1
|
De Leonibus C, Maddaluno M, Ferriero R, Besio R, Cinque L, Lim PJ, Palma A, De Cegli R, Gagliotta S, Montefusco S, Iavazzo M, Rohrbach M, Giunta C, Polishchuk E, Medina DL, Di Bernardo D, Forlino A, Piccolo P, Settembre C. Sestrin2 drives ER-phagy in response to protein misfolding. Dev Cell 2024; 59:2035-2052.e10. [PMID: 39094564 PMCID: PMC11338521 DOI: 10.1016/j.devcel.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1's phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.
Collapse
Affiliation(s)
- Chiara De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Health Sciences, University of Basilicata, Potenza, Italy
| | - Marianna Maddaluno
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Rosa Ferriero
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Roberta Besio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Cinque
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Pei Jin Lim
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Alessandro Palma
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Maria Iavazzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Cecilia Giunta
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Diego Louis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Diego Di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Chemical, Materials and Industrial Production Engineering, University of Naples "Federico II", Naples, Italy
| | | | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| |
Collapse
|
2
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024:10.1007/s00223-024-01266-5. [PMID: 39127989 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Creecy A, Segvich D, Metzger C, Kohler R, Wallace JM. Combining anabolic loading and raloxifene improves bone quantity and some quality measures in a mouse model of osteogenesis imperfecta. Bone 2024; 184:117106. [PMID: 38641232 PMCID: PMC11130993 DOI: 10.1016/j.bone.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Osteogenesis imperfecta (OI) increases fracture risk due to changes in bone quantity and quality caused by mutations in collagen and its processing proteins. Current therapeutics improve bone quantity, but do not treat the underlying quality deficiencies. Male and female G610C+/- mice, a murine model of OI, were treated with a combination of raloxifene and in vivo axial tibial compressive loading starting at 10 weeks of age and continuing for 6 weeks to improve bone quantity and quality. Bone geometry and mechanical properties were measured to determine whole bone and tissue-level material properties. A colocalized Raman/nanoindentation system was used to measure chemical composition and nanomechanical properties in newly formed bone compared to old bone to determine if bone formed during the treatment regimen differed in quality compared to bone formed prior to treatment. Lastly, lacunar geometry and osteocyte apoptosis were assessed. OI mice were able to build bone in response to the loading, but this response was less robust than in control mice. Raloxifene improved some bone material properties in female but not male OI mice. Raloxifene did not alter nanomechanical properties, but loading did. Lacunar geometry was largely unchanged with raloxifene and loading. However, osteocyte apoptosis was increased with loading in raloxifene treated female mice. Overall, combination treatment with raloxifene and loading resulted in positive but subtle changes to bone quality.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America.
| | - Dyann Segvich
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America
| | - Corinne Metzger
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America
| |
Collapse
|
4
|
Crawford TK, Lafaver BN, Phillips CL. Extra-Skeletal Manifestations in Osteogenesis Imperfecta Mouse Models. Calcif Tissue Int 2024:10.1007/s00223-024-01213-4. [PMID: 38641703 DOI: 10.1007/s00223-024-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder of skeletal fragility with an incidence of roughly 1:15,000. Approximately 85% of the pathogenic variants responsible for OI are in the type I collagen genes, COL1A1 and COL1A2, with the remaining pathogenic OI variants spanning at least 20 additional genetic loci that often involve type I collagen post-translational modification, folding, and intracellular transport as well as matrix incorporation and mineralization. In addition to being the most abundant collagen in the body, type I collagen is an important structural and extracellular matrix signaling molecule in multiple organ systems and tissues. Thus, OI disease-causing variants result not only in skeletal fragility, decreased bone mineral density (BMD), kyphoscoliosis, and short stature, but can also result in hearing loss, dentinogenesis imperfecta, blue gray sclera, cardiopulmonary abnormalities, and muscle weakness. The extensive genetic and clinical heterogeneity in OI has necessitated the generation of multiple mouse models, the growing awareness of non-skeletal organ and tissue involvement, and OI being more broadly recognized as a type I collagenopathy.This has driven the investigation of mutation-specific skeletal and extra-skeletal manifestations and broadened the search of potential mechanistic therapeutic strategies. The purpose of this review is to outline several of the extra-skeletal manifestations that have recently been characterized through the use of genetically and phenotypically heterogeneous mouse models of osteogenesis imperfecta, demonstrating the significant potential impact of OI disease-causing variants as a collagenopathy (affecting multiple organ systems and tissues), and its implications to overall health.
Collapse
Affiliation(s)
- Tara K Crawford
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Brittany N Lafaver
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Charlotte L Phillips
- Departments of Biochemistry and Child Health, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Makareeva E, Sousa M, Kent T, de Castro LF, Collins MT, Leikin S. RNA-based bone histomorphometry: method and its application to explaining postpubertal bone gain in a G610C mouse model of osteogenesis imperfecta. J Bone Miner Res 2024; 39:177-189. [PMID: 38477760 PMCID: PMC11207954 DOI: 10.1093/jbmr/zjad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 03/14/2024]
Abstract
Bone histomorphometry is a well-established approach to assessing skeletal pathology, providing a standard evaluation of the cellular components, architecture, mineralization, and growth of bone tissue. However, it depends in part on the subjective interpretation of cellular morphology by an expert, which introduces bias. In addition, diseases like osteogenesis imperfecta (OI) and fibrous dysplasia are accompanied by changes in the morphology and function of skeletal tissue and cells, hindering consistent evaluation of some morphometric parameters and interpretation of the results. For instance, traditional histomorphometry combined with collagen turnover markers suggested that reduced bone formation in classical OI is accompanied by increased bone resorption. In contrast, the well-documented postpubertal reduction in fractures would be easier to explain by reduced bone resorption after puberty, highlighting the need for less ambiguous measurements. Here we propose an approach to histomorphometry based on in situ mRNA hybridization, which uses Col1a1 as osteoblast and Ctsk as osteoclast markers. This approach can be fully automated and eliminates subjective identification of bone surface cells. We validate these markers based on the expression of Bglap, Ibsp, and Acp5. Comparison with traditional histological and tartrate-resistant acid phosphatase staining of the same sections suggests that mRNA-based analysis is more reliable. Unlike inconclusive traditional histomorphometry of mice with α2(I)-Gly610 to Cys substitution in the collagen triple helix, mRNA-based measurements reveal reduced osteoclastogenesis in 11-wk-old animals consistent with the postpubertal catch-up osteogenesis observed by microCT. We optimize the technique for cryosections of mineralized bone and sections of paraffin-embedded decalcified tissue, simplifying and broadening its applications. We illustrate the application of the mRNA-based approach to human samples using the example of a McCune-Albright syndrome patient. By eliminating confounding effects of altered cellular morphology and the need for subjective morphological evaluation, this approach may provide a more reproducible and accessible evaluation of bone pathology.
Collapse
Affiliation(s)
- Elena Makareeva
- Eunice Kennedy Shriver National institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Megan Sousa
- Eunice Kennedy Shriver National institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tristan Kent
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Luis F de Castro
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Michael T Collins
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sergey Leikin
- Eunice Kennedy Shriver National institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
6
|
Kohler R, Creecy A, Williams DR, Allen MR, Wallace JM. Effects of novel raloxifene analogs alone or in combination with mechanical loading in the Col1a2 G610c/+ murine model of osteogenesis imperfecta. Bone 2024; 179:116970. [PMID: 37977416 PMCID: PMC10843597 DOI: 10.1016/j.bone.2023.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Osteogenesis imperfecta (OI) is a hereditary bone disease in which gene mutations affect collagen formation, leading to a weak, brittle bone phenotype that can cause severe skeletal deformity and increased fracture risk. OI interventions typically repurpose osteoporosis medications to increase bone mass, but this approach does not address compromised tissue-level material properties. Raloxifene (RAL) is a mild anti-resorptive used to treat osteoporosis that has also been shown to increase bone strength by a-cellularly increasing bone bound water content, but RAL cannot be administered to children due to its hormonal activity. The goal of this study was to test a RAL analog with no estrogen receptor (ER) signaling but maintained ability to reduce fracture risk. The best performing analog from a previous analog characterization project, named RAL-ADM, was tested in an in vivo study. Female wildtype (WT) and Col1a2G610C/+ (G610C) mice were randomly assigned to treated or untreated groups, for a total of 4 groups (n = 15). Starting at 10 weeks of age, all mice underwent compressive tibial loading 3×/week to induce an anabolic bone formation response in conjunction with RAL-ADM treatment (0.5 mg/kg; 5×/week) for 6 weeks. Tibiae were scanned via microcomputed tomography then tested to failure in four-point bending. RAL-ADM had reduced ER affinity, and increased post-yield properties, but did not improve bone strength in OI animals, suggesting some properties can be improved by RAL analogs but further development is needed to create an analog with decidedly positive impacts to OI bone.
Collapse
Affiliation(s)
- Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - David R Williams
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Matthew R Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States.
| |
Collapse
|
7
|
Sung HH, Spresser WJ, Hoffmann JP, Dai Z, Van der Kraan PM, Caird MS, Davidson EB, Kozloff KM. Collagen mutation and age contribute to differential craniofacial phenotypes in mouse models of osteogenesis imperfecta. JBMR Plus 2024; 8:ziad004. [PMID: 38690127 PMCID: PMC11059998 DOI: 10.1093/jbmrpl/ziad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 05/02/2024] Open
Abstract
Craniofacial and dentoalveolar abnormalities are present in all types of osteogenesis imperfecta (OI). Mouse models of the disorder are critical to understand these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder. The Brtl/+ and G610c/+ are moderately severe and mild-type IV OI, respectively. Little is known about the aging effects on the craniofacial bones of these models and their homology to human OI. This study aimed to analyze the Brtl/+ and G610c/+ craniofacial morphometries during aging to establish suitability for further OI craniofacial bone intervention studies. We performed morphological measurements on the micro-CT-scanned heads of 3-wk-old, 3-mo-old, and 6-mo-old female Brtl/+ and G610c/+ mice. We observed that Brtl/+ skulls are shorter in length than WT (P < .05), whereas G610c/+ skulls are similar in length to their WT counterparts. The Brtl/+ mice exhibit alveolar bone with a porotic-like appearance that is not observed in G610c/+. As they age, Brtl/+ mice show severe bone resorption in both the maxilla and mandible (P < .05). By contrast, G610c/+ mice experience mandibular resorption consistently across all ages, but maxillary resorption is only evident at 6 mo (P < .05). Western blot shows high osteoclastic activities in the Brtl/+ maxilla. Both models exhibit delayed pre-functional eruptions of the third molars (P < .05), which are similar to those observed in some bisphosphonate-treated OI subjects. Our study shows that the Brtl/+ and G610c/+ mice display clear features found in type IV OI patients; both show age-related changes in the craniofacial growth phenotype. Therefore, understanding the craniofacial features of these models and how they age will allow us to select the most accurate mouse model, mouse age, and bone structure for the specific craniofacial bone treatment of differing OI groups.
