process called coupling, it is hypothesized that extended treatment protocols may impair bone healing. In this study, β-tri‑calcium-phosphate (βTCP) ceramics were inserted into critical-size long bone defects in estrogen-deficient mice under BP therapy. The study assessed the benefits of coating the ceramics with Bone Morphogenetic Protein-2 (BMP2) and an engineered BMP2 analogue (L51P) that inactivates BMP antagonists on the healing process, implant resorption, and bone formation. Female NMRI mice (11-12 weeks of age) were ovariectomized (OVX) or sham operated. Eight weeks later, after the manifestation of ovariectomy-induced osteoporotic bone changes, BP therapy with Alendronate (ALN) was commenced. After another five weeks, a femoral critical-size defect was generated, rigidly fixed, and βTCP-cylinders loaded with 0.25 μg or 2.5 μg BMP2, 2.5 μg L51P, and 0.25 μg BMP2/2.5 μg L51P, respectively, were inserted. Unloaded βTCP-cylinders were used as controls. Femora were collected six and twelve weeks post-implantation. Histological and micro-computer tomography (MicroCT) evaluation revealed that insertion of cylinders coated with 2.5 μg BMP2 accelerated fracture repair and induced significant bone formation compared to controls (unloaded cylinders or coated with 2.5 μg L51P, 0.25 μg BMP2) already six weeks post-implantation, independent of estrogen-deficiency and BP therapy. The simultaneous administration of BMP2 and L51P (0.25 μg BMP2/2.5 μg L51P) did not promote fracture healing six and twelve weeks post-implantation. Moreover, new bone formation within the critical-size defect was directly linked to the removal of the βTCP-implant in all experimental groups. No evidence was found that long-term therapy with ALN impaired the resorption of the implanted graft. However, osteoclast transcriptome signature was elevated in sham and OVX animals upon treatment with BP, with transcript levels being higher at six weeks than at twelve weeks post-surgery. Furthermore, the transcriptome profile of the developing repair tissue confirmed an accelerated repair process in animals treated with 2.5 μg BMP2 implants. L51P did not increase the bioefficacy of BMP2 in the applied defect model. The present study provides evidence that continuous administration of BP does not inhibit implant resorption and does not alter the kinetics of the healing process of critical-size long bone defects. Furthermore, the BMP2 variant L51P did not enhance the bioefficacy of BMP2 when applied simultaneously to the femoral critical-size defect in sham and OVX mice.
Collapse
Affiliation(s)
- Franziska Strunz
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Saskia Gentil-Perret
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mark Siegrist
- Cardiovascular Diseases Program, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Nikola Saulacic
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Ryu S, Yoon SJ, Lee CK, Yi S, Kim KN, Ha Y, Shin DA. The Combined Effects of RhBMP-2 and Systemic RANKL Inhibitor in Patients With Bone Density Loss Undergoing Posterior Lumbar Interbody Fusion: A Retrospective Observational Analysis With Propensity Score Matching. Neurospine 2023; 20:1186-1192. [PMID: 38171287 PMCID: PMC10762388 DOI: 10.14245/ns.2346702.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE The risks of nonunion and subsidence are high in patients with bone density loss undergoing spinal fusion surgery. The internal application of recombinant human bone morphogenic protein 2 (rhBMP-2) in an interbody cage improves spinal fusion; however, related complications have been reported. Denosumab, a human monoclonal antibody targeting the receptor activator of nuclear factor kappa B ligand (RANKL), hinders osteoblast differentiation and function. Therefore, this study aimed to observe the combined effect of the local application of rhBMP-2 in a lumbar cage and systemic RANKL inhibition on postoperative spinal fusion in patients with bone density loss undergoing posterior lumbar interbody fusion (PLIF). METHODS This retrospective observational study included 251 consecutive patients with spinal stenosis who underwent PLIF at a single center between 2017 and 2021. Clinical outcomes were assessed, and radiographic evaluations included lumbar flexion, extension, range of motion, and subsidence. Statistical analyses were conducted to identify the combined effect of the treatment and the subsidence and spinal fusion status. RESULTS One hundred patients were included in the final analysis. Denosumab treatment significantly reduced the rate of osteolysis (p = 0.013). When denosumab was administered in combination with rhBMP-2, the fusion status remained similar; however, the incidences of postoperative osteolysis and postoperative oozing day decreased. CONCLUSION The combined use of rhBMP-2 and RANKL inhibition in patients with bone density loss can enhance bone formation after PLIF with fewer complications than rhBMP-2 alone.
Collapse
Affiliation(s)
- Seungjun Ryu
- Department of Neurosurgery, Daejeon Eulji University Hospital, School of Medicine, Eulji University, Daejeon, Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Kyu Lee
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Yi
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keung-Nyun Kim
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Ting M, Huynh BH, Woldu HG, Gamal I, Suzuki JB. Clinical Impact on Dental Implant Survival in Patients Taking Antiresorptive Medications: A Systematic Review and Meta-Analysis. J ORAL IMPLANTOL 2023; 49:599-615. [PMID: 37905745 DOI: 10.1563/aaid-joi-d-21-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Dental implants are a predictable option to replace missing teeth. Patients on antiresorptive medications used to treat disorders associated with bone resorption may need dental implants to replace missing teeth. The data on implant failure in patients on antiresorptive medication requiring dental implants, is conflicting and limited. This systematic review aims to investigate if antiresorptive medications have any clinical impact on dental implant survival. Electronic databases were searched until May 2020. The focus question (PICOS): Participants: humans, Interventions: implant placement surgery in patients on antiresorptive medication, Comparisons: patients on antiresorptive medication vs control (patients not on antiresorptive medication), Outcomes: implant survival, and Study design: clinical studies. The protocol of this systematic review was registered in PROSPERO (CRD42020209083). Fourteen nonrandomized studies were selected for data extraction and risk of bias assessment using the ROBINS-1 tool. Only studies with a control were included for the meta-analysis, 8 articles were included in the meta-analysis using implant-level data, and 5 articles were included in the meta-analysis using patient-level data. There was no statistical significance between the 2 groups at the patient level based on 265 patients. However, there was a statistically significant difference at the implant level based on 2697 implants. Therefore, antiresorptive medications, mainly bisphosphonates (BPs), may significantly contribute to implant failure. Antiresorptive medications, especially BPs may reduce implant survival and impair the osseointegration of dental implants. Failed implants in patients on BPs may not lead to osteonecrosis and may be replaced with success.
Collapse
Affiliation(s)
- Miriam Ting
- Department of Periodontics, University of Pennsylvania, Philadelphia, PA
- Think Dental Learning Institute, Paoli, PA
- General Dental Practice Residency, Einstein Medical Center, Philadelphia, PA
- Private Practice, Paoli, PA
| | - Benzon H Huynh
- Indian Health Service, U.S. Department of Health and Human Services
| | - Henok G Woldu
- The Center for Health Analytics for National and Global Equity (C.H.A.N.G.E.), Columbia, MO
- Biostatistician, Private Company, CA
| | - Ibrahim Gamal
- Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Jon B Suzuki
- University of Maryland School of Dentistry, Baltimore, MD
- University of Washington School of Dentistry, Seattle, WA
- Nova Southeastern University College of Dental Medicine, Fort Lauderdale, FL
- Temple University Schools of Medicine and Dentistry, Philadelphia, PA
| |
Collapse
|
12
|
Shih YV, Kingsley D, Newman H, Hoque J, Gupta A, Lascelles BDX, Varghese S. Multi-Functional Small Molecule Alleviates Fracture Pain and Promotes Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303567. [PMID: 37939302 PMCID: PMC10754086 DOI: 10.1002/advs.202303567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Bone injuries such as fractures are one major cause of morbidities worldwide. A considerable number of fractures suffer from delayed healing, and the unresolved acute pain may transition to chronic and maladaptive pain. Current management of pain involves treatment with NSAIDs and opioids with substantial adverse effects. Herein, we tested the hypothesis that the purine molecule, adenosine, can simultaneously alleviate pain and promote healing in a mouse model of tibial fracture by targeting distinctive adenosine receptor subtypes in different cell populations. To achieve this, a biomaterial-assisted delivery of adenosine is utilized to localize and prolong its therapeutic effect at the injury site. The results demonstrate that local delivery of adenosine inhibited the nociceptive activity of peripheral neurons through activation of adenosine A1 receptor (ADORA1) and mitigated pain as demonstrated by weight bearing and open field movement tests. Concurrently, local delivery of adenosine at the fracture site promoted osteogenic differentiation of mesenchymal stromal cells through adenosine A2B receptor (ADORA2B) resulting in improved bone healing as shown by histological analyses and microCT imaging. This study demonstrates the dual role of adenosine and its material-assisted local delivery as a feasible therapeutic approach to treat bone trauma and associated pain.