Collapse
Affiliation(s)
- Hsiao H Sung
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Wyatt J Spresser
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Joseph P Hoffmann
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Peter M Van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Esmeralda Blaney Davidson
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, The Netherlands, 6525 GA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
8
|
O'Donohue AK, Dao A, Bobyn JD, Munns CF, Little DG, Schindeler A. Modeling anabolic and antiresorptive therapies for fracture healing in a mouse model of osteogenesis imperfecta. J Orthop Res 2023; 41:808-814. [PMID: 35803595 DOI: 10.1002/jor.25414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetic bone fragility disorder that features frequent fractures. Bone healing outcomes are contingent on a proper balance between bone formation and resorption, and drugs such as bone morphogenetic proteins (BMPs) and bisphosphonates (BPs) have shown to have utility in modulating fracture repair. While BPs are used for OI to increase BMD and reduce pain and fracture rates, there is little evidence for using BMPs as local agents for fracture healing (alone or with BPs). In this study, we examined wild-type and OI mice (Col1a2+/G610C ) in a murine tibial open fracture model with (i) surgery only/no treatment, (ii) local BMP-2 (10 µg), or (iii) local BMP-2 and postoperative zoledronic acid (ZA; 0.1 mg/kg total dose). Microcomputed tomography reconstructions of healing fractures indicated BMP-2 was less effective in an OI setting, however, BMP-2 +ZA led to considerable increases in bone volume (+193% WT, p < 0.001; +154% OI, p < 0.001) and polar moment of inertia (+125% WT, p < 0.01; +248% OI, p < 0.05). Tissue histology revealed a thinning of the neocortex of the callus in BMP-2 treated OI bone, but considerable retention of woven bone in the healing callus with BMP + ZA specimens. These data suggest a cautious approach may be warranted with the sole application of BMP-2 in an OI surgical setting as a bone graft substitute. However, this may be overcome by off-label BP administration.
Collapse
Affiliation(s)
- Alexandra K O'Donohue
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Aiken Dao
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Justin D Bobyn
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Craig F Munns
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Child Health Research Centre and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - David G Little
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Aaron Schindeler
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
10
|
Dimori M, Fett J, Leikin S, Otsuru S, Thostenson JD, Carroll JL, Morello R. Distinct type I collagen alterations cause intrinsic lung and respiratory defects of variable severity in mouse models of osteogenesis imperfecta. J Physiol 2023; 601:355-379. [PMID: 36285717 PMCID: PMC9840670 DOI: 10.1113/jp283452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/05/2022] [Indexed: 01/18/2023] Open
Abstract
Type I collagen alterations cause osteogenesis imperfecta (OI), a connective tissue disorder characterized by severe bone fragility. Patients with OI can suffer from significant pulmonary manifestations including severe respiratory distress in the neonatal period and a progressive decline in respiratory function in adulthood. We and others have shown intrinsic lung defects in some mouse models of OI. In this large study, we performed histological, histomorphometric, microcomputed tomography and invasive studies on oim/+, Col1a2+/G610C , CrtapKO and oim/oim mice, mimicking mild to moderate to severe OI, with the overall goal of determining the extent of their pulmonary and respiratory mechanics defects and whether these defects correlate with the skeletal disease severity and affect each sex equally. Although with variable severity, OI lung histology consistently showed alveolar simplification with enlarged acinar airspace and reduced alveolar surface. Numerous respiratory mechanics parameters, including respiratory system resistance and elastance, tissue damping, inspiratory capacity, total lung capacity, and others, were significantly and similarly impacted in CrtapKO and oim/oim but not in oim/+ or Col1a2+/G610C compared to control mice. Our data indicate that the impact of type I collagen alterations and OI on lung morphology and function positively correlate with the severity of the extracellular matrix deficiency. Moreover, the respiratory defects were more pronounced in male compared to female mice. It will be important to determine whether our observations in mice translate to OI patients and to dissect the respective contribution of intrinsic lung defects vs. extrinsic skeletal defects to impaired lung function in OI. KEY POINTS: Different type I collagen alterations in mouse models of osteogenesis imperfecta (OI) cause similar abnormal lung histology, with alveolar simplification and reduced alveolar surface, reminiscent of emphysema. Several respiratory mechanics parameters are altered in mouse models of OI. The impact of type I collagen alterations and OI on lung morphology and function positively correlate with the severity of the extracellular matrix deficiency. Respiratory defects were more pronounced in male compared to female mice. It will be important to determine whether our observations in mice translate to OI patients and to dissect the respective contribution of intrinsic lung defects vs. extrinsic skeletal defects to impaired lung function in OI.
Collapse
Affiliation(s)
- Milena Dimori
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jordan Fett
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
| | - Jeff D. Thostenson
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - John L. Carroll
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
11
|
Alcorta-Sevillano N, Infante A, Macías I, Rodríguez CI. Murine Animal Models in Osteogenesis Imperfecta: The Quest for Improving the Quality of Life. Int J Mol Sci 2022; 24:ijms24010184. [PMID: 36613624 PMCID: PMC9820162 DOI: 10.3390/ijms24010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.
Collapse
Affiliation(s)
- Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
12
|
Romanowicz GE, Terhune AH, Bielajew BJ, Sexton B, Lynch M, Mandair GS, McNerny EM, Kohn DH. Collagen cross-link profiles and mineral are different between the mandible and femur with site specific response to perturbed collagen. Bone Rep 2022; 17:101629. [PMID: 36325166 PMCID: PMC9618783 DOI: 10.1016/j.bonr.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.
Collapse
Key Words
- AGE, advanced glycation end product
- Advanced glycation end products
- BAPN, beta-aminoproprionitrile
- Biomechanical properties
- Bone quality
- CML, carboxymethyl-lysine
- Collagen cross-link
- DHLNL, dihydroxylysinonorleucine
- DPD, lysylpyridinoline
- Femur
- HLKNL, hydroxylysinoketonorleucine
- HLNL, hydroxylysinonorleucine
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- LC-MS, liquid chromatography/mass spectrometry
- LH, lysyl hydroxylase
- LKNL, lysinoketonorleucine
- LOX, lysyl oxidase
- Mandible
- Mineralization
- PEN, pentosidine
- PMMA, poly-methyl-methacrylate
- PYD, hydroxylysylpyridinoline
- Pyr, pyrroles
Collapse
Affiliation(s)
- Genevieve E. Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Aidan H. Terhune
- Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin J. Bielajew
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin Sexton
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Gurjit S. Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M.B. McNerny
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - David H. Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| |
Collapse
|
13
|
Kwon J, Cho H. Collagen piezoelectricity in osteogenesis imperfecta and its role in intrafibrillar mineralization. Commun Biol 2022; 5:1229. [DOI: 10.1038/s42003-022-04204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractIntrafibrillar mineralization plays a critical role in attaining desired mechanical properties of bone. It is well known that amorphous calcium phosphate (ACP) infiltrates into the collagen through the gap regions, but its underlying driving force is not understood. Based on the authors’ previous observations that a collagen fibril has higher piezoelectricity at gap regions, it was hypothesized that the piezoelectric heterogeneity of collagen helps ACP infiltration through the gap. To further examine this hypothesis, the collagen piezoelectricity of osteogenesis imperfecta (OI), known as brittle bone disease, is characterized by employing Piezoresponse Force Microscopy (PFM). The OI collagen reveals similar piezoelectricity between gap and overlap regions, implying that losing piezoelectric heterogeneity in OI collagen results in abnormal intrafibrillar mineralization and, accordingly, losing the benefit of mechanical heterogeneity from the fibrillar level. This finding suggests a perspective to explain the ACP infiltration, highlighting the physiological role of collagen piezoelectricity in intrafibrillar mineralization.
Collapse
|
14
|
Lv F, Cai X, Ji L. An Update on Animal Models of Osteogenesis Imperfecta. Calcif Tissue Int 2022; 111:345-366. [PMID: 35767009 DOI: 10.1007/s00223-022-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous disorder characterized by bone fragility, multiple fractures, bone deformity, and short stature. In recent years, the application of next generation sequencing has triggered the discovery of many new genetic causes for OI. Until now, more than 25 genetic causes of OI and closely related disorders have been identified. However, the mechanisms of many genes on skeletal fragility in OI are not entirely clear. Animal models of OI could help to understand the cellular, signaling, and metabolic mechanisms contributing to the disease, and how targeting these pathways can provide therapeutic targets. To date, a lot of animal models, mainly mice and zebrafish, have been described with defects in 19 OI-associated genes. In this review, we summarize the known genetic causes and animal models that recapitulate OI with a main focus on engineered mouse and zebrafish models. Additionally, we briefly discuss domestic animals with naturally occurring OI phenotypes. Knowledge of the specific molecular basis of OI will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| |
Collapse
|
15
|
Gorrell L, Makareeva E, Omari S, Otsuru S, Leikin S. ER, Mitochondria, and ISR Regulation by mt-HSP70 and ATF5 upon Procollagen Misfolding in Osteoblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201273. [PMID: 35988140 PMCID: PMC9561870 DOI: 10.1002/advs.202201273] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Cellular response to protein misfolding underlies multiple diseases. Collagens are the most abundant vertebrate proteins, yet little is known about cellular response to misfolding of their procollagen precursors. Osteoblasts (OBs)-the cells that make bone-produce so much procollagen that it accounts for up to 40% of mRNAs in the cell, which is why bone bears the brunt of mutations causing procollagen misfolding in osteogenesis imperfecta (OI). The present study of a G610C mouse model of OI by multiple transcriptomic techniques provides first solid clues to how OBs respond to misfolded procollagen accumulation in the endoplasmic reticulum (ER) and how this response affects OB function. Surprisingly, misfolded procollagen escapes the quality control in the ER lumen and indirectly triggers the integrated stress response (ISR) through other cell compartments. In G610C OBs, the ISR is regulated by mitochondrial HSP70 (mt-HSP70) and ATF5 instead of their BIP and ATF4 paralogues, which normally activate and regulate ISR to secretory protein misfolding in the ER. The involvement of mt-HSP70 and ATF5 together with other transcriptomic findings suggest that mitochondria might initiate the ISR upon disruption of ER-mitochondria connections or might respond to the ISR activated by a yet unknown sensor.