Collapse
Affiliation(s)
- Yu‐Ru V. Shih
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - David Kingsley
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Hunter Newman
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27710USA
| | - Jiaul Hoque
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Ankita Gupta
- Translational Research in Pain ProgramDepartment of Clinical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
| | - B. Duncan X. Lascelles
- Translational Research in Pain ProgramDepartment of Clinical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
- Thurston Arthritis CenterUniversity of North Carolina School of MedicineChapel HillNC27599USA
- Center for Translational Pain MedicineDepartment of AnesthesiologyDuke University School of MedicineDurhamNC27710USA
- Comparative Pain Research and Education CenterCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
| | - Shyni Varghese
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27710USA
- Department of Biomedical EngineeringDuke UniversityDurhamNC27710USA
| |
Collapse
|
13
|
Menger MM, Bleimehl M, Bauer D, Scheuer C, Hans S, Saul D, Ehnert S, Menger MD, Histing T, Laschke MW. Cilostazol promotes blood vessel formation and bone regeneration in a murine non-union model. Biomed Pharmacother 2023; 168:115697. [PMID: 37864892 DOI: 10.1016/j.biopha.2023.115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Abstract
Non-unions represent a major complication in trauma and orthopedic surgery. Many factors contribute to bone regeneration, out of which an adequate vascularization has been recognized as crucial. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in a variety of preclinical studies. Hence, we herein investigated the effects of cilostazol on bone regeneration in an atrophic non-union model in mice. For this purpose, a 1.8 mm femoral segmental defect was stabilized by pin-clip fixation and the animals were treated daily with 30 mg/kg body weight cilostazol or saline (control) per os. At 2, 5 and 10 weeks after surgery the healing of femora was analyzed by X-ray, biomechanics, photoacoustic imaging, and micro-computed tomography (µCT). To investigate the cellular composition and the growth factor expression of the callus tissue additional histological, immunohistochemical and Western blot analyses were performed. Cilostazol-treated animals showed increased bone formation within the callus, resulting in an enhanced bending stiffness when compared to controls. This was associated with a more pronounced expression of vascular endothelial growth factor (VEGF), a higher number of CD31-positive microvessels and an increased oxygen saturation within the callus tissue. Furthermore, cilostazol induced higher numbers of tartrate-resistant acidic phosphate (TRAP)-positive osteoclasts and CD68-positive macrophages. Taken together, these findings demonstrate that cilostazol is a promising drug candidate for the adjuvant treatment of atrophic non-unions in clinical practice.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany; Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany.
| | - Michelle Bleimehl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - David Bauer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Dominik Saul
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany
| |
Collapse
|
14
|
Sheng R, Cao M, Song M, Wang M, Zhang Y, Shi L, Xie T, Li Y, Wang J, Rui Y. Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J Orthop Translat 2023; 43:36-46. [PMID: 38021216 PMCID: PMC10654153 DOI: 10.1016/j.jot.2023.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background Osteosarcopenia is a syndrome coexisting sarcopenia and osteopenia/osteoporosis, with a high fracture risk. Recently, skeletal muscle and bone have been recognized as endocrine organs capable of communication through secreting myokines and osteokines, respectively. With a deeper understanding of the muscle-bone crosstalk, these endocrine signals exhibit an important role in osteosarcopenia development and fracture healing. Methods This review summarizes the role of myokines and osteokines in the development and treatment of osteosarcopenia and fracture, and discusses their potential for osteosarcopenia-related fracture treatment. Results Several well-defined myokines (myostatin and irisin) and osteokines (RANKL and SOST) are found to not only regulate skeletal muscle and bone metabolism but also influence fracture healing processes. Systemic interventions targeting these biochemical signals has shown promising results in improving the mass and functions of skeletal muscle and bone, as well as accelerating fracture healing processes. Conclusion The regulation of muscle-bone crosstalk via biochemical signals presents a novel and promising strategy for treating osteosarcopenia and fracture by simultaneously enhancing bone and muscle anabolism. We propose that myostatin, irisin, RANKL, and SOST may serve as potential targets to treat fracture patients with osteosarcopenia. The translational potential of this article Osteosarcopenia is an emerging geriatric syndrome where sarcopenia and osteoporosis coexist, with high fracture risk, delayed fracture healing, and increased mortality. However, no pharmacological agent is available to treat fracture patients with osteosarcopenia. This review summarizes the role of several myokines and osteokines in the development and treatment of osteosacropenia and fracture, as well as discusses their potential as intervention targets for osteosarcopenia-related fracture, which provides a novel and promising strategy for future osteosarcopenia-related fracture treatment.
Collapse
Affiliation(s)
- Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyuan Song
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Tian Xie
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yingjuan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
15
|
Knych HK, McKemie DS, Yim S, Stanley SD, Arthur RM. Long-term monitoring of clodronate in equine hair using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123789. [PMID: 37339532 DOI: 10.1016/j.jchromb.2023.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Given the potential for long-term inhibition of bone remodeling/healing and detrimental effects to horses in training, bisphosphonates are tightly regulated in horseracing. Hair has proven to be an effective matrix for detection of drug administration to horses and has been particularly effective in detecting drugs for a long period of time post administration. Thus, hair may prove to be a useful matrix for detection of administration of this class of drugs. The objective of the current study was to develop an assay and assess the usefulness of hair as a matrix for long-term detection of clodronate to horses. Seven horses received a single intramuscular administration of 1.8 mg/kg clodronate. Hair samples were collected prior to and up to 6 months post administration. A liquid chromatography-tandem mass spectrometry method was developed and concentrations of clodronate measured in hair samples. The drug was first detected on day 7 in 4/7 horses, and on days 14, 28 and 35 in the remaining three horses. In 4/7 horses, clodronate was still detectable 6 months post administration. Results of this study demonstrate that, although there was significant inter-individual variability in detection times (63 to 180 days) and several intermediate times where the drug could not be detected but was subsequently detected in later timepoints, clodronate administration was detectable in hair for a prolonged period in most of the horses (4/7) studied.
Collapse
Affiliation(s)
- Heather K Knych
- K.L. Maddy Equine Analytical Pharmacology Lab, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA.
| | - D S McKemie
- K.L. Maddy Equine Analytical Pharmacology Lab, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - S Yim
- K.L. Maddy Equine Analytical Pharmacology Lab, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - S D Stanley
- University of Kentucky College of Agriculture, MH Gluck Equine Research Center, Lexington, KY, USA
| | - R M Arthur
- School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
16
|
El Miedany Y, Toth M, Elwakil W, Saber S. Post-Fracture Care Program: Pharmacological Treatment of Osteoporosis in Older Adults with Fragility Fractures. Curr Osteoporos Rep 2023:10.1007/s11914-023-00791-w. [PMID: 37300602 DOI: 10.1007/s11914-023-00791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW To present and discuss the recently published scientific evidence on the approach, mode of action, and timing of osteoporosis therapy initiation after fragility fractures. RECENT FINDINGS A comprehensive management approach is required to reduce mortality and morbidity associated with fragility fractures. This will help to reduce the risk of missing the diagnosis of osteoporosis as the underlying disorder while at the same time promoting the timely treatment of osteoporosis. The target is to minimize the incidence of post-traumatic disability and to reduce the imminent fracture risk. This article will present a Bone-Care algorithm for the diagnosis and management of fragility fractures in patients presenting for trauma surgery. This algorithm has been developed based on recently published national as well as international guidelines for implementation in standard clinical practice. International figures revealed that only a small proportion of those patients at high risk of sustaining a fragility fracture receive osteoporosis therapy. Based on the best currently available evidence, it is safe to start osteoporosis therapy in the acute post-fracture period (the optimal therapeutic window of romosozumab is the late endochondral phase/throughout bone remodeling). The right Bone-Care pathway ensures the delivery of a comprehensive management approach that meets the global call to action. All parameters including risk, benefit, compliance, and cost should be considered on an individual base for all kinds of therapy.
Collapse
Affiliation(s)
- Yasser El Miedany
- Institute of Medical Sciences, Canterbury Christ Church University, Canterbury, UK.
| | - Mathias Toth
- King's College, London, UK
- Darent Valley Hospital, Kent, UK
| | - Walaa Elwakil
- Rheumatology, Physical Medicine and Rehabilitation, Alexandria University, Alexandria, Egypt
| | - Sally Saber
- Rheumatology and Rehabilitation, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
Buettmann EG, DeNapoli RC, Abraham LB, Denisco JA, Lorenz MR, Friedman MA, Donahue HJ. Reambulation following hindlimb unloading attenuates disuse-induced changes in murine fracture healing. Bone 2023; 172:116748. [PMID: 37001629 DOI: 10.1016/j.bone.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the effects of prior disuse followed by physical reambulation on fracture healing cellular processes and adjacent bone and skeletal muscle recovery post-injury remains poorly defined. To bridge this knowledge gap and inform future treatment and rehabilitation strategies for fractures, a preclinical model of fracture healing with a history of prior unloading with and without reambulation was employed. First, skeletally mature male and female C57BL/6J mice (18 weeks) underwent hindlimb unloading by tail suspension (HLU) for 3 weeks to induce significant bone and muscle loss modeling enhanced bone fragility. Next, mice had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). The, mice were randomly assigned to continued HLU or allowed normal weight-bearing reambulation (HLU + R). Mice given normal cage activity throughout the experiment served as healthy age-matched controls. All mice were sacrificed 4-days (DPF4) or 14-days (DPF14) following fracture to assess healing and uninjured hindlimb musculoskeletal properties (6-10 mice per treatment/biological sex). We found that continued disuse following fracture lead to severely diminished uninjured hindlimb skeletal muscle mass (gastrocnemius and soleus) and femoral bone volume adjacent to the fracture site compared to healthy age-matched controls across mouse sexes. Furthermore, HLU led to significantly decreased periosteal expansion (DPF4) and osteochondral tissue formation by DPF14, and trends in increased osteoclastogenesis (DPF14) and decreased woven bone vascular area (DPF14). In contrast, immediate reambulation for 2 weeks after fracture, even following a period of prolonged disuse, was able to increase hindlimb skeletal tissue mass and increase osteochondral tissue formation, albeit not to healthy control levels, in both mouse sexes. Furthermore, reambulation attenuated osteoclast formation seen in woven bone tissue undergoing disuse. Our results suggest that weight-bearing skeletal loading in both sexes immediately following fracture may improve callus healing and prevent further fall risk by stimulating skeletal muscle anabolism and decreasing callus resorption compared to minimal or delayed rehabilitation regimens.
Collapse
Affiliation(s)
- Evan G Buettmann
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Rachel C DeNapoli
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Lovell B Abraham
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Joe A Denisco
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Madelyn R Lorenz
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Michael A Friedman
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Henry J Donahue
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America.
| |
Collapse
|
18
|
Oh WT, Yang YS, Xie J, Ma H, Kim JM, Park KH, Oh DS, Park-Min KH, Greenblatt MB, Gao G, Shim JH. WNT-modulating gene silencers as a gene therapy for osteoporosis, bone fracture, and critical-sized bone defects. Mol Ther 2023; 31:435-453. [PMID: 36184851 PMCID: PMC9931550 DOI: 10.1016/j.ymthe.2022.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/14/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Treating osteoporosis and associated bone fractures remains challenging for drug development in part due to potential off-target side effects and the requirement for long-term treatment. Here, we identify recombinant adeno-associated virus (rAAV)-mediated gene therapy as a complementary approach to existing osteoporosis therapies, offering long-lasting targeting of multiple targets and/or previously undruggable intracellular non-enzymatic targets. Treatment with a bone-targeted rAAV carrying artificial microRNAs (miRNAs) silenced the expression of WNT antagonists, schnurri-3 (SHN3), and sclerostin (SOST), and enhanced WNT/β-catenin signaling, osteoblast function, and bone formation. A single systemic administration of rAAVs effectively reversed bone loss in both postmenopausal and senile osteoporosis. Moreover, the healing of bone fracture and critical-sized bone defects was also markedly improved by systemic injection or transplantation of AAV-bound allograft bone to the osteotomy sites. Collectively, our data demonstrate the clinical potential of bone-specific gene silencers to treat skeletal disorders of low bone mass and impaired fracture repair.
Collapse
Affiliation(s)
- Won-Taek Oh
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, 364 Plantation Street. LRB 217, Worcester, MA 01605, USA; Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, 364 Plantation Street. LRB 217, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA
| | - Jung-Min Kim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, 364 Plantation Street. LRB 217, Worcester, MA 01605, USA
| | - Kwang-Hwan Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
| | | | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Research Division, Hospital for Special Surgery, New York, NY 10021, USA
| | - Matthew B Greenblatt
- Research Division, Hospital for Special Surgery, New York, NY 10021, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Viral Vector Core, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA.
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, 364 Plantation Street. LRB 217, Worcester, MA 01605, USA; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, 368 Plantation Street AS6-2049, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Clark AR, Mauntel TC, Goldman SM, Dearth CL. Repurposing existing products to accelerate injury recovery (REPAIR) of military relevant musculoskeletal conditions. Front Bioeng Biotechnol 2023; 10:1105599. [PMID: 36698630 PMCID: PMC9868163 DOI: 10.3389/fbioe.2022.1105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Musculoskeletal injuries (MSKIs) are a great hindrance to the readiness of the United States Armed Forces through lost duty time and reduced operational capabilities. While most musculoskeletal injuries result in return-to-duty/activity with no (functional) limitations, the healing process is often long. Long healing times coupled with the high frequency of musculoskeletal injuries make them a primary cause of lost/limited duty days. Thus, there exists an urgent, clinically unmet need for interventions to expedite tissue healing kinetics following musculoskeletal injuries to lessen their impact on military readiness and society as a whole. There exist several treatments with regulatory approval for other indications that have pro-regenerative/healing properties, but few have an approved indication for treating musculoskeletal injuries. With the immediate need for treatment options for musculoskeletal injuries, we propose a paradigm of Repurposing Existing Products to Accelerate Injury Recovery (REPAIR). Developing treatments via repurposing existing therapeutics for other indications has shown monumental advantages in both cost effectiveness and reduced time to bring to market compared to novel candidates. Thus, undertaking the needed research efforts to evaluate the effectiveness of promising REPAIR-themed candidates has the potential to enable near-term solutions for optimizing musculoskeletal injuries recovery, thereby addressing a top priority within the United States. Armed Forces. Herein, the REPAIR paradigm is presented, including example targets of opportunity as well as practical considerations for potential technical solutions for the translation of existing therapeutics into clinical practice for musculoskeletal injuries.
Collapse
Affiliation(s)
- Andrew R. Clark
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Timothy C Mauntel
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States,Womack Army Medical Center, Fort Bragg, NC, United States
| | - Stephen M Goldman
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christopher L. Dearth
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States,*Correspondence: Christopher L. Dearth,
| |
Collapse
|
20
|
Oh YK, Moon NH, Shin WC. Management of Osteoporosis Medication after Osteoporotic Fracture. Hip Pelvis 2022; 34:191-202. [PMID: 36601612 PMCID: PMC9763832 DOI: 10.5371/hp.2022.34.4.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to provide helpful information for use in selection of an appropriate medication after osteoporotic fractures through conduct of a literature review. In addition, a review of the recommendations of several societies for prevention of subsequent fractures was performed and the appropriate choice of medication for treatment of atypical femur fractures was examined. Clinical perspective was obtained and an updated search of literature was conducted across PubMed and MEDLINE and relevant articles were selected. The articles were selected manually according to relevance, and the references for identified articles and reviews were also evaluated for relevance. The following areas are reviewed: Commonly prescribed osteoporosis medications: BPs (bisphosphonates), denosumab, and SERMs (selective estrogen receptor modulators) in antiresorptive medications and recombinant human parathyroid hormone teriparatide, recently approved Romosuzumab in anabolic agents, clinical practice guidelines for the management of osteoporosis, osteoporotic fracture, and atypical femur fracture. Most medications for treatment of osteoporosis do not delay fracture healing and the positive effect of teriparatide on fracture healing has been confirmed. In cases where an osteoporotic fracture is diagnosed, risk assessment should be performed for selection of very high-risk patients in order to prevent subsequent fractures, and administration of anabolic agents is recommended.
Collapse
Affiliation(s)
- Young Kwang Oh
- Department of Orthopaedic Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Nam Hoon Moon
- Department of Orthopaedic Surgery, Pusan National University Hospital, Busan, Korea
| | - Won Chul Shin
- Department of Orthopaedic Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
21
|
The role of hypertrophic chondrocytes in regulation of the cartilage-to-bone transition in fracture healing. Bone Rep 2022; 17:101616. [PMID: 36105852 PMCID: PMC9465425 DOI: 10.1016/j.bonr.2022.101616] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Endochondral bone formation is an important pathway in fracture healing, involving the formation of a cartilaginous soft callus and the process of cartilage-to-bone transition. Failure or delay in the cartilage-to-bone transition causes an impaired bony union such as nonunion or delayed union. During the healing process, multiple types of cells including chondrocytes, osteoprogenitors, osteoblasts, and endothelial cells coexist in the callus, and inevitably crosstalk with each other. Hypertrophic chondrocytes located between soft cartilaginous callus and bony hard callus mediate the crosstalk regulating cell-matrix degradation, vascularization, osteoclast recruitment, and osteoblast differentiation in autocrine and paracrine manners. Furthermore, hypertrophic chondrocytes can become osteoprogenitors and osteoblasts, and directly contribute to woven bone formation. In this review, we focus on the roles of hypertrophic chondrocytes in fracture healing and dissect the intermingled crosstalk in fracture callus during the cartilage-to-bone transition.
Collapse
|
22
|
Hadjiargyrou M. Effects of bisphosphonates on appendicular fracture repair in rodents. Bone 2022; 164:116542. [PMID: 36041726 DOI: 10.1016/j.bone.2022.116542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
The balance between osteoclastic bone resorption and osteoblastic bone formation is ultimately responsible for maintaining a structural and functional skeleton. Despite their strength, bones do break and the main cause of fractures are trauma and decreased bone mineral density as a result of aging and/or pathology that weakens the bone's microarchitecture and subsequently, its material properties. Osteoporosis is a disease marked by increased osteoclast activity and decreased osteoblastic activity tipping the remodeling balance in favor of bone resorption and can be caused by aging, glucocorticoids, disuse and estrogen-deficiency. Ultimately, this leads to brittle and weaker bones which become more prone to trauma or stress-induced fractures. The current treatment for preventing and treating osteoporotic fractures is the use of antiresorptive drugs such as bisphosphonates (BPs) and denosumab, but unfortunately, their long-term use, especially with alendronate and ibandronate, has been associated with increased risk of atypical femoral fractures (AFFs); femoral diaphyseal fractures distal to the lesser trochanter but proximal to the supracondylar flare. The purpose of this review is to examine the information that exists in the literature examining the effects of BPs on fracture repair of long bones in rodent (rat and mouse) models. The focus on rodents stems from the scientific community's unresolved need to develop small animal models to examine the molecular, cellular, tissue and biomechanical mechanisms responsible for the development of AFFs and how best they can be treated.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, United States of America.
| |
Collapse
|
23
|
Wen AFYH, Chong BYK, Joseph LV, Bee JKS, Sen HT, Mamun K. Challenges in osteoporosis treatment initiation in geriatric patients admitted under the hip-fracture pathway. Arch Osteoporos 2022; 17:136. [PMID: 36271963 DOI: 10.1007/s11657-022-01179-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
Osteoporosis is often untreated especially in older people. This study found a low prescribing rate of osteoporosis treatment medication of 22.4% in older people admitted under the hip-fracture pathway. Factors associated with greater odds of being prescribed osteoporosis medications are categorized into patient-related, physician-related and system-related factors. INTRODUCTION Osteoporosis represents a growing healthcare problem which is often overlooked by healthcare providers and untreated especially in older people. This study aims to assess the rate of osteoporosis treatment initiation and to investigate underlying physician and system-related barriers in geriatric patients admitted for hip fracture. METHODS A retrospective study was conducted on patients aged 60 years and older, admitted under the hip-fracture pathway from January 2019 to December 2019. Data collected included demographics, co-morbid conditions and laboratory data. Clinical charts were reviewed for whether bone mineral density (BMD) scan has been ordered, plans for bone health were made and reflected in the discharge summary, and if appropriate memos were written. The primary outcome was the prescription of osteoporosis treatment medications. Prescription lists were also reviewed for prescribing patterns of calcium and vitamin D. RESULTS A total of 375 patients older than 60 years old were identified. 281 patients who fit the inclusion and exclusion criteria with complete data were further analysed. Within 1 year of hip fracture admission, 63 (22.4%) of them were prescribed with osteoporosis treatment. Multivariate logistic regression identified milder stage of CKD (p = 0.038, OR = 0.617, 95% CI 0.392-0.973) and BMD scan performed (p < 0.001, OR = 6.515, 95% CI 3.180-13.348) as independent factors associated with the prescription of osteoporosis treatment within 1 year of hip fracture admission. CONCLUSION The rate of osteoporosis treatment initiation post-hip fracture is low. Systematic solutions will need to be established to ensure that osteoporosis treatment is addressed prior to discharge.