Collapse
Affiliation(s)
- Laura Gorrell
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)National Institutes of Health (NIH)BethesdaMD20892USA
- Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyNY12180USA
| | | | - Shakib Omari
- NICHDNIHBethesdaMD20892USA
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCA92037USA
| | - Satoru Otsuru
- Department of OrthopaedicsUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | | |
Collapse
|
16
|
Gremminger VL, Omosule CL, Crawford TK, Cunningham R, Rector RS, Phillips CL. Skeletal muscle mitochondrial function and whole-body metabolic energetics in the +/G610C mouse model of osteogenesis imperfecta. Mol Genet Metab 2022; 136:315-323. [PMID: 35725939 DOI: 10.1016/j.ymgme.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) is rare heritable connective tissue disorder that most often arises from mutations in the type I collagen genes, COL1A1 and COL1A2, displaying a range of symptoms including skeletal fragility, short stature, blue-gray sclera, and muscle weakness. Recent investigations into the intrinsic muscle weakness have demonstrated reduced contractile generating force in some murine models consistent with patient population studies, as well as alterations in whole body bioenergetics. Muscle weakness is found in approximately 80% of patients and has been equivocal in OI mouse models. Understanding the mechanism responsible for OI muscle weakness is crucial in building our knowledge of muscle bone cross-talk via mechanotransduction and biochemical signaling, and for potential novel therapeutic approaches. In this study we evaluated skeletal muscle mitochondrial function and whole-body bioenergetics in the heterozygous +/G610C (Amish) mouse modeling mild/moderate human type I/VI OI and minimal skeletal muscle weakness. Our analyses revealed several changes in the +/G610C mouse relative to their wildtype littermates including reduced state 3 mitochondrial respiration, increased mitochondrial citrate synthase activity, increased Parkin and p62 protein content, and an increased respiratory quotient. These changes may represent the ability of the +/G610C mouse to compensate for mitochondrial and metabolic changes that may arise due to type I collagen mutations and may also account for the lack of muscle weakness observed in the +/G610C model relative to the more severe OI models.
Collapse
Affiliation(s)
- Victoria L Gremminger
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America
| | - Catherine L Omosule
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America
| | - Tara K Crawford
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America
| | - Rory Cunningham
- Departments of Nutrition and Exercise Physiology and Medicine-GI, University of Missouri, Research Service-Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States of America
| | - R Scott Rector
- Departments of Nutrition and Exercise Physiology and Medicine-GI, University of Missouri, Research Service-Harry S Truman Memorial VA Hospital, Columbia, MO 65201, United States of America
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; Department of Child Health, University of Missouri, Columbia, MO 65212, United States of America.
| |
Collapse
|
17
|
Blank M, McGregor NE, Rowley L, Kung LHW, Crimeen-Irwin B, Poulton IJ, Walker EC, Gooi JH, Lamandé SR, Sims NA, Bateman JF. The effect of carbamazepine on bone structure and strength in control and osteogenesis imperfecta (Col1a2 +/p.G610C ) mice. J Cell Mol Med 2022; 26:4021-4031. [PMID: 35701367 PMCID: PMC9279589 DOI: 10.1111/jcmm.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
The inherited brittle bone disease osteogenesis imperfecta (OI) is commonly caused by COL1A1 and COL1A2 mutations that disrupt the collagen I triple helix. This causes intracellular endoplasmic reticulum (ER) retention of the misfolded collagen and can result in a pathological ER stress response. A therapeutic approach to reduce this toxic mutant load could be to stimulate mutant collagen degradation by manipulating autophagy and/or ER‐associated degradation. Since carbamazepine (CBZ) both stimulates autophagy of misfolded collagen X and improves skeletal pathology in a metaphyseal chondrodysplasia model, we tested the effect of CBZ on bone structure and strength in 3‐week‐old male OI Col1a2+/p.G610C and control mice. Treatment for 3 or 6 weeks with CBZ, at the dose effective in metaphyseal chondrodysplasia, provided no therapeutic benefit to Col1a2+/p.G610C mouse bone structure, strength or composition, measured by micro‐computed tomography, three point bending tests and Fourier‐transform infrared microspectroscopy. In control mice, however, CBZ treatment for 6 weeks impaired femur growth and led to lower femoral cortical and trabecular bone mass. These data, showing the negative impact of CBZ treatment on the developing mouse bones, raise important issues which must be considered in any human clinical applications of CBZ in growing individuals.
Collapse
Affiliation(s)
- Martha Blank
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Narelle E McGregor
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Lynn Rowley
- Musculoskeletal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Louise H W Kung
- Musculoskeletal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Blessing Crimeen-Irwin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Ingrid J Poulton
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Emma C Walker
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Jonathan H Gooi
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotecβhnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - John F Bateman
- Musculoskeletal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Lee LR, Holman AE, Li X, Vasiljevski ER, O'Donohue AK, Cheng TL, Little DG, Schindeler A, Biggin A, Munns CF. Combination treatment with growth hormone and zoledronic acid in a mouse model of Osteogenesis imperfecta. Bone 2022; 159:116378. [PMID: 35257929 DOI: 10.1016/j.bone.2022.116378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) or brittle bone disease is a genetic disorder that results in bone fragility. Bisphosphonates such as zoledronic acid (ZA) are used clinically to increase bone mass and reduce fracture risk. Human growth hormone (hGH) has been used to promote long bone growth and forestall short stature in children with OI. The potential for hGH to improve bone quality, particularly in combination with ZA has not been robustly studied. METHODS A preclinical study was performed using n = 80 mice split evenly by genotype (WT, Col1a2+/G610C). Groups of n = 10 were treated with +/-ZA and +/-hGH in a factorial design for each genotype. Outcome measures included bone length, isolated muscle mass, bone parameters assessed by microCT analysis, dynamic histomorphometry, and biomechanical testing. RESULTS Treatment with hGH alone led to an increase in femur length in WT but not OI mice, however bone length was increased in both genotypes with the combination of hGH/ZA. MicroCT showed that hGH/ZA treatment increased cortical BV in both WT (+15%) and OI mice (+14.3%); hGH/ZA were also found to be synergistic in promoting cortical thickness in OI bone. ZA was found to have a considerably greater positive impact on trabecular bone than hGH. ZA was found to suppress bone turnover, and this was rescued by hGH treatment in terms of cortical periosteal perimeter, but not by dynamic bone remodeling. Statistically significant improvements in long bone by microCT did not translate into improvements in mechanical strength in a 4-point bending test, nor did vertebral strength improve in L4 compression testing in WT/OI bone. DISCUSSION/CONCLUSION These data support hGH/ZA combination as a treatment for short stature, however the improvements granted by hGH alone and in combination with ZA on bone quality are modest. Increased periosteal perimeter does show promise in improving bone strength in OI, however a longer treatment time may be required to see effects on bone strength through mechanical testing.
Collapse
Affiliation(s)
- Lucinda R Lee
- Bioengineering and Molecular Medicine Laboratory, The Children's Hospital at Westmead, Westmead, NSW, Australia; The University of Sydney, Faculty of Medicine and Health, The University of Sydney Children's Hospital Westmead Clinical School, Sydney, NSW, Australia
| | - Aimee E Holman
- Bioengineering and Molecular Medicine Laboratory, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Xiaoying Li
- Bioengineering and Molecular Medicine Laboratory, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Emily R Vasiljevski
- Bioengineering and Molecular Medicine Laboratory, The Children's Hospital at Westmead, Westmead, NSW, Australia; The University of Sydney, Faculty of Medicine and Health, The University of Sydney Children's Hospital Westmead Clinical School, Sydney, NSW, Australia
| | - Alexandra K O'Donohue
- Bioengineering and Molecular Medicine Laboratory, The Children's Hospital at Westmead, Westmead, NSW, Australia; The University of Sydney, Faculty of Medicine and Health, The University of Sydney Children's Hospital Westmead Clinical School, Sydney, NSW, Australia
| | - Tegan L Cheng
- EPIC Lab, The Children's Hospital at Westmead, Westmead, NSW, Australia; School of Health Sciences, Faculty of Medicine and Health & Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - David G Little
- Bioengineering and Molecular Medicine Laboratory, The Children's Hospital at Westmead, Westmead, NSW, Australia; The University of Sydney, Faculty of Medicine and Health, The University of Sydney Children's Hospital Westmead Clinical School, Sydney, NSW, Australia
| | - Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratory, The Children's Hospital at Westmead, Westmead, NSW, Australia; The University of Sydney, Faculty of Medicine and Health, The University of Sydney Children's Hospital Westmead Clinical School, Sydney, NSW, Australia.