Collapse
Affiliation(s)
| | | | | | - Joyce Koh Suang Bee
- Department of Orthopedic Surgery, Singapore General Hospital, Singapore, Singapore
| | - Howe Tet Sen
- Department of Orthopedic Surgery, Singapore General Hospital, Singapore, Singapore
| | - Kaysar Mamun
- Department of Geriatric Medicine, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
24
|
Menger MM, Bauer D, Bleimehl M, Scheuer C, Ehnert S, Menger MD, Histing T, Laschke MW. Comparison of two non-union models with damaged periosteum in mice: Segmental defect and pin-clip fixation versus transverse fracture and K-wire stabilization. Bone 2022; 162:116475. [PMID: 35752408 DOI: 10.1016/j.bone.2022.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Despite growing knowledge about the mechanisms of fracture healing, non-union formation still represents a major complication in trauma and orthopedic surgery. Non-union models in mice gain increasing interest, because they allow investigating the molecular and cellular mechanisms of failed fracture healing. These models often use segmental defects to achieve non-union formation. Alternatively, failed fracture healing can be induced by transverse fractures with additional periosteal injury. The present study systematically compared the reliability of these two approaches to serve as non-union model. A 0.6 mm K-wire was inserted into the femora of CD-1 mice in a retrograde fashion and a closed transverse femoral fracture was created. Subsequently, the fracture site was exposed and the periosteum was cauterized. This approach was compared with a well-established non-union model involving the pin-clip fixation of a 1.8 mm segmental defect. The callus tissue was analyzed by means of radiography, biomechanics, histology and Western blotting. At 10 weeks after surgery 10 out of 12 femora (83.3 %) of the K-wire group showed a non-union formation. The pin-clip model resulted in 100 % non-union formation. The K-wire group showed increased bone formation, osteoclast activity and bending stiffness when compared to the group with pin-clip fixation. This was associated with a higher expression of bone formation markers. However, the number of CD31-positive microvessels was reduced in the K-wire group, indicating an impaired angiogenic capacity after periosteal cauterization. These findings suggest that the pin-clip model is more reliable for the study of non-union formation in mice. The K-wire model including periosteal injury by cauterization however, may be particularly applied in preclinical studies which explore the effects of damaged periosteum and reduced angiogenic capacity to trauma-induced fractures.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany; Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - David Bauer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michelle Bleimehl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
25
|
Alentado VJ, Knox AM, Staut CA, McGuire AC, Chitwood JR, Mostardo SL, Shaikh MZ, Blosser RJ, Dadwal UC, Chu TMG, Collier CD, Li J, Liu Z, Kacena MA, Natoli RM. Validation of the modified radiographic union score for tibia fractures (mRUST) in murine femoral fractures. Front Endocrinol (Lausanne) 2022; 13:911058. [PMID: 35992150 PMCID: PMC9381990 DOI: 10.3389/fendo.2022.911058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bony union is a primary predictor of outcome after surgical fixation of long bone fractures. Murine models offer many advantages in assessing bony healing due to their low costs and small size. However, current fracture recovery investigations in mice frequently rely on animal sacrifice and costly analyses. The modified Radiographic Union Score for Tibia fractures (mRUST) scoring system is a validated metric for evaluating bony healing in humans utilizing plain radiographs, which are relatively inexpensive and do not require animal sacrifice. However, its use has not been well established in murine models. The aim of this study was to characterize the longitudinal course of mRUST and compare mRUST to other conventional murine fracture analyses. 158 mice underwent surgically created midshaft femur fractures. Mice were evaluated after fracture creation and at 7, 10, 14, 17, 21, 24, 28, 35, and 42 days post-injury. mRUST scoring of plain radiographs was performed by three orthopaedic surgeons in a randomized, blinded fashion. Interrater correlations were calculated. Micro-computed tomography (μCT) was analyzed for tissue mineral density (TMD), total callus volume (TV), bone volume (BV), trabecular thickness, trabecular number, and trabecular separation. Histomorphometry measures of total callus area, cartilage area, fibrous tissue area, and bone area were performed in a blinded fashion. Ultimate torque, stiffness, toughness, and twist to failure were calculated from torque-twist curves. A sigmoidal log-logistic curve fit was generated for mRUST scores over time which shows mRUST scores of 4 to 6 at 7 days post-injury that improve to plateaus of 14 to 16 by 24 days post-injury. mRUST interrater correlations at each timepoint ranged from 0.51 to 0.86, indicating substantial agreement. mRUST scores correlated well with biomechanical, histomorphometry, and μCT parameters, such as ultimate torque (r=0.46, p<0.0001), manual stiffness (r=0.51, p<0.0001), bone percentage based on histomorphometry (r=0.86, p<0.0001), cartilage percentage (r=-0.87, p<0.0001), tissue mineral density (r=0.83, p<0.0001), BV/TV based on μCT (r=0.65, p<0.0001), and trabecular thickness (r=0.78, p<0.0001), among others. These data demonstrate that mRUST is reliable, trends temporally, and correlates to standard measures of murine fracture healing. Compared to other measures, mRUST is more cost-effective and non-terminal. The mRUST log-logistic curve could be used to characterize differences in fracture healing trajectory between experimental groups, enabling high-throughput analysis.
Collapse
Affiliation(s)
- Vincent J. Alentado
- Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Adam M. Knox
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Caio A. Staut
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Joseph R. Chitwood
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Mustufa Z. Shaikh
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Usashi C. Dadwal
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Tien-Min Gabriel Chu
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, United States
| | - Christopher D. Collier
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Jiliang Li
- Department of Biology, Indiana University, Purdue University, Indianapolis, IN, United States
| | - Ziyue Liu
- Department of Biostatistics and Health Data Science, School of Public Health, Indiana University, Indianapolis, IN, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Department of Veterans Affairs, Indianapolis, IN, United States
| | - Roman M. Natoli
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
26
|
Knych HK, Finno CJ, Katzman S, Ryan D, McKemie DS, Kass PH, Arthur RM. Clodronate detection and effects on markers of bone resorption are prolonged following a single administration to horses. Equine Vet J 2022. [DOI: 10.1111/evj.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/10/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Heather K. Knych
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine University of California Davis CA USA
- Department of Molecular Biosciences, School of Veterinary Medicine University of California Davis CA USA
| | - Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine University of California Davis CA USA
| | - Scott Katzman
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine University of California Davis CA USA
| | - Declan Ryan
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine University of California Davis CA USA
| | - Daniel S. McKemie
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine University of California Davis CA USA
| | - Philip H. Kass
- Department of Molecular Biosciences, School of Veterinary Medicine University of California Davis CA USA
| | - Rick M. Arthur
- School of Veterinary Medicine University of California Davis CA USA
| |
Collapse
|
27
|
Özer T, Başlarlı Ö, Aktaş A, Barış E, Ocak M. Effect of Locally Administered Denosumab on Bone Graft Healing in Rabbit Critical-Size Calvarial Defects. Indian J Orthop 2022; 56:1424-1430. [PMID: 35928658 PMCID: PMC9283553 DOI: 10.1007/s43465-022-00673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIM Denosumab is a human monoclonal immunoglobulin G2 antibody developed from the ovarian cells of Chinese hamsters. We aimed to histomorphometrically and radiologically evaluate the effects of xenografts used with local denosumab on the healing of defect sites using rabbit skulls. MATERIALS AND METHODS Two 10-mm diameter critical-size defects were created in 16 rabbits. The defect areas were filled with xenografts and xenograft + 3 mg denosumab in the control and denosumab groups (DEN), respectively. We evaluated new bone, residual graft, soft tissue areas, and bone volume in 4- and 8-week study groups. RESULTS Histomorphometrically, there were no statistically significant differences between groups at both 4 and 8 weeks regarding residual graft, new bone, and soft tissue area (p > 0.05). The 4-week residual graft control group values were significantly higher than the 8-week values (p < 0.05). The soft tissue area was significantly greater in the 4-week compared with the 8-week DEN group (p < 0.05). The radiologically measured total bone volume was significantly greater in the 8-week specimens than in the 4-week specimens (p < 0.05). CONCLUSION In this study, denosumab used locally with bone grafts, showed no direct effect on new and total bone volume.
Collapse
Affiliation(s)
- Taha Özer
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Özgür Başlarlı
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Alper Aktaş
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Emre Barış
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Mert Ocak
- Vocational School of Health, Ankara University, Ankara, Turkey
| |
Collapse
|
28
|
Palui R, Durgia H, Sahoo J, Naik D, Kamalanathan S. Timing of osteoporosis therapies following fracture: the current status. Ther Adv Endocrinol Metab 2022; 13:20420188221112904. [PMID: 35899183 PMCID: PMC9310203 DOI: 10.1177/20420188221112904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
In most patients, osteoporosis is diagnosed only after the occurrence of the first fragility fracture. It is of utmost importance to start osteoporosis medications immediately in these patients to prevent future fractures and also to reduce associated mortality and morbidity. There remains a hesitancy over initiating osteoporotic medications, specifically for antiresorptive agents like bisphosphonates following an acute fracture due to concern over their effect on fracture healing. The purpose of this review is to study the effect of the timing of initiation of different osteoporosis medications on healing after an acute fracture. Most of the human studies, including randomized control trials (RCTs), did not find any significant negative effect on fracture healing with early use of bisphosphonate after an acute fracture. Anabolic agents like teriparatide have shown either neutral or beneficial effects on fracture healing and thus can be started very early following any osteoporotic fracture. Although human studies on the early use of other osteoporosis medications like denosumab or strontium ranelate are very sparse in the literature, none of these medications have shown any evidence of delay in fracture healing. To summarize, among the commonly used anti-osteoporosis agents, both bisphosphonates and teriparatide are safe to be initiated in the early acute post-fracture period. Moreover, teriparatide has shown some evidence in favor of reducing fracture healing time.
Collapse
Affiliation(s)
- Rajan Palui
- Department of Endocrinology, The Mission
Hospital, Durgapur, India
| | - Harsh Durgia
- Dr. Harsh’s Endocrine and Diabetes Center,
Rajkot, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal
Institute of Postgraduate Medical Education and Research, Puducherry,
India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal
Institute of Postgraduate Medical Education and Research, Puducherry,
India
| | | |
Collapse
|
29
|
Butyrate Inhibits Osteoclast Activity In Vitro and Regulates Systemic Inflammation and Bone Healing in a Murine Osteotomy Model Compared to Antibiotic-Treated Mice. Mediators Inflamm 2021; 2021:8817421. [PMID: 34924815 PMCID: PMC8683197 DOI: 10.1155/2021/8817421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
Short-chain fatty acids (SCFAs) produced by the gut microbiota have previously been demonstrated to play a role in numerous chronic inflammatory diseases and to be key mediators in the gut-bone signaling axis. However, the role of SCFAs in bone fracture healing and its impact on systemic inflammation during the regeneration process has not been extensively investigated yet. The aim of this study was to first determine the effects of the SCFA butyrate on key cells involved in fracture healing in vitro, namely, osteoclasts and mesenchymal stromal cells (MSCs), and second, to assess if butyrate supplementation or antibiotic therapy impacts bone healing, systemic immune status, and inflammation levels in a murine osteotomy model. Butyrate significantly reduced osteoclast formation and resorption activity in a dose-dependent manner and displayed a trend for increased calcium deposits in MSC cultures. Numerous genes associated with osteoclast differentiation were differentially expressed in osteoclast precursor cells upon butyrate exposure. In vivo, antibiotic-treated mice showed reduced SCFA levels in the cecum, as well as a distinct gut microbiome composition. Furthermore, circulating proinflammatory TNFα, IL-17a, and IL-17f levels, and bone preserving osteoprotegerin (OPG), were increased in antibiotic-treated mice compared to controls. Antibiotic-treated mice also displayed a trend towards delayed bone healing as revealed by reduced mineral apposition at the defect site and higher circulating levels of the bone turnover marker PINP. Butyrate supplementation resulted in a lower abundance of monocyte/macrophages in the bone marrow, as well as reduced circulating proinflammatory IL-6 levels compared to antibiotic- and control-treated mice. In conclusion, this study supports our hypothesis that SCFAs, in particular butyrate, are important contributors to successful bone healing by modulating key cells involved in fracture healing as well as systemic inflammation and immune responses.
Collapse
|
30
|
Chinipardaz Z, Liu M, Graves D, Yang S. Diabetes impairs fracture healing through disruption of cilia formation in osteoblasts. Bone 2021; 153:116176. [PMID: 34508881 PMCID: PMC9160738 DOI: 10.1016/j.bone.2021.116176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Diabetes-associated fracture risk and impaired fracture healing represents a serious health threat. It is well known that type 1 diabetes mellitus (T1DM) impairs fracture healing due to its effect on osteoblasts and their progenitor cells. Previous studies have showed that primary cilia and intraflagellar transport protein 80 (IFT80) are critical for bone formation. However, whether TIDM impairs fracture healing due to influencing ciliary gene expression and cilia formation is unknown. Here, we investigated the effect of T1DM on primary cilia in a streptozotocin induced diabetes mouse model and examined the impact of cilia on fracture healing in osteoblasts by deletion of IFT80 in osteoblast linage using osterix (OSX)-cre (OSXcretTAIFT80f/f). The results showed that diabetes inhibited ciliary gene expression and primary cilia formation to an extent that was similar to normoglycemic mice with IFT80 deletion. Moreover, diabetic mice and normoglycemic mice with cilia loss in osteoblasts (OSXcretTAIFT80f/f) both exhibited delayed fracture healing with significantly reduced bone density and mechanical strength as well as with reduced expression of osteoblast markers, decreased angiogenesis and proliferation of bone lining cells at the fracture sites. In vitro studies showed that advanced glycation end products (AGEs) downregulated IFT80 expression in osteoblast progenitors. Moreover, AGEs and IFT80 deletion significantly reduced cilia number and length which inhibited differentiation of primary osteoblast precursors. Thus, this study for the first time report that primary cilia are essential for bone regeneration during fracture healing and loss of cilia caused by diabetes in osteoblasts resulted in defective diabetic fracture healing.
Collapse
Affiliation(s)
- Zahra Chinipardaz
- Department of Basic and Translation Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dana Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shuying Yang
- Department of Basic and Translation Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, PA 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
The effect of osteoporosis and its treatment on fracture healing a systematic review of animal and clinical studies. Bone Rep 2021; 15:101117. [PMID: 34458509 PMCID: PMC8379440 DOI: 10.1016/j.bonr.2021.101117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction Osteoporosis is characterised by low bone mass and micro-architectural deterioration of bone structure. Its treatment is directed at the processes of bone formation or resorption, that are of utmost importance in fracture healing. We provide a comprehensive review of the literature aiming to summarize and clarify the effects of osteoporosis and its treatment on fracture healing. Material and methods A literature search was conducted in PubMed and Embase (OVID version). In vivo animal and human studies on long bone fractures were included. A total of 93 articles were included for this review; 23 studies on the effect of osteoporosis (18 animal and 5 clinical studies) and 70 studies on the effect of osteoporosis treatment (41 animal, 26 clinical studies and 3 meta-analyses) on fracture healing. Results In animal fracture models osteoporosis was associated with decreased callus formation and bone growth, bone mineral density, biomechanical strength and delayed cellular and differentiation processes during fracture healing. Two large databases identified osteoporosis as a risk factor for non-union whereas three other studies did not. One of those three studies however found a prolonged healing time in patients with osteoporosis. Anti-osteoporosis medication showed inconsistent effects on fracture healing in both non-osteoporotic and osteoporotic animal models. Only the parathyroid hormone and anti-resorption medication were related to improved fracture healing and delayed remodelling respectively. Clinical studies performed in predominantly hip and distal radius fracture patients showed no effect of bisphosphonates on fracture healing. Parathyroid hormone reduced time to union in several clinical trials performed in mainly hip fracture patients, but this did not result in decreased delayed or non-union rates. Conclusion Evidence that substantiates the negative influence of osteoporosis on fracture healing is predominantly from animal studies and to a lesser extent from clinical studies, since convincing clinical evidence lacks. Bisphosphonates and parathyroid hormone may be used during fracture healing, since no clear negative effect has been shown. Parathyroid hormone might even decrease time to fracture union, without decreasing union rate. Osteoporosis negatively influences fracture healing in animal models. There is no convincing evidence for a similar effect in humans. In animals, bisphosphonates delay bone remodelling In animals, parathyroid hormone improves fracture healing In humans, anti-osteoporotic drugs do not interfere with fracture healing.
Collapse
|
32
|
Inoue S, Takito J, Nakamura M. Site-Specific Fracture Healing: Comparison between Diaphysis and Metaphysis in the Mouse Long Bone. Int J Mol Sci 2021; 22:ijms22179299. [PMID: 34502206 PMCID: PMC8430651 DOI: 10.3390/ijms22179299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
The process of fracture healing varies depending upon internal and external factors, such as the fracture site, mode of injury, and mechanical environment. This review focuses on site-specific fracture healing, particularly diaphyseal and metaphyseal healing in mouse long bones. Diaphyseal fractures heal by forming the periosteal and medullary callus, whereas metaphyseal fractures heal by forming the medullary callus. Bone healing in ovariectomized mice is accompanied by a decrease in the medullary callus formation both in the diaphysis and metaphysis. Administration of estrogen after fracture significantly recovers the decrease in diaphyseal healing but fails to recover the metaphyseal healing. Thus, the two bones show different osteogenic potentials after fracture in ovariectomized mice. This difference may be attributed to the heterogeneity of the skeletal stem cells (SSCs)/osteoblast progenitors of the two bones. The Hox genes that specify the patterning of the mammalian skeleton during embryogenesis are upregulated during the diaphyseal healing. Hox genes positively regulate the differentiation of osteoblasts from SSCs in vitro. During bone grafting, the SSCs in the donor’s bone express Hox with adaptability in the heterologous bone. These novel functions of the Hox genes are discussed herein with reference to the site-specificity of fracture healing.
Collapse
|
33
|
Fujioka-Kobayashi M, Marjanowski SD, Kono M, Hino S, Saulacic N, Schaller B. Osteoinductive potential of recombinant BMP-9 in bone defects of mice treated with antiresorptive agents. Int J Oral Maxillofac Surg 2021; 51:566-575. [PMID: 34454793 DOI: 10.1016/j.ijom.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/19/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to investigate the effects of recombinant human (rh)BMP-9 on bone regenerative potential in a mouse model of antibody-mediated antiresorptive therapy (AMART). A monoclonal anti-murine receptor activator of nuclear factor-kappa B ligand (RANKL) antibody (mAb) was used to create an AMART model in mice. rhBMP-9 combined with collagen membrane was implanted in calvarial defects in mAb-treated mice. After 4 weeks, the bone formative potential in the defects was evaluated by micro-computed tomography and histological approaches. The groups implanted with rhBMP-9-containing collagen membranes demonstrated substantial osteopromotive potential, with significantly greater new bone volume (Sham + BMP-9 group; 0.86 ± 0.29 mm3 and mAb + BMP-9 group; 0.64 ± 0.16 mm3) than control PBS-membranes (Sham + PBS group; 0.44 ± 0.29 mm3 and mAb + PBS group; 0.24 ± 0.12 mm3) in both sham and mAb-treated mice. In line with in vivo study, bone marrow cells isolated from both sham and mAb-treated mice confirmed greater osteogenic potential upon stimulation with rhBMP-9 in vitro. These findings suggest for the first time that local rhBMP-9 administration might be a strategy to accelerate bone regeneration in the context of AMART.