| | - Andrew Biggin
- The University of Sydney, Faculty of Medicine and Health, The University of Sydney Children's Hospital Westmead Clinical School, Sydney, NSW, Australia
| | - Craig F Munns
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Omosule CL, Joseph D, Weiler B, Gremminger VL, Silvey S, Jeong Y, Rafique A, Krueger P, Kleiner S, Phillips CL. Combinatorial Inhibition of Myostatin and Activin A Improves Femoral Bone Properties in the G610C Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:938-953. [PMID: 35195284 PMCID: PMC10041862 DOI: 10.1002/jbmr.4529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 01/28/2023]
Abstract
Osteogenesis imperfecta (OI) is a collagen-related bone disorder characterized by fragile osteopenic bone and muscle weakness. We have previously shown that the soluble activin receptor type IIB decoy (sActRIIB) molecule increases muscle mass and improves bone strength in the mild to moderate G610C mouse model of OI. The sActRIIB molecule binds multiple transforming growth factor-β (TGF-β) ligands, including myostatin and activin A. Here, we investigate the musculoskeletal effects of inhibiting activin A alone, myostatin alone, or both myostatin and activin A in wild-type (Wt) and heterozygous G610C (+/G610C) mice using specific monoclonal antibodies. Male and female Wt and +/G610C mice were treated twice weekly with intraperitoneal injections of monoclonal control antibody (Ctrl-Ab, Regn1945), anti-activin A antibody (ActA-Ab, Regn2476), anti-myostatin antibody (Mstn-Ab, Regn647), or both ActA-Ab and Mstn-Ab (Combo, Regn2476, and Regn647) from 5 to 16 weeks of age. Prior to euthanasia, whole body composition, metabolism and muscle force generation assessments were performed. Post euthanasia, hindlimb muscles were evaluated for mass, and femurs were evaluated for changes in microarchitecture and biomechanical strength using micro-computed tomography (μCT) and three-point bend analyses. ActA-Ab treatment minimally impacted the +/G610C musculoskeleton, and was detrimental to bone strength in male +/G610C mice. Mstn-Ab treatment, as previously reported, resulted in substantial increases in hindlimb muscle weights and overall body weights in Wt and male +/G610C mice, but had minimal skeletal impact in +/G610C mice. Conversely, the Combo treatment outperformed ActA-Ab alone or Mstn-Ab alone, consistently increasing hindlimb muscle and body weights regardless of sex or genotype and improving bone microarchitecture and strength in both male and female +/G610C and Wt mice. Combinatorial inhibition of activin A and myostatin more potently increased muscle mass and bone microarchitecture and strength than either antibody alone, recapturing most of the observed benefits of sActRIIB treatment in +/G610C mice. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Dominique Joseph
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Brooke Weiler
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | - Spencer Silvey
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | | | | | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
20
|
Garibaldi N, Besio R, Dalgleish R, Villani S, Barnes AM, Marini JC, Forlino A. Dissecting the phenotypic variability of osteogenesis imperfecta. Dis Model Mech 2022; 15:275408. [PMID: 35575034 PMCID: PMC9150118 DOI: 10.1242/dmm.049398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous family of collagen type I-related diseases characterized by bone fragility. OI is most commonly caused by single-nucleotide substitutions that replace glycine residues or exon splicing defects in the COL1A1 and COL1A2 genes that encode the α1(I) and α2(I) collagen chains. Mutant collagen is partially retained intracellularly, impairing cell homeostasis. Upon secretion, it assembles in disorganized fibrils, altering mineralization. OI is characterized by a wide range of clinical outcomes, even in the presence of identical sequence variants. Given the heterotrimeric nature of collagen I, its amino acid composition and the peculiarity of its folding, several causes may underlie the phenotypic variability of OI. A deep analysis of entries regarding glycine and splice site collagen substitution of the largest publicly available patient database reveals a higher risk of lethal phenotype for carriers of variants in α1(I) than in α2(I) chain. However, splice site variants are predominantly associated with lethal phenotype when they occur in COL1A2. In addition, lethality is increased when mutations occur in regions of importance for extracellular matrix interactions. Both extracellular and intracellular determinants of OI clinical severity are discussed in light of the findings from in vitro and in vivo OI models. Combined with meticulous tracking of clinical cases via a publicly available database, the available OI animal models have proven to be a unique tool to shed light on new modulators of phenotype determination for this rare heterogeneous disease.
Collapse
Affiliation(s)
- Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Raymond Dalgleish
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100 Pavia, Italy
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, 20892 Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, 20892 Bethesda, MD, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
21
|
Schindeler A, Lee LR, O'Donohue AK, Ginn SL, Munns CF. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:826-836. [PMID: 35306687 PMCID: PMC9324990 DOI: 10.1002/jbmr.4549] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) describes a series of genetic bone fragility disorders that can have a substantive impact on patient quality of life. The multidisciplinary approach to management of children and adults with OI primarily involves the administration of antiresorptive medication, allied health (physiotherapy and occupational therapy), and orthopedic surgery. However, advances in gene editing technology and gene therapy vectors bring with them the promise of gene-targeted interventions to provide an enduring or perhaps permanent cure for OI. This review describes emergent technologies for cell- and gene-targeted therapies, major hurdles to their implementation, and the prospects of their future success with a focus on bone disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Lucinda R Lee
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Alexandra K O'Donohue
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadAustralia
| | - Craig F Munns
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Department of Endocrinology and DiabetesQueensland Children's HospitalBrisbaneQLDAustralia
- Child Health Research Centre and Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
22
|
An Amish founder population reveals rare-population genetic determinants of the human lipidome. Commun Biol 2022; 5:334. [PMID: 35393526 PMCID: PMC8989972 DOI: 10.1038/s42003-022-03291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Identifying the genetic determinants of inter-individual variation in lipid species (lipidome) may provide deeper understanding and additional insight into the mechanistic effect of complex lipidomic pathways in CVD risk and progression beyond simple traditional lipids. Previous studies have been largely population based and thus only powered to discover associations with common genetic variants. Founder populations represent a powerful resource to accelerate discovery of previously unknown biology associated with rare population alleles that have risen to higher frequency due to genetic drift. We performed a genome-wide association scan of 355 lipid species in 650 individuals from the Amish founder population including 127 lipid species not previously tested. To the best of our knowledge, we report for the first time the lipid species associated with two rare-population but Amish-enriched lipid variants: APOB_rs5742904 and APOC3_rs76353203. We also identified novel associations for 3 rare-population Amish-enriched loci with several sphingolipids and with proposed potential functional/causal variant in each locus including GLTPD2_rs536055318, CERS5_rs771033566, and AKNA_rs531892793. We replicated 7 previously known common loci including novel associations with two sterols: androstenediol with UGT locus and estriol with SLC22A8/A24 locus. Our results show the double power of founder populations and detailed lipidome to discover novel trait-associated variants. A GWAS of 355 lipid species in the Old Order Amish founder population reveals associations between Amish-enriched loci and several sphingolipids.
Collapse
|
23
|
Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr Rev 2022; 43:61-90. [PMID: 34007986 PMCID: PMC8755987 DOI: 10.1210/endrev/bnab017] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteogenesis imperfecta (OI) is a phenotypically and genetically heterogeneous skeletal dysplasia characterized by bone fragility, growth deficiency, and skeletal deformity. Previously known to be caused by defects in type I collagen, the major protein of extracellular matrix, it is now also understood to be a collagen-related disorder caused by defects in collagen folding, posttranslational modification and processing, bone mineralization, and osteoblast differentiation, with inheritance of OI types spanning autosomal dominant and recessive as well as X-linked recessive. This review provides the latest updates on OI, encompassing both classical OI and rare forms, their mechanism, and the signaling pathways involved in their pathophysiology. There is a special emphasis on mutations in type I procollagen C-propeptide structure and processing, the later causing OI with strikingly high bone mass. Types V and VI OI, while notably different, are shown to be interrelated by the interferon-induced transmembrane protein 5 p.S40L mutation that reveals the connection between the bone-restricted interferon-induced transmembrane protein-like protein and pigment epithelium-derived factor pathways. The function of regulated intramembrane proteolysis has been extended beyond cholesterol metabolism to bone formation by defects in regulated membrane proteolysis components site-2 protease and old astrocyte specifically induced-substance. Several recently proposed candidate genes for new types of OI are also presented. Discoveries of new OI genes add complexity to already-challenging OI management; current and potential approaches are summarized.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Scheiber AL, Wilkinson KJ, Suzuki A, Enomoto-Iwamoto M, Kaito T, Cheah KS, Iwamoto M, Leikin S, Otsuru S. 4PBA reduces growth deficiency in osteogenesis imperfecta by enhancing transition of hypertrophic chondrocytes to osteoblasts. JCI Insight 2022; 7:149636. [PMID: 34990412 PMCID: PMC8855815 DOI: 10.1172/jci.insight.149636] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Short stature is a major skeletal phenotype in osteogenesis imperfecta (OI), a genetic disorder mainly caused by mutations in genes encoding type I collagen. However, the underlying mechanism is poorly understood, and no effective treatment is available. In OI mice that carry a G610C mutation in COL1A2, we previously found that mature hypertrophic chondrocytes (HCs) are exposed to cell stress due to accumulation of misfolded mutant type I procollagen in the endoplasmic reticulum (ER). By fate mapping analysis of HCs in G610C OI mice, we found that HCs stagnate in the growth plate, inhibiting translocation of HC descendants to the trabecular area and their differentiation to osteoblasts. Treatment with 4-phenylbutyric acid (4PBA), a chemical chaperone, restored HC ER structure and rescued this inhibition, resulting in enhanced longitudinal bone growth in G610C OI mice. Interestingly, the effects of 4PBA on ER dilation were limited in osteoblasts, and the bone fragility was not ameliorated. These results highlight the importance of targeting HCs to treat growth deficiency in OI. Our findings demonstrate that HC dysfunction induced by ER disruption plays a critical role in the pathogenesis of OI growth deficiency, which lays the foundation for developing new therapies for OI.