Collapse
Affiliation(s)
- M Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - S D Marjanowski
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M Kono
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - S Hino
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - N Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - B Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Qiao W, Xie H, Fang J, Shen J, Li W, Shen D, Wu J, Wu S, Liu X, Zheng Y, Cheung KMC, Yeung KWK. Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials 2021; 276:121038. [PMID: 34339925 DOI: 10.1016/j.biomaterials.2021.121038] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Macrophage has been gradually recognized as a central regulator in tissue regeneration, and the study of how macrophage mediates biomaterials-induced bone regeneration through immunomodulatory pathway becomes popular. However, the current understanding on the roles of different macrophage phenotypes in regulating bone tissue regeneration remains controversial. In this study, we demonstrate that sequential infiltration of heterogeneous phenotypes of macrophages triggered by bio-metal ions effectively facilitates bone healing in bone defect. Indeed, M1 macrophages promote the recruitment and early commitment of osteogenic and angiogenic progenitors, while M2 macrophages and osteoclasts support the deposition and mineralization of the bone matrix, as well as the maturation of blood vessels. Moreover, we have identified a group of bone biomaterial-related multinucleated cells that behave similarly to M2 macrophages with wound-healing features rather than participate in the bone resorption cascade similarly to osteoclasts. Our study shows how sequential activation of macrophage-osteoclast lineage contribute to a highly orchestrated immune response in the bone tissue microenvironment around biomaterials to regulate the complex biological process of bone healing. Therefore, we believe that the temporal activation pattern of heterogeneous macrophage phenotypes should be considered when the next generation of biomaterials for bone regeneration is engineered.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Huizhi Xie
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jinghan Fang
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jie Shen
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Wenting Li
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Danni Shen
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Shuilin Wu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China; Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, PR China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, PR China.
| |
Collapse
|
35
|
Overexpression of miR-125b in Osteoblasts Improves Age-Related Changes in Bone Mass and Quality through Suppression of Osteoclast Formation. Int J Mol Sci 2021; 22:ijms22136745. [PMID: 34201781 PMCID: PMC8267655 DOI: 10.3390/ijms22136745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
We recently reported an unexpected role of osteoblast-derived matrix vesicles in the delivery of microRNAs to bone matrix. Of such microRNAs, we found that miR-125b inhibited osteoclast formation by targeting Prdm1 encoding a transcriptional repressor of anti-osteoclastogenesis factors. Transgenic (Tg) mice overexpressing miR-125b in osteoblasts by using human osteocalcin promoter grow normally but exhibit high trabecular bone mass. We have now further investigated the effects of osteoblast-mediated miR-125b overexpression on skeletal morphogenesis and remodeling during development, aging and in a situation of skeletal repair, i.e., fracture healing. There were no significant differences in the growth plate, primary spongiosa or lateral (periosteal) bone formation and mineral apposition rate between Tg and wild-type (WT) mice during early bone development. However, osteoclast number and medial (endosteal) bone resorption were less in Tg compared to WT mice, concomitant with increased trabecular bone mass. Tg mice were less susceptible to age-dependent changes in bone mass, phosphate/amide I ratio and mechanical strength. In a femoral fracture model, callus formation progressed similarly in Tg and WT mice, but callus resorption was delayed, reflecting the decreased osteoclast numbers associated with the Tg callus. These results indicate that the decreased osteoclastogenesis mediated by miR-125b overexpression in osteoblasts leads to increased bone mass and strength, while preserving bone formation and quality. They also suggest that, in spite of the fact that single miRNAs may target multiple genes, the miR-125b axis may be an attractive therapeutic target for bone loss in various age groups.
Collapse
|
36
|
Jalan H, Perumal R, Prabhu S, Palanivelayutham S, Viswanathan VK, Rajasekaran S. Intravenous bisphosphonate therapy does not delay fracture healing in inter-trochanteric femur fractures - A randomised controlled study. J Clin Orthop Trauma 2021; 20:101472. [PMID: 34178598 PMCID: PMC8213889 DOI: 10.1016/j.jcot.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/22/2023] Open
Abstract
Hip fractures in elderly are commonly associated with osteoporosis and surgical outcome is influenced by its concurrent management. The purpose of our study is to determine the association between timing of bisphosphonate administration in inter-trochanteric (IT) fractures and fracture healing. Patients with IT fractures (aged≥50 years) and T-score ≤ -1.5 [WHO defines osteopenia as T-score between -1 and -2.5, and osteoporosis as T-score ≤ -2.5 on DEXA scan (which was obtained post-operatively in our cohort)], who underwent proximal femoral nailing were included. Patients were divided into three groups: group 1a-intravenous bisphosphonate {ivBP [zoledronic acid (ZA)]} given within one week, group 1b-ZA at six weeks and group 2-control group. Post-operative radiographs were assessed for reduction parameters [neck-shaft angle, tip-apex distance, reduction variance]. Radiological union was determined using RUSH score and functional outcome (at one year) with Modified Harris Hip Scores. 41 (23 males), 40 (15 males) and 42 (15 males) patients were included in groups 1a, 1b and 2, respectively (no statistical difference in sex distribution among the groups; p = 0.12). Mean age in groups 1a, 1b and 2 was 71.8 ± 8.1, 75.9 ± 8.5 and 72.3 ± 10.6 years (p = 0.09). There was no significant difference in the pattern of injuries (AO classification) among the groups (p = 0.72). Mean time to union in groups 1a, 1b and 2 was 13.7,13.7 and 14.2 weeks, respectively (p = 0.69). Mean time to union in AO types A1, A2 and A3 fractures was 13.2 ± 2.1, 13.7 ± 2.8 and 16.1 ± 4.9 weeks (p = 0.01). We did not observe any association between T-scores and fracture union (hip:p = 0.52, spine:p = 0.93).The functional outcome was similar among groups (p = 0.96). Early administration of ZA did not negatively influence fracture healing in patients undergoing fixation of IT fractures. Among the various other factors analyzed, there was a statistically significant association between the fracture type (AO type A3) and longer time to fracture union.
Collapse
|
37
|
Huang K, Sun YQ, Chen XF, Tian F, Cheng F, Gong QL, Liu KB. Psoralen, a natural phytoestrogen, improves diaphyseal fracture healing in ovariectomized mice: A preliminary study. Exp Ther Med 2021; 21:368. [PMID: 33732341 PMCID: PMC7903388 DOI: 10.3892/etm.2021.9799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Psoralen is an effective active component extracted from Psoraleacorylifolia, which can promote bone formation in osteoporotic animals. However, to the best of our knowledge, its effect on fracture healing has not yet been examined. In the present study, open femur fractures were created in ovariectomy (OVX)-induced osteoporotic mice. OVX mice were treated with psoralen (psoralen+OVX group) or physiological saline (OVX group) by oral gavage. Radiographic and histological results demonstrated progressed callus consolidation in the psoralen+OVX group compared with the OVX group after 10 and 21 days of treatment. Qualitative histological analysis showed that the number of osteoclasts was significantly reduced in the psoralen+OVX group after treatment. Moreover, reverse transcription-quantitative PCR analysis of callus samples showed increased expression of bone morphogenetic protein-2 (BMP-2) and osteoprotegerin (OPG), and decreased expression of receptor activator of nuclear factor-κB ligand (RANKL) at 10 and 21 days post injury in the psoralen+OVX group compared with the OVX group. Furthermore, western blot analysis showed that psoralen significantly increased the expression of estrogen receptor (ER)-α, but had no effect on ER-β expression; these results were further confirmed by immunohistochemistry. To conclude, these results indicated that psoralen may promote callus formation and inhibit osteoclast genesis by increasing BMP-2 and ER-α levels, and OPG/RANKL ratio. Consequently, psoralen could be a possible treatment for osteoporotic fracture-related complications.
Collapse
Affiliation(s)
- Kui Huang
- Department of Orthopedics, The First Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Ya-Qiong Sun
- Department of Imaging, The First Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiao-Feng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, Guangdong 511400, P.R. China
| | - Feng Tian
- Department of Orthopedics, The First Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Fan Cheng
- Department of Orthopedics, The First Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qian-Long Gong
- Department of Orthopedics, The First Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Ke-Bin Liu
- Department of Orthopedics, The First Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
38
|
Agarwala S, Vijayvargiya M. Repurposing denosumab for recalcitrant bone healing. BMJ Case Rep 2021; 14:14/2/e238460. [PMID: 33558382 PMCID: PMC7872917 DOI: 10.1136/bcr-2020-238460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fracture healing has four phases: haematoma formation, soft callus, hard callus and remodelling. Often, non-healing fractures have an arrest of one of these phases, which need resurgery. We have repurposed denosumab for impaired fracture healing cases to avoid surgical intervention. Here, we report a series of three cases of impaired fracture healing where denosumab was given 120 mg subcutaneous dosages for 3 months to enhance healing. All the three cases have shown complete bone union at a mean follow-up of 6.7 months (5-9 months) as assessed clinically and radiologically, and have observed no adverse effect of the therapy. Denosumab given in this dose aids fracture healing by increasing callus volume, density and bridges the fracture gap in recalcitrant fracture healing cases where the callus fails to consolidate.