Collapse
Affiliation(s)
- Amanda L Scheiber
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Kevin J Wilkinson
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Akiko Suzuki
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Kathryn Se Cheah
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health & Human Developme, Bethesda, United States of America
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| |
Collapse
|
25
|
Chen Y, Yang S, Lovisa S, Ambrose CG, McAndrews KM, Sugimoto H, Kalluri R. Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta. Nat Commun 2021; 12:7199. [PMID: 34893625 PMCID: PMC8664945 DOI: 10.1038/s41467-021-27563-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Type I collagen (Col1) is the most abundant protein in mammals. Col1 contributes to 90% of the total organic component of bone matrix. However, the precise cellular origin and functional contribution of Col1 in embryogenesis and bone formation remain unknown. Single-cell RNA-sequencing analysis identifies Fap+ cells and Fsp1+ cells as the major contributors of Col1 in the bone. We generate transgenic mouse models to genetically delete Col1 in various cell lineages. Complete, whole-body Col1 deletion leads to failed gastrulation and early embryonic lethality. Specific Col1 deletion in Fap+ cells causes severe skeletal defects, with hemorrhage, edema, and prenatal lethality. Specific Col1 deletion in Fsp1+ cells results in Osteogenesis Imperfecta-like phenotypes in adult mice, with spontaneous fractures and compromised bone healing. This study demonstrates specific contributions of mesenchymal cell lineages to Col1 production in organogenesis, skeletal development, and bone formation/repair, with potential insights into cell-based therapy for patients with Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Yang Chen
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Sujuan Yang
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Sara Lovisa
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Catherine G. Ambrose
- grid.267308.80000 0000 9206 2401Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Kathleen M. McAndrews
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Hikaru Sugimoto
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Montasser ME, Van Hout CV, Miloscio L, Howard AD, Rosenberg A, Callaway M, Shen B, Li N, Locke AE, Verweij N, De T, Ferreira MA, Lotta LA, Baras A, Daly TJ, Hartford SA, Lin W, Mao Y, Ye B, White D, Gong G, Perry JA, Ryan KA, Fang Q, Tzoneva G, Pefanis E, Hunt C, Tang Y, Lee L, Sztalryd-Woodle C, Mitchell BD, Healy M, Streeten EA, Taylor SI, O'Connell JR, Economides AN, Della Gatta G, Shuldiner AR. Genetic and functional evidence links a missense variant in B4GALT1 to lower LDL and fibrinogen. Science 2021; 374:1221-1227. [PMID: 34855475 DOI: 10.1126/science.abe0348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- May E Montasser
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cristopher V Van Hout
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA.,Laboratorio Internacional de Investigatión sobre el Genoma Humano, Campus Juriquilla de la Universidad Nacional Autónoma de México, Querétaro, Querétaro 76230, México
| | | | - Alicia D Howard
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | | | - Biao Shen
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Ning Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Adam E Locke
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Niek Verweij
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Tanima De
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | | | - Luca A Lotta
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Aris Baras
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Thomas J Daly
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Wei Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yuan Mao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Bin Ye
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | - Derek White
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Guochun Gong
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - James A Perry
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathleen A Ryan
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Qing Fang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Gannie Tzoneva
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA
| | | | - Charleen Hunt
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yajun Tang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Lynn Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Carole Sztalryd-Woodle
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,US Department of Veterans Affairs, Washington, DC 20420 USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Geriatrics Research and Education Clinical Center, VA Medical Center, Baltimore, MD 21201, USA
| | | | - Elizabeth A Streeten
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Division of Genetics, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Simeon I Taylor
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aris N Economides
- Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA.,Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | |
Collapse
|
27
|
Gorrell L, Omari S, Makareeva E, Leikin S. Noncanonical ER-Golgi trafficking and autophagy of endogenous procollagen in osteoblasts. Cell Mol Life Sci 2021; 78:8283-8300. [PMID: 34779895 DOI: 10.1007/s00018-021-04017-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023]
Abstract
Secretion and quality control of large extracellular matrix proteins remain poorly understood and debated, particularly transport intermediates delivering folded proteins from the ER to Golgi and misfolded ones to lysosomes. Discrepancies between different studies are related to utilization of exogenous cargo, off-target effects of experimental conditions and cell manipulation, and identification of transport intermediates without tracing their origin and destination. To address these issues, here we imaged secretory and degradative trafficking of type I procollagen in live MC3T3 osteoblasts by replacing a region encoding N-propeptide in endogenous Col1a2 gDNA with GFP cDNA. We selected clones that produced the resulting fluorescent procollagen yet had normal expression of key osteoblast and ER/cell stress genes, normal procollagen folding, and normal deposition and mineralization of extracellular matrix. Live-cell imaging of these clones revealed ARF1-dependent transport intermediates, which had no COPII coat and delivered procollagen from ER exit sites (ERESs) to Golgi without stopping at ER-Golgi intermediate compartment (ERGIC). It also confirmed ERES microautophagy, i.e., lysosomes engulfing ERESs containing misfolded procollagen. Beyond validating these trafficking models for endogenous procollagen, we uncovered a probable cause of noncanonical cell stress response to procollagen misfolding. Recognized and retained only at ERESs, misfolded procollagen does not directly activate the canonical UPR, yet it disrupts the ER lumen by blocking normal secretory export from the ER.
Collapse
Affiliation(s)
- Laura Gorrell
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA.,Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Shakib Omari
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Elena Makareeva
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sergey Leikin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Puffenberger EG. Mendelian disease research in the Plain populations of Lancaster County, Pennsylvania. Am J Med Genet A 2021; 185:3322-3333. [PMID: 34532947 DOI: 10.1002/ajmg.a.62489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/07/2022]
Abstract
Founder populations have long contributed to our knowledge of rare disease genes and phenotypes. From the pioneering work of Dr. Victor McKusick to today, research in these groups has shed light on rare recessive phenotypes, expanded the clinical spectrum of disease, and facilitated disease gene identification. Current clinical and research studies in these special groups augment the wealth of knowledge already gained, provide new insights into emerging problems such as variant interpretation and reduced penetrance, and contribute to the development of novel therapies for rare genetic diseases. Clinical developments over the past 30 years have altered the fundamental relationship with the Lancaster Plain communities: research has become more collaborative, and the knowledge imparted by these studies is now being harnessed to provide cutting-edge translational medicine to the very community of vulnerable individuals who need it most.
Collapse
|
29
|
Greene B, Russo RJ, Dwyer S, Malley K, Roberts E, Serrielo J, Piepenhagen P, Cummings S, Ryan S, Zarazinski C, Uppuganti S, Bukanov N, Nyman JS, Cox MK, Liu S, Ibraghimov-Beskrovnaya O, Sabbagh Y. Inhibition of TGF-β Increases Bone Volume and Strength in a Mouse Model of Osteogenesis Imperfecta. JBMR Plus 2021; 5:e10530. [PMID: 34532615 PMCID: PMC8441395 DOI: 10.1002/jbm4.10530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022] Open
Abstract
Osteogenesis imperfecta (OI), is a genetic disorder of bone fragility caused by mutations in collagen I or proteins involved in collagen processing. Previous studies in mice and human OI bones have shown that excessive activation of TGF-β signaling plays an important role in dominant and recessive OI disease progression. Inhibition of TGF-β signaling with a murine pan-specific TGF-β neutralizing antibody (1D11) was shown to significantly increase trabecular bone volume and long bone strength in mouse models of OI. To investigate the frequency of dosing and dose options of TGF-β neutralizing antibody therapy, we assessed the effect of 1D11 on disease progression in a dominant OI mouse model (col1a2 gene mutation at G610C). In comparison with OI mice treated with a control antibody, we attempted to define mechanistic effects of 1D11 measured via μCT, biomechanical, dynamic histomorphometry, and serum biomarkers of bone turnover. In addition, osteoblast and osteoclast numbers in histological bone sections were assessed to better understand the mechanism of action of the 1D11 antibody in OI. Here we show that 1D11 treatment resulted in both dose and frequency dependency, increases in trabecular bone volume fraction and ultimate force in lumbar bone, and ultimate force, bending strength, yield force, and yield strength in the femur (p ≤ 0.05). Suppression of serum biomarkers of osteoblast differentiation, osteocalcin, resorption, CTx-1, and bone formation were observed after 1D11 treatment of OI mice. Immunohistochemical analysis showed dose and frequency dependent decreases in runt-related transcription factor, and increase in alkaline phosphatase in lumbar bone sections. In addition, a significant decrease in TRACP and the number of osteoclasts to bone surface area was observed with 1D11 treatment. Our results show that inhibition of the TGF-β pathway corrects the high-turnover aspects of bone disease and improves biomechanical properties of OI mice. These results highlight the potential for a novel treatment for osteogenesis imperfecta. © 2021 Sanofi-Genzyme. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benjamin Greene
- Rare and Neurologic Diseases Research Sanofi Framingham MA USA
| | - Ryan J Russo
- Rare and Neurologic Diseases Research Sanofi Framingham MA USA
| | - Shannon Dwyer
- Rare and Neurologic Diseases Research Sanofi Framingham MA USA
| | - Katie Malley
- Global Discovery Pathology Sanofi Framingham MA USA
| | | | - Joseph Serrielo
- Rare and Neurologic Diseases Research Sanofi Framingham MA USA
| | | | | | - Susan Ryan
- Global Discovery Pathology Sanofi Framingham MA USA
| | | | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery Vanderbilt University Medical Center Nashville TN USA.,Center for Bone Biology Vanderbilt University Medical Center Nashville TN USA
| | - Nikolai Bukanov
- Rare and Neurologic Diseases Research Sanofi Framingham MA USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery Vanderbilt University Medical Center Nashville TN USA.,Center for Bone Biology Vanderbilt University Medical Center Nashville TN USA
| | - Megan K Cox
- Rare and Neurologic Diseases Research Sanofi Framingham MA USA
| | - Shiguang Liu
- Rare and Neurologic Diseases Research Sanofi Framingham MA USA
| | | | - Yves Sabbagh
- Rare and Neurologic Diseases Research Sanofi Framingham MA USA.,Inozyme Pharma Boston MA USA
| |
Collapse
|
30
|
Kohler R, Tastad CA, Creecy A, Wallace JM. Morphological and mechanical characterization of bone phenotypes in the Amish G610C murine model of osteogenesis imperfecta. PLoS One 2021; 16:e0255315. [PMID: 34449800 PMCID: PMC8396767 DOI: 10.1371/journal.pone.0255315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary bone disease where gene mutations affect Type I collagen formation resulting in osteopenia and increased fracture risk. There are several established mouse models of OI, but some are severe and result in spontaneous fractures or early animal death. The Amish Col1a2G610C/+ (G610C) mouse model is a newer, moderate OI model that is currently being used in a variety of intervention studies, with differing background strains, sexes, ages, and bone endpoints. This study is a comprehensive mechanical and architectural characterization of bone in G610C mice bred on a C57BL/6 inbred strain and will provide a baseline for future treatment studies. Male and female wild-type (WT) and G610C mice were euthanized at 10 and 16 weeks (n = 13-16). Harvested tibiae, femora, and L4 vertebrae were scanned via micro-computed tomography and analyzed for cortical and trabecular architectural properties. Femora and tibiae were then mechanically tested to failure. G610C mice had less bone but more highly mineralized cortical and trabecular tissue than their sex- and age-matched WT counterparts, with cortical cross-sectional area, thickness, and mineral density, and trabecular bone volume, mineral density, spacing, and number all differing significantly as a function of genotype (2 Way ANOVA with main effects of sex and genotype at each age). In addition, mechanical yield force, ultimate force, displacement, strain, and toughness were all significantly lower in G610C vs. WT, highlighting a brittle phenotype. This characterization demonstrates that despite being a moderate OI model, the Amish G610C mouse model maintains a distinctly brittle phenotype and is well-suited for use in future intervention studies.
Collapse
Affiliation(s)
- Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Carli A. Tastad
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
31
|
Gremminger VL, Phillips CL. Impact of Intrinsic Muscle Weakness on Muscle-Bone Crosstalk in Osteogenesis Imperfecta. Int J Mol Sci 2021; 22:4963. [PMID: 34066978 PMCID: PMC8125032 DOI: 10.3390/ijms22094963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bone and muscle are highly synergistic tissues that communicate extensively via mechanotransduction and biochemical signaling. Osteogenesis imperfecta (OI) is a heritable connective tissue disorder of severe bone fragility and recently recognized skeletal muscle weakness. The presence of impaired bone and muscle in OI leads to a continuous cycle of altered muscle-bone crosstalk with weak muscles further compromising bone and vice versa. Currently, there is no cure for OI and understanding the pathogenesis of the skeletal muscle weakness in relation to the bone pathogenesis of OI in light of the critical role of muscle-bone crosstalk is essential to developing and identifying novel therapeutic targets and strategies for OI. This review will highlight how impaired skeletal muscle function contributes to the pathophysiology of OI and how this phenomenon further perpetuates bone fragility.
Collapse
Affiliation(s)
| | - Charlotte L. Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Department of Child Health, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
32
|
Garibaldi N, Contento BM, Babini G, Morini J, Siciliani S, Biggiogera M, Raspanti M, Marini JC, Rossi A, Forlino A, Besio R. Targeting cellular stress in vitro improves osteoblast homeostasis, matrix collagen content and mineralization in two murine models of osteogenesis imperfecta. Matrix Biol 2021; 98:1-20. [PMID: 33798677 PMCID: PMC11162743 DOI: 10.1016/j.matbio.2021.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Most cases of dominantly inherited osteogenesis imperfecta (OI) are caused by glycine substitutions in the triple helical domain of type I collagen α chains, which delay collagen folding, and cause the synthesis of collagen triple helical molecules with abnormal structure and post-translational modification. A variable extent of mutant collagen ER retention and other secondary mutation effects perturb osteoblast homeostasis and impair bone matrix quality. Amelioration of OI osteoblast homeostasis could be beneficial both to osteoblast anabolic activity and to the content of the extracellular matrix they deposit. Therefore, the effect of the chemical chaperone 4-phenylbutyrate (4-PBA) on cell homeostasis, collagen trafficking, matrix production and mineralization was investigated in primary osteoblasts from two murine models of moderate OI, Col1a1+/G349C and Col1a2+/G610C. At the cellular level, 4-PBA prevented intracellular accumulation of collagen and increased protein secretion, reducing aggregates within the mutant cells and normalizing ER morphology. At the extracellular level, increased collagen incorporation into matrix, associated with more mature collagen fibrils, was observed in osteoblasts from both models. 4-PBA also promoted OI osteoblast mineral deposition by increasing alkaline phosphatase expression and activity. Targeting osteoblast stress with 4-PBA improved both cellular and matrix abnormalities in culture, supporting further in vivo studies of its effect on bone tissue composition, strength and mineralization as a potential treatment for classical OI.
Collapse
Affiliation(s)
- Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy; Istituto Universitario di Studi Superiori - IUSS, Pavia, Italy.
| | - Barbara M Contento
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | | | - Jacopo Morini
- Department of Physics, University of Pavia, Pavia, Italy.
| | - Stella Siciliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA.
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
33
|
Omosule CL, Gremminger VL, Aguillard AM, Jeong Y, Harrelson EN, Miloscio L, Mastaitis J, Rafique A, Kleiner S, Pfeiffer FM, Zhang A, Schulz LC, Phillips CL. Impact of Genetic and Pharmacologic Inhibition of Myostatin in a Murine Model of Osteogenesis Imperfecta. J Bone Miner Res 2021; 36:739-756. [PMID: 33249643 PMCID: PMC8111798 DOI: 10.1002/jbmr.4223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetic connective tissue disorder characterized by compromised skeletal integrity, altered microarchitecture, and bone fragility. Current OI treatment strategies focus on bone antiresorptives and surgical intervention with limited effectiveness, and thus identifying alternative therapeutic options remains critical. Muscle is an important stimulus for bone formation. Myostatin, a TGF-β superfamily myokine, acts through ActRIIB to negatively regulate muscle growth. Recent studies demonstrated the potential benefit of myostatin inhibition with the soluble ActRIIB fusion protein on skeletal properties, although various OI mouse models exhibited variable skeletal responses. The genetic and clinical heterogeneity associated with OI, the lack of specificity of the ActRIIB decoy molecule for myostatin alone, and adverse events in human clinical trials further the need to clarify myostatin's therapeutic potential and role in skeletal integrity. In this study, we determined musculoskeletal outcomes of genetic myostatin deficiency and postnatal pharmacological myostatin inhibition by a monoclonal anti-myostatin antibody (Regn647) in the G610C mouse, a model of mild-moderate type I/IV human OI. In the postnatal study, 5-week-old wild-type and +/G610C male and female littermates were treated with Regn647 or a control antibody for 11 weeks or for 7 weeks followed by a 4-week treatment holiday. Inhibition of myostatin, whether genetically or pharmacologically, increased muscle mass regardless of OI genotype, although to varying degrees. Genetic myostatin deficiency increased hindlimb muscle weights by 6.9% to 34.4%, whereas pharmacological inhibition increased them by 13.5% to 29.6%. Female +/mstn +/G610C (Dbl.Het) mice tended to have similar trabecular and cortical bone parameters as Wt showing reversal of +/G610C characteristics but with minimal effect of +/mstn occurring in male mice. Pharmacologic myostatin inhibition failed to improve skeletal bone properties of male or female +/G610C mice, although skeletal microarchitectural and biomechanical improvements were observed in male wild-type mice. Four-week treatment holiday did not alter skeletal outcomes. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | | | - Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Emily N Harrelson
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | | | | | | | - Ferris M Pfeiffer
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Anqing Zhang
- Department of Biostatistics and Research Design, University of Missouri, Columbia, MO, USA
| | - Laura C Schulz
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, USA
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
34
|
Omosule CL, Phillips CL. Deciphering Myostatin's Regulatory, Metabolic, and Developmental Influence in Skeletal Diseases. Front Genet 2021; 12:662908. [PMID: 33854530 PMCID: PMC8039523 DOI: 10.3389/fgene.2021.662908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Current research findings in humans and other mammalian and non-mammalian species support the potent regulatory role of myostatin in the morphology and function of muscle as well as cellular differentiation and metabolism, with real-life implications in agricultural meat production and human disease. Myostatin null mice (mstn−/−) exhibit skeletal muscle fiber hyperplasia and hypertrophy whereas myostatin deficiency in larger mammals like sheep and pigs engender muscle fiber hyperplasia. Myostatin’s impact extends beyond muscles, with alterations in myostatin present in the pathophysiology of myocardial infarctions, inflammation, insulin resistance, diabetes, aging, cancer cachexia, and musculoskeletal disease. In this review, we explore myostatin’s role in skeletal integrity and bone cell biology either due to direct biochemical signaling or indirect mechanisms of mechanotransduction. In vitro, myostatin inhibits osteoblast differentiation and stimulates osteoclast activity in a dose-dependent manner. Mice deficient in myostatin also have decreased osteoclast numbers, increased cortical thickness, cortical tissue mineral density in the tibia, and increased vertebral bone mineral density. Further, we explore the implications of these biochemical and biomechanical influences of myostatin signaling in the pathophysiology of human disorders that involve musculoskeletal degeneration. The pharmacological inhibition of myostatin directly or via decoy receptors has revealed improvements in muscle and bone properties in mouse models of osteogenesis imperfecta, osteoporosis, osteoarthritis, Duchenne muscular dystrophy, and diabetes. However, recent disappointing clinical trial outcomes of induced myostatin inhibition in diseases with significant neuromuscular wasting and atrophy reiterate complexity and further need for exploration of the translational application of myostatin inhibition in humans.
Collapse
Affiliation(s)
- Catherine L Omosule
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.,Department of Child Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
35
|
Swan AL, Schütt C, Rozman J, del Mar Muñiz Moreno M, Brandmaier S, Simon M, Leuchtenberger S, Griffiths M, Brommage R, Keskivali-Bond P, Grallert H, Werner T, Teperino R, Becker L, Miller G, Moshiri A, Seavitt JR, Cissell DD, Meehan TF, Acar EF, Lelliott CJ, Flenniken AM, Champy MF, Sorg T, Ayadi A, Braun RE, Cater H, Dickinson ME, Flicek P, Gallegos J, Ghirardello EJ, Heaney JD, Jacquot S, Lally C, Logan JG, Teboul L, Mason J, Spielmann N, McKerlie C, Murray SA, Nutter LMJ, Odfalk KF, Parkinson H, Prochazka J, Reynolds CL, Selloum M, Spoutil F, Svenson KL, Vales TS, Wells SE, White JK, Sedlacek R, Wurst W, Lloyd KCK, Croucher PI, Fuchs H, Williams GR, Bassett JHD, Gailus-Durner V, Herault Y, Mallon AM, Brown SDM, Mayer-Kuckuk P, Hrabe de Angelis M. Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genet 2020; 16:e1009190. [PMID: 33370286 PMCID: PMC7822523 DOI: 10.1371/journal.pgen.1009190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 01/22/2021] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease. Patients affected by osteoporosis frequently present with decreased BMD and increased fracture risk. Genes are known to control the onset and progression of bone diseases such as osteoporosis. Therefore, we aimed to identify osteoporosis-related genes using BMD measures obtained from a large pool of mutant mice genetically modified for deletion of individual genes (knockout mice). In a collaborative endeavor involving several research sites world-wide, we generated and phenotyped 3,823 knockout mice and identified 200 genes which regulated BMD. Of the 200 BMD genes, 141 genes were previously not known to affect BMD. The discovery and study of novel BMD genes will help to better understand the causes and therapeutic options for patients with low BMD. In the long run, this will improve the clinical management of osteoporosis.