Collapse
Affiliation(s)
- Sanjay Agarwala
- Orthopedics, PD Hinduja National Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - Mayank Vijayvargiya
- Orthopedics, PD Hinduja National Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
39
|
Yahara Y, Ma X, Gracia L, Alman BA. Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair. Front Cell Dev Biol 2021; 9:622035. [PMID: 33614650 PMCID: PMC7889961 DOI: 10.3389/fcell.2021.622035] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
A third of the population sustains a bone fracture, and the pace of fracture healing slows with age. The slower pace of repair is responsible for the increased morbidity in older individuals who sustain a fracture. Bone healing progresses through overlapping phases, initiated by cells of the monocyte/macrophage lineage. The repair process ends with remodeling. This last phase is controlled by osteoclasts, which are bone-specific multinucleated cells also of the monocyte/macrophage lineage. The slower rate of healing in aging can be rejuvenated by macrophages from young animals, and secreted proteins from macrophage regulate undifferentiated mesenchymal cells to become bone-forming osteoblasts. Macrophages can derive from fetal erythromyeloid progenitors or from adult hematopoietic progenitors. Recent studies show that fetal erythromyeloid progenitors are responsible for the osteoclasts that form the space in bone for hematopoiesis and the fetal osteoclast precursors reside in the spleen postnatally, traveling through the blood to participate in fracture repair. Differences in secreted proteins between macrophages from old and young animals regulate the efficiency of osteoblast differentiation from undifferentiated mesenchymal precursor cells. Interestingly, during the remodeling phase osteoclasts can form from the fusion between monocyte/macrophage lineage cells from the fetal and postnatal precursor populations. Data from single cell RNA sequencing identifies specific markers for populations derived from the different precursor populations, a finding that can be used in future studies. Here, we review the diversity of macrophages and osteoclasts, and discuss recent finding about their developmental origin and functions, which provides novel insights into their roles in bone homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Xinyi Ma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Liam Gracia
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
40
|
Abstract
The most common procedure that has been developed for use in rats and mice to model fracture healing is described. The nature of the regenerative processes that may be assessed and the types of research questions that may be addressed with this model are briefly outlined. The detailed surgical protocol to generate closed simple transverse fractures is presented and general considerations when setting up an experiment using this model are described.
Collapse
|
41
|
Barton DW, Smith CT, Piple AS, Moskal SA, Carmouche JJ. Timing of Bisphosphonate Initiation After Fracture: What Does the Data Really Say? Geriatr Orthop Surg Rehabil 2020; 11:2151459320980369. [PMID: 35186417 PMCID: PMC8848044 DOI: 10.1177/2151459320980369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction: Osteoporosis is often not clinically recognized until after a fracture occurs. Individuals who have 1 fracture are at increased risk of future fractures. Prompt initiation of osteoporosis treatment following fracture is critical to reducing the rate of future fractures. Antiresorptives are the most widely used class of medications for the prevention and treatment of osteoporosis. Many providers are hesitant to initiate antiresorptives in the acute post-fracture period. Concerns include interference with bone remodeling necessary for successful fracture healing, which would cause increased rates of non-union, malunion, and refracture. While such concerns should not extend to anabolic medications, physicians may also hesitate to initiate anabolic osteoporosis therapies due to high cost and/or lack of familiarity. This article aims to briefly review the available data and present a digestible narrative summary to familiarize practicing orthopaedic surgeons with the essential details of the published research on this topic. Results: The results of 20 clinical studies and key pre-clinical studies related to the effect of anti-resorptive medications for osteoporosis on fracture healing are summarized in the body of this narrative review. Discussion & Conclusions: While few level I studies have examined the impact of timing of initiation of osteoporosis medications in the acute post-fracture period, the few that have been published do not support these concerns. Specifically, data from level I clinical trials indicate that initiating bisphosphonates as early as 2 weeks post-fracture does not increase rates of non-union or malunion. By reviewing the available data, we hope to give clinicians the confidence to initiate osteoporosis treatment promptly post-fracture.
Collapse
Affiliation(s)
- David W. Barton
- University of Florida College of Medicine, Jacksonville, FL, USA
| | | | - Amit S. Piple
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | | - Jonathan J. Carmouche
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- Department of Orthopaedic Surgery, Carilion Clinic, Roanoke, VA, USA
| |
Collapse
|
42
|
He L, Zhang Z, Xiao E, He Y, Zhang Y. Pathogenesis of traumatic temporomandibular joint ankylosis: a narrative review. J Int Med Res 2020; 48:300060520972073. [PMID: 33213251 PMCID: PMC7686630 DOI: 10.1177/0300060520972073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To comprehensively review the literature and summarize the results from human and animal studies related to the possible causes and pathogenesis of traumatic temporomandibular joint ankylosis (TMJA). MATERIALS AND METHODS The Google Scholar, Embase, and Web of Science databases were used to search for articles related to traumatic TMJA from 2011 to 2020. All articles were screened according to the inclusion and exclusion criteria, collected, and analyzed. RESULTS Nineteen relevant articles were collected. These articles were classified into three groups: predisposing and etiological factors, cellular studies, and molecular studies. CONCLUSION The pathological mechanisms are similar between TMJA and nonunion hypertrophy. Aberrant structural and etiological factors as well as disordered cellular and molecular mechanisms might contribute to TMJA formation. Although preclinical and clinical data have provided new evidence on the pathogenesis of traumatic TMJA, the molecular mechanisms and biological events require further exploration.
Collapse
Affiliation(s)
- Linhai He
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhiyong Zhang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - E Xiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.,Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
43
|
Etani Y, Ebina K, Hirao M, Kitaguchi K, Kashii M, Ishimoto T, Nakano T, Okamura G, Miyama A, Takami K, Goshima A, Kanamoto T, Nakata K, Yoshikawa H. Combined effect of teriparatide and an anti-RANKL monoclonal antibody on bone defect regeneration in mice with glucocorticoid-induced osteoporosis. Bone 2020; 139:115525. [PMID: 32645445 DOI: 10.1016/j.bone.2020.115525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The purpose of this study was to examine the effect of single or combination therapy of teriparatide (TPTD) and a monoclonal antibody against the murine receptor activator of nuclear factor κB ligand (anti-RANKL Ab) on cancellous and cortical bone regeneration in a mouse model of glucocorticoid-induced osteoporosis (GIOP). METHODS C57BL/6 J mice (24 weeks of age) were divided into five groups: (1) the SHAM group: sham operation + saline; (2) the prednisolone (PSL) group: PSL + saline; (3) the TPTD group: PSL + TPTD; (4) the Ab group: PSL + anti-RANKL Ab; and (5) the COMB group: PSL + TPTD + anti-RANKL Ab (n = 8 per group). With the exception of the SHAM group, 7.5 mg of PSL was inserted subcutaneously into mice, to generate a mouse model of GIOP. Four weeks after insertion, bone defects with a diameter of 0.9 mm were created to assess bone regeneration on both femoral metaphysis (cancellous bone) and diaphysis (cortical bone). After surgery, therapeutic intervention was continued for 4 weeks. Saline (200 μl) or TPTD (40 μg/kg) was injected subcutaneously five times per week, whereas the anti-RANKL Ab (5 mg/kg) was injected subcutaneously once on the day after surgery. Subsequently, the following analyses were performed: microstructural assessment of bone regeneration and bone mineral density (BMD) measurement via micro-computed tomography, and histological, histomorphometrical, and biomechanical analyses with nanoindentation. RESULTS The COMB group showed the highest lumbar spine BMD increase (vs. the PSL, TPTD, and Ab groups). The volume of regenerated cancellous bone at the bone defect site was higher in the COMB group compared with the PSL, TPTD, and Ab group. The volume of the regenerated cortical bone was significantly higher in the COMB group compared with the PSL group, and its hardness was significantly higher in the COMB group compared with the PSL and TPTD groups. CONCLUSION In a mouse model of glucocorticoid-induced osteoporosis, the combination therapy of TPTD plus the anti-RANKL Ab increased bone mineral density in the lumbar spine and regenerated cancellous bone volume compared with single administration of each agent, and also increased regenerated cortical bone strength compared with single administration of TPTD.
Collapse
Affiliation(s)
- Yuki Etani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Makoto Hirao
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuma Kitaguchi
- Department of Orthopaedic Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibaharacho, Toyonaka, Osaka 560-8565, Japan
| | - Masafumi Kashii
- Department of Orthopaedic Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibaharacho, Toyonaka, Osaka 560-8565, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Gensuke Okamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akira Miyama
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kenji Takami
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Atsushi Goshima
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Kanamoto
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibaharacho, Toyonaka, Osaka 560-8565, Japan
| |
Collapse
|
44
|
Hellwinkel JE, Miclau T, Provencher MT, Bahney CS, Working ZM. The Life of a Fracture: Biologic Progression, Healing Gone Awry, and Evaluation of Union. JBJS Rev 2020; 8:e1900221. [PMID: 32796195 PMCID: PMC11147169 DOI: 10.2106/jbjs.rvw.19.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New knowledge about the molecular biology of fracture-healing provides opportunities for intervention and reduction of risk for specific phases that are affected by disease and medications. Modifiable and nonmodifiable risk factors can prolong healing, and the informed clinician should optimize each patient to provide the best chance for union. Techniques to monitor progression of fracture-healing have not changed substantially over time; new objective modalities are needed.