Collapse
Affiliation(s)
- Anna L. Swan
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Christine Schütt
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences,Vestec, Czech Republic
| | | | - Stefan Brandmaier
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michelle Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Stefanie Leuchtenberger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Mark Griffiths
- Mouse Informatics Group, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Robert Brommage
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Piia Keskivali-Bond
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Harald Grallert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Werner
- Internal Medicine Nephrology and Center for Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Raffaele Teperino
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Gregor Miller
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Ala Moshiri
- University of California-Davis School of Medicine, Sacramento, California, United States of America
| | - John R. Seavitt
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Derek D. Cissell
- Department of Surgical & Radiological Sciences, University of California, Davis, California, United States of America
| | - Terrence F. Meehan
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Elif F. Acar
- The Center for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Ann M. Flenniken
- The Center for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marie-France Champy
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Abdel Ayadi
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Robert E. Braun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Heather Cater
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire, United Kingdom
| | - Mary E. Dickinson
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Departments of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston,Texas, United States of America
| | - Paul Flicek
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Juan Gallegos
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
| | - Elena J. Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Jason D. Heaney
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
| | - Sylvie Jacquot
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Connor Lally
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire, United Kingdom
| | - John G. Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Lydia Teboul
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire, United Kingdom
| | - Jeremy Mason
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Colin McKerlie
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Stephen A. Murray
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Lauryl M. J. Nutter
- The Center for Phenogenomics, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kristian F. Odfalk
- Advanced Technologies Cores, Baylor College of Medicine, One Baylor Plaza, Houston Texas, United States of America
| | - Helen Parkinson
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jan Prochazka
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences,Vestec, Czech Republic
| | - Corey L. Reynolds
- Departments of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston,Texas, United States of America
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Frantisek Spoutil
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences,Vestec, Czech Republic
| | - Karen L. Svenson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Taylor S. Vales
- Advanced Technologies Cores, Baylor College of Medicine, One Baylor Plaza, Houston Texas, United States of America
| | - Sara E. Wells
- MRC Harwell Institute, Mary Lyon Centre, Harwell Campus, Oxfordshire, United Kingdom
| | - Jacqueline K. White
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences,Vestec, Czech Republic
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - K. C. Kent Lloyd
- Department of Surgery, School of Medicine and Mouse Biology Program, University of California Davis
| | - Peter I. Croucher
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, IGBMC, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-ICS, Illkirch, France
| | - Ann-Marie Mallon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Steve D. M. Brown
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| | - Philipp Mayer-Kuckuk
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
- * E-mail:
| | | |
Collapse
|
36
|
The Transcription Factor HAND1 Is Involved in Cortical Bone Mass through the Regulation of Collagen Expression. Int J Mol Sci 2020; 21:ijms21228638. [PMID: 33207791 PMCID: PMC7697595 DOI: 10.3390/ijms21228638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 01/17/2023] Open
Abstract
Temporal and/or spatial alteration of collagen family gene expression results in bone defects. However, how collagen expression controls bone size remains largely unknown. The basic helix-loop-helix transcription factor HAND1 is expressed in developing long bones and is involved in their morphogenesis. To understand the functional role of HAND1 and collagen in the postnatal development of long bones, we overexpressed Hand1 in the osteochondroprogenitors of model mice and found that the bone volumes of cortical bones decreased in Hand1Tg/+;Twist2-Cre mice. Continuous Hand1 expression downregulated the gene expression of type I, V, and XI collagen in the diaphyses of long bones and was associated with decreased expression of Runx2 and Sp7/Osterix, encoding transcription factors involved in the transactivation of fibril-forming collagen genes. Members of the microRNA-196 family, which target the 3' untranslated regions of COL1A1 and COL1A2, were significantly upregulated in Hand1Tg/+;Twist2-Cre mice. Mass spectrometry revealed that the expression ratios of alpha 1(XI), alpha 2(XI), and alpha 2(V) in the diaphysis increased during postnatal development in wild-type mice, which was delayed in Hand1Tg/+;Twist2-Cre mice. Our results demonstrate that HAND1 regulates bone size and morphology through osteochondroprogenitors, at least partially by suppressing postnatal expression of collagen fibrils in the cortical bones.
Collapse
|
37
|
Zhytnik L, Simm K, Salumets A, Peters M, Märtson A, Maasalu K. Reproductive options for families at risk of Osteogenesis Imperfecta: a review. Orphanet J Rare Dis 2020; 15:128. [PMID: 32460820 PMCID: PMC7251694 DOI: 10.1186/s13023-020-01404-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis Imperfecta (OI) is a rare genetic disorder involving bone fragility. OI patients typically suffer from numerous fractures, skeletal deformities, shortness of stature and hearing loss. The disorder is characterised by genetic and clinical heterogeneity. Pathogenic variants in more than 20 different genes can lead to OI, and phenotypes can range from mild to lethal forms. As a genetic disorder which undoubtedly affects quality of life, OI significantly alters the reproductive confidence of families at risk. The current review describes a selection of the latest reproductive approaches which may be suitable for prospective parents faced with a risk of OI. The aim of the review is to alleviate suffering in relation to family planning around OI, by enabling prospective parents to make informed and independent decisions. Main body The current review provides a comprehensive overview of possible reproductive options for people with OI and for unaffected carriers of OI pathogenic genetic variants. The review considers reproductive options across all phases of family planning, including pre-pregnancy, fertilisation, pregnancy, and post-pregnancy. Special attention is given to the more modern techniques of assisted reproduction, such as preconception carrier screening, preimplantation genetic testing for monogenic diseases and non-invasive prenatal testing. The review outlines the methodologies of the different reproductive approaches available to OI families and highlights their advantages and disadvantages. These are presented as a decision tree, which takes into account the autosomal dominant and autosomal recessive nature of the OI variants, and the OI-related risks of people without OI. The complex process of decision-making around OI reproductive options is also discussed from an ethical perspective. Conclusion The rapid development of molecular techniques has led to the availability of a wide variety of reproductive options for prospective parents faced with a risk of OI. However, such options may raise ethical concerns in terms of methodologies, choice management and good clinical practice in reproductive care, which are yet to be fully addressed.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.
| | - Kadri Simm
- Institute of Philosophy and Semiotics, Faculty of Arts and Humanities, University of Tartu, Tartu, Estonia.,Centre of Ethics, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia.,COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
38
|
Cabral WA, Fratzl-Zelman N, Weis M, Perosky JE, Alimasa A, Harris R, Kang H, Makareeva E, Barnes AM, Roschger P, Leikin S, Klaushofer K, Forlino A, Backlund PS, Eyre DR, Kozloff KM, Marini JC. Substitution of murine type I collagen A1 3-hydroxylation site alters matrix structure but does not recapitulate osteogenesis imperfecta bone dysplasia. Matrix Biol 2020; 90:20-39. [PMID: 32112888 DOI: 10.1016/j.matbio.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023]
Abstract
Null mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated. Mutant mice have normal survival, growth, femoral breaking strength and mean bone mineralization. However, the bone collagen HP/LP crosslink ratio is nearly doubled in mutant mice, while collagen fibril diameter and bone yield energy are decreased. Thus, 3-hydroxylation of the A1 site α1(I)P986 affects collagen crosslinking and structural organization, but its absence does not directly cause recessive bone dysplasia. Our study suggests that the functions of the modification complex as a collagen chaperone are thus distinct from its role as prolyl 3-hydroxylase.
Collapse
Affiliation(s)
- Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - MaryAnn Weis
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Joseph E Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Adrienne Alimasa
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Harris
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Elena Makareeva
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Sergey Leikin
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, USA
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Peter S Backlund
- Biomedical Mass Spectrometry Facility, NICHD, NIH, Bethesda, MD, USA
| | - David R Eyre
- Orthopaedic Research Laboratories, University of Washington, Seattle, WA, USA
| | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA.
| |
Collapse
|
39
|
Kaupp S, Horan DJ, Lim KE, Feldman HA, Robling AG, Warman ML, Jacobsen CM. Combination therapy in the Col1a2 G610C mouse model of Osteogenesis Imperfecta reveals an additive effect of enhancing LRP5 signaling and inhibiting TGFβ signaling on trabecular bone but not on cortical bone. Bone 2020; 131:115084. [PMID: 31648079 PMCID: PMC7232829 DOI: 10.1016/j.bone.2019.115084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023]
Abstract
Enhancing LRP5 signaling and inhibiting TGFβ signaling have each been reported to increase bone mass and improve bone strength in wild-type mice. Monotherapy targeting LRP5 signaling, or TGFβ signaling, also improved bone properties in mouse models of Osteogenesis Imperfecta (OI). We investigated whether additive or synergistic increases in bone properties would be attained if enhanced LRP5 signaling was combined with TGFβ inhibition. We crossed an Lrp5 high bone mass (HBM) allele (Lrp5A214V) into the Col1a2G610C/+ mouse model of OI. At 6-weeks-of-age we began treating mice with an antibody that inhibits TGFβ1, β2, and β3 (mAb 1D11), or with an isotype-matched control antibody (mAb 13C4). At 12-weeks-old, we observed that combining enhanced LRP5 signaling with inhibited TGFβ signaling produced an additive effect on femoral and vertebral trabecular bone volumes, but not on cortical bone volumes. Although enhanced LRP5 signaling increased femur strength in a 3-point bending assay in Col1a2G610C/+ mice, femur strength did not improve further with TGFβ inhibition. Neither enhanced LRP5 signaling nor TGFβ inhibition, alone or in combination, improved femur 3-point-bending post-yield displacement in Col1a2G610C/+ mice. These pre-clinical studies indicate combination therapies that target LRP5 and TGFβ signaling should increase trabecular bone mass in patients with OI more than targeting either signaling pathway alone. Whether additive increases in trabecular bone mass will occur in, and clinically benefit, patients with OI needs to be determined.