Collapse
Affiliation(s)
- Justin E Hellwinkel
- Department of Orthopedic Surgery, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Theodore Miclau
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Matthew T Provencher
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Chelsea S Bahney
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Zachary M Working
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
- Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
45
|
Xiao D, Zhou Q, Bai Y, Cao B, Zhang Q, Zeng G, Zong S. Deficiency of PDK1 in osteoclasts delays fracture healing and repair. Mol Med Rep 2020; 22:1536-1546. [PMID: 32626968 PMCID: PMC7339621 DOI: 10.3892/mmr.2020.11209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Bone fractures are common traumatic injuries of the musculoskeletal system. However, delayed union and non‑union fractures are a major clinical problem that present significant socioeconomic burden to patients and the public health sector. The bone‑resorbing osteoclasts and bone‑forming osteoblasts serve important roles in the fracture repair/healing process. Osteoclast deficiency or decreased osteoblast activity negatively impacts fracture healing. We previously demonstrated that the specific deletion of the serine/threonine kinase 3‑phosphoinositide‑dependent protein kinase 1 (PDK1) in osteoclasts leads to abrogated osteoclast formation and bone resorption in response to receptor activator of nuclear factor‑κB in vitro and protected mice against ovariectomized‑induced bone loss and lipopolysaccharide‑induced osteolysis in vivo. Given the importance of osteoclasts in fracture repair, we hypothesized that the specific loss of PDK1 in osteoclasts will alter the fracture healing process. Mice of tibial fracture were constructed, and tibial specimens were sampled at 7‑, 14‑, 21‑ and 28‑days post‑fracture to observe the effect of PDK1 gene regulated osteoclasts on fracture healing process by X‑ray radiography, microcomputed tomography scanning, histomorphological staining and biomechanical testing. The present study revealed, using the tibial fracture model, that the specific deletion of the PDK1 gene in osteoclasts impeded the fracture healing process by delaying the resorption of the cartilaginous callus and subsequent remodeling of immature woven bone to structurally and mechanically ensure lamellar bone is stronger. No effect on osteoblast bone formation and osteogenesis was observed, thus indicating that delayed fracture healing is primarily due to defective osteoclast activity. These results provide important clinical implications for the use of anti‑resorptive agents, such as bisphosphonates, for the treatment of osteolytic conditions. Such anti‑resorptive therapies may detrimentally delay fracture healing and repair.
Collapse
Affiliation(s)
- Dongliang Xiao
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Quan Zhou
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Emergency, The Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157001, P.R. China
| | - Yiguang Bai
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Baichuan Cao
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiong Zhang
- College of Public Hygiene, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gaofeng Zeng
- College of Public Hygiene, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
46
|
Strauss FJ, Stähli A, Kobatake R, Tangl S, Heimel P, Apaza Alccayhuaman KA, Schosserer M, Hackl M, Grillari J, Gruber R. miRNA-21 deficiency impairs alveolar socket healing in mice. J Periodontol 2020; 91:1664-1672. [PMID: 32396233 PMCID: PMC7818433 DOI: 10.1002/jper.19-0567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNAs demonstrated as critical post-transcriptional modulators in dental tissues and bone regeneration, particularly miR-21-5p. However, the role of miR-21-5p in the healing of alveolar sockets following tooth extraction remains unknown. In this study we evaluated the influence of miR-21-5p in the healing of alveolar socket after tooth extraction. METHODS Eight miR-21-5p knockout mice and eight littermate controls underwent tooth extraction of the upper right incisor. After a healing period of 14 days microCT and histological analyses were performed. RESULTS MicroCT analysis showed that the percentage of bone in the extraction socket was significantly higher in the control group than in the miR-21 knockout mice; either in the coronal (39.0%, CI 31.8 to 48.0 versus 23.0%, CI 17.8 to 35.2, P = 0.03) or in the middle part of the alveolar socket (56.0%, CI 50.9 to 62.5 versus 43.5% CI 28.6 to 54.6, P = 0.03). These differences were not noted in the apical part of the extraction socket. Histological analysis supported the microCT findings. Newly bone volume per tissue volume (BV/TV) was significantly higher in the control group when compared to miR-21 knockout mice, 27.4% (CI 20.6 to 32.9) versus 19.0% (CI 14.7 to 21.5, P < 0.05), respectively. Surprisingly, no evident signs of buccal bone resorption were observed in both groups. CONCLUSION Despite the limitation of one observation period, these findings suggest that miR-21-5p delays the early healing of alveolar socket following tooth extraction. Whether miR-21-5p is essential for healing of alveolar sockets remains to be elucidated.
Collapse
Affiliation(s)
- Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Vienna, Vienna, Austria.,Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile.,Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reiko Kobatake
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Hiroshima, Japan
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, School of Dentistry, Medical University of Vienna, Wein, Wein, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, School of Dentistry, Medical University of Vienna, Wein, Wein, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | | | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Youngstrom DW, Zondervan RL, Doucet NR, Acevedo PK, Sexton HE, Gardner EA, Anderson JS, Kushwaha P, Little HC, Rodriguez S, Riddle RC, Kalajzic I, Wong GW, Hankenson KD. CTRP3 Regulates Endochondral Ossification and Bone Remodeling During Fracture Healing. J Orthop Res 2020; 38:996-1006. [PMID: 31808575 PMCID: PMC7162724 DOI: 10.1002/jor.24553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/24/2019] [Indexed: 02/04/2023]
Abstract
C1q/TNF-related protein 3 (CTRP3) is a cytokine known to regulate a variety of metabolic processes. Though previously undescribed in the context of bone regeneration, high throughput gene expression experiments in mice identified CTRP3 as one of the most highly upregulated genes in fracture callus tissue. Hypothesizing a positive regulatory role for CTRP3 in bone regeneration, we phenotyped skeletal development and fracture healing in CTRP3 knockout (KO) and CTRP3 overexpressing transgenic (TG) mice relative to wild-type (WT) control animals. CTRP3 KO mice experienced delayed endochondral fracture healing, resulting in abnormal mineral distribution, the presence of periosteal marrow compartments, and a nonunion-like state. Decreased osteoclast number was also observed in CTRP3 KO mice, whereas CTRP3 TG mice underwent accelerated callus remodeling. Gene expression profiling revealed a broad impact on osteoblast/osteoclast lineage commitment and metabolism, including arrested progression toward mature skeletal lineages in the KO group. A single systemic injection of CTRP3 protein at the time of fracture was insufficient to phenocopy the chronic TG healing response in WT mice. By associating CTRP3 levels with fracture healing progression, these data identify a novel protein family with potential therapeutic and diagnostic value. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:00-19966, 2020.
Collapse
Affiliation(s)
- Daniel W. Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA;,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA;,Correspondence should be addressed to Dr. Daniel W. Youngstrom:
| | - Robert L. Zondervan
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA;,Department of Physiology, Michigan State University College of Osteopathic Medicine, East Lansing, Michigan, USA
| | - Nicole R. Doucet
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Parker K. Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hannah E. Sexton
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily A. Gardner
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - JonCarlos S. Anderson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah C. Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Paglia DN, Diaz-Hernandez ME, Roberts JL, Kalinowski J, Lorenzo J, Drissi H. Deletion of Runx1 in osteoclasts impairs murine fracture healing through progressive woven bone loss and delayed cartilage remodeling. J Orthop Res 2020; 38:1007-1015. [PMID: 31769548 DOI: 10.1002/jor.24537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 02/04/2023]
Abstract
Conditional deletion of the transcription factor Runt-related transcription factor 1 (Runx1) in myeloid osteoclast precursors promotes osteoclastogenesis and subsequent bone loss. This study posits whether Runx1 regulates clastic cell-mediated bone and cartilage resorption in the fracture callus. We first generated mice, in which Runx1 was conditionally abrogated in osteoclast precursors (LysM-Cre;Runx1F/F ; Runx1 cKO). Runx1 cKO and control mice were then subjected to experimental mid-diaphyseal femoral fractures. Our study found differential resorption of bony and calcified cartilage callus matrix by osteoclasts and chondroclasts within Runx1 cKO calluses, with increased early bony callus resorption and delayed calcified cartilage resorption. There was an increased number of osteoclasts and chondroclasts in the chondro-osseous junction of Runx1 cKO calluses starting at day 11 post-fracture, with minimal woven bone occupying the callus at day 18 post-fracture. LysM-Cre;Runx1F/F mutant mice had increased bone compliance at day 28, but their strength and work to failure were comparable with controls. Taken together, these results indicate that Runx1 is a critical transcription factor in controlling osteoclastogenesis that negatively regulates bone and cartilage resorption in the fracture callus. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1007-1015, 2020.
Collapse
Affiliation(s)
- David N Paglia
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | - Joseph L Roberts
- Department of Orthopaedics, School of Medicine, Emory University, Atlanta, Georgia
| | - Judy Kalinowski
- Department of Medicine and Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
| | - Joseph Lorenzo
- Department of Medicine and Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut
| | - Hicham Drissi
- Department of Orthopaedics, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
49
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
50
|
Shin YH, Shin WC, Kim JW. Effect of Osteoporosis Medication on Fracture Healing: An Evidence Based Review. J Bone Metab 2020; 27:15-26. [PMID: 32190605 PMCID: PMC7064359 DOI: 10.11005/jbm.2020.27.1.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
A systematic search was conducted and relevant studies that evaluated the influence of osteoporosis medications (bisphosphonates [BPs], denosumab, selective estrogen receptor modulators [SERMs], recombinant human parathyroid hormone teriparatide [TPTD], and strontium ranelate [SrR]) on wrist, hip, and spine fracture healing, were selected. BPs administration did not influence fracture healing and clinical outcomes after distal radius fracture (DRF). Similar results were observed in hip fracture, but evidence is lacking for spine fracture. Denosumab did not delay the non-vertebral fractures healing in one well-designed study. No studies evaluated the effect of SERMs on fracture healing in humans. One study reported shorter fracture healing times in TPTD treated DRF patients, which was not clinically meaningful. In hip fracture, recent studies reported better pain and functional outcomes in TPTD treated patients. However, in spine fracture, recent studies found no significant differences in fracture stability between TPTD treated patients and controls. Evidence is lacking for SrR, but it did not influence wrist fracture healing in one study. In comparisons between TPTD and BPs, fracture healing and physical scores were not significantly different in hip fracture by 1 study. In spine fracture, controversy exists for the role of each medication to the fracture stability, but several studies reported that fracture site pain was better in TPTD treated patients than BPs treated patients. Considering no clinical data of negative fracture healing of the antiresorptive medication and the danger of subsequent fracture after initial osteoporotic fracture, there is no evidence to delay initiation of osteoporosis medications after fracture.
Collapse
Affiliation(s)
- Young Ho Shin
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Chul Shin
- Department of Orthopedic Surgery, Pusan National University Yangsan Hospital, Pusan National University College of Medicine, Yangsan, Korea
| | - Ji Wan Kim
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|