Collapse
Affiliation(s)
- Shannon Kaupp
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Dan J Horan
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | - Kyung-Eun Lim
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | - Henry A Feldman
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | - Matthew L Warman
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christina M Jacobsen
- Divisions of Endocrinology and Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Creecy A, Uppuganti S, Girard MR, Schlunk SG, Amah C, Granke M, Unal M, Does MD, Nyman JS. The age-related decrease in material properties of BALB/c mouse long bones involves alterations to the extracellular matrix. Bone 2020; 130:115126. [PMID: 31678497 PMCID: PMC6885131 DOI: 10.1016/j.bone.2019.115126] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022]
Abstract
One possibility for the disproportionate increase in fracture risk with aging relative to the decrease in bone mass is an accumulation of changes to the bone matrix which deleteriously affect fracture resistance. In order to effectively develop new targets for osteoporosis, a preclinical model of the age-related loss in fracture resistance needs to be established beyond known age-related decreases in bone mineral density and bone volume fraction. To that end, we examined long bones of male and female BALB/c mice at 6-mo. and 20-mo. of age and assessed whether material and matrix properties of cortical bone significantly differed between the age groups. The second moment of area of the diaphysis (minimum and maximum principals for femur and radius, respectively) as measured by ex vivo micro-computed tomography (μCT) was higher at 20-mo. than at 6-mo. for both males and females, but ultimate moment as measured by three-point bending tests did not decrease with age. Cortical thickness was lower with age for males, but higher for old females. Partially accounting for differences in structure, material estimates of yield, ultimate stress, and toughness (left femur) were 12.6%, 11.1%, and 40.9% lower, respectively, with age for both sexes. The ability of the cortical bone to resist crack growth (right femur) was also 18.1% less for the old than for the young adult mice. These decreases in material properties were not due to changes in intracortical porosity as pore number decreased with age. Rather, age-related alterations in the matrix were observed for both sexes: enzymatic and non-enzymatic crosslinks by high performance liquid chromatography increased (femur), volume fraction of bound water by 1H-nuclear magnetic resonance relaxometry decreased (femur), cortical tissue mineral density by μCT increased (femur and radius), and an Amide I sub-peak ratio I1670/I1640 by Raman spectroscopy increased (tibia). Overall, there are multiple matrix changes to potentially target that could prevent the age-related decrease in fracture resistance observed in BALB/c mouse.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Madeline R Girard
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Siegfried G Schlunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Chidi Amah
- Meharry Medical College, Nashville, TN 37208, United States
| | - Mathilde Granke
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Mustafa Unal
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70100, Turkey
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| |
Collapse
|
41
|
Use of Mesenchymal Stem/Stromal Cells for Pediatric Orthopedic Applications. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Cheng TL, Cantrill LC, Schindeler A, Little DG. Induction of periosteal bone formation by intraosseous BMP-2 injection in a mouse model of osteogenesis imperfecta. J Child Orthop 2019; 13:543-550. [PMID: 31695823 PMCID: PMC6808071 DOI: 10.1302/1863-2548.13.190119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Surgical interventions are routinely performed on children with osteogenesis imperfecta (OI) to stabilize long bones, often post fracture. We speculated that a combination of intramedullary reaming and intraosseous injection of recombinant bone morphogenetic protein-2 (BMP-2) could enhance periosteal ossification and ultimately cortical thickness and strength. This approach was conceptually tested in a preclinical model of genetic bone fragility. METHODS Six experimental groups were tested including no treatment, intramedullary reaming, and reaming with 5 µg BMP-2 injection performed in the tibiae of both wild type (WT) and Col1a2 G610C/+ (OI, Amish mutation) mice. Bone formation was examined at a two-week time point in ex vivo specimens by micro-computed tomography (microCT) analysis and histomorphometry with a dynamic bone label. RESULTS MicroCT data illustrated increases in tibial cortical thickness with intramedullary reaming alone (Saline) and reaming plus BMP-2 injection (BMP-2) compared to no intervention controls. In the OI mice, the periosteal bone increase was not statistically significant with Saline but there was an increase of +192% (p = 0.053) with BMP-2 injection. Dynamic histomorphometry on calcein label was used to quantify new woven bone formation; while BMP-2 induced greater bone formation than Saline, the anabolic response was blunted overall in the OI groups. CONCLUSIONS These data indicate that targeting the intramedullary compartment via reaming and intraosseous BMP-2 delivery can lead to gains in cortical bone parameters. It is suggested that the next step is to validate safety and functional improvements in a clinical OI setting.
Collapse
Affiliation(s)
- T. L. Cheng
- Orthopaedic Research and Biotechnology Unit, Children’s Hospital at Westmead, Sydney, NSW, Australia,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia,Correspondence should be sent to T. L. Cheng, Orthopaedic Research and Biotechnology, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia. E-mail:
| | - L. C. Cantrill
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia,Microscopy Services at Kids Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - A. Schindeler
- Orthopaedic Research and Biotechnology Unit, Children’s Hospital at Westmead, Sydney, NSW, Australia,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - D. G. Little
- Orthopaedic Research and Biotechnology Unit, Children’s Hospital at Westmead, Sydney, NSW, Australia,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
43
|
Lee LR, Peacock L, Ginn SL, Cantrill LC, Cheng TL, Little DG, Munns CF, Schindeler A. Bone Marrow Transplantation for Treatment of the Col1a2 +/G610C Osteogenesis Imperfecta Mouse Model. Calcif Tissue Int 2019; 104:426-436. [PMID: 30535573 DOI: 10.1007/s00223-018-0504-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/01/2018] [Indexed: 01/13/2023]
Abstract
Bone marrow transplantation (BMT) of healthy donor cells has been postulated as a strategy for treating osteogenesis imperfecta (OI) and other bone fragility disorders. The effect of engraftment by tail vein injection and/or marrow ablation by 6 Gy whole body irradiation were tested in Col1a2+/G610C (OI) mice as a model of mild-moderate OI. Dual-emission X-ray absorptiometry, microCT, and 4-point bending were used to measure bone volume (BV), bone mineral density (BMD), and biomechanical strength. BV, BMD, and mechanical strength were reduced in OI mice compared to wild type (WT) controls. BMT with and without irradiation yielded no difference in BV and BMD outcomes for both OI and WT mice, at 3 weeks. Transplantation of OI cells into OI mice to test for paracrine effects of BMT also showed no difference with non-transplanted OI mice. In a parallel cell tracking study, donor marrow was taken from transgenic mice constitutively expressing tdTomato and transplanted into WT mice. Lineage tracking demonstrated that irradiation considerably enhanced engraftment of tdTomato+ cells. However, tdTomato+ cells predominantly expressed TRAP and not AP, indicating engrafted donor cells were chiefly from the hematopoietic lineages. These data show that whole marrow transplantation fails to rescue the bone phenotype of Col1a2+/G610C (OI) mice and that osteopoietic engraftment is not significantly enhanced by irradiation. These findings are highly relevant to modern approaches focused on the gene repair of patient cells ex vivo and their subsequent reintroduction into the osteopoietic compartment via the circulation.
Collapse
Affiliation(s)
- Lucinda R Lee
- Orthopaedic Research and Biotechnology Unit, Kids Research, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Lauren Peacock
- Orthopaedic Research and Biotechnology Unit, Kids Research, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Laurence C Cantrill
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Microscopy Services, Kids Research at The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Tegan L Cheng
- Orthopaedic Research and Biotechnology Unit, Kids Research, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - David G Little
- Orthopaedic Research and Biotechnology Unit, Kids Research, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Craig F Munns
- Orthopaedic Research and Biotechnology Unit, Kids Research, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology Unit, Kids Research, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia.
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
44
|
Tauer JT, Robinson ME, Rauch F. Osteogenesis Imperfecta: New Perspectives From Clinical and Translational Research. JBMR Plus 2019; 3:e10174. [PMID: 31485550 PMCID: PMC6715783 DOI: 10.1002/jbm4.10174] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a monogenic bone fragility disorder that usually is caused by mutations in one of the two genes coding for collagen type I alpha chains, COL1A1 or COL1A2. Mutations in at least 18 other genes can also lead to an OI phenotype. As genetic testing is more widely used, mutations in these genes are also more frequently discovered in individuals who have a propensity for fractures, but who do not have other typical clinical characteristics of OI. Intravenous bisphosphonate therapy is still the most widely used drug treatment approach. Preclinical studies in OI mouse models have shown encouraging effects when the antiresorptive effect of a bisphosphonate was combined with bone anabolic therapy using a sclerostin antibody. Other novel experimental treatment approaches include inhibition of transforming growth factor beta signaling with a neutralizing antibody and the inhibition of myostatin and activin A by a soluble activin receptor 2B. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
Collapse
Affiliation(s)
| | | | - Frank Rauch
- Shriners Hospital for Children Montreal Quebec Canada
| |
Collapse
|
45
|
Tauer JT, Abdullah S, Rauch F. Effect of Anti-TGF-β Treatment in a Mouse Model of Severe Osteogenesis Imperfecta. J Bone Miner Res 2019; 34:207-214. [PMID: 30357929 DOI: 10.1002/jbmr.3617] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I encoding genes. Recent studies in mouse models of recessive OI, Crtap-/- mice, and dominant OI, +/G610C mice, found that application of a transforming growth factor beta (TGF-β) neutralizing antibody 1D11 rescues the bone phenotype. In the present study, we investigated TGF-β signaling in a mouse model of severe dominant OI with a high incidence of spontaneous fractures, Col1a1Jrt/+ mice, and the effect of TGF-β neutralizing antibody 1D11 on bone phenotype in 8-week-old mice. Col1a1Jrt/+ mice had elevated TGF-β signaling in bone tissue. Treatment of Col1a1Jrt/+ mice with 1D11 was associated with increased bone length but had no significant effect on bone mass or bone mechanical properties, and no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity) or resorption (tartrate-resistant acid phosphatase) were found. Our data thus indicate that the TGF-β neutralizing antibody 1D11 is not effective in a mouse model of dominant OI with a high incidence of spontaneous fractures. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Sami Abdullah
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Bateman JF, Sampurno L, Maurizi A, Lamandé SR, Sims NA, Cheng TL, Schindeler A, Little DG. Effect of rapamycin on bone mass and strength in the α2(I)-G610C mouse model of osteogenesis imperfecta. J Cell Mol Med 2018; 23:1735-1745. [PMID: 30597759 PMCID: PMC6378195 DOI: 10.1111/jcmm.14072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/15/2018] [Accepted: 11/10/2018] [Indexed: 12/23/2022] Open
Abstract
Osteogenesis imperfecta (OI) is commonly caused by heterozygous type I collagen structural mutations that disturb triple helix folding and integrity. This mutant‐containing misfolded collagen accumulates in the endoplasmic reticulum (ER) and induces a form of ER stress associated with negative effects on osteoblast differentiation and maturation. Therapeutic induction of autophagy to degrade the mutant collagens could therefore be useful in ameliorating the ER stress and deleterious downstream consequences. To test this, we treated a mouse model of mild to moderate OI (α2(I) G610C) with dietary rapamycin from 3 to 8 weeks of age and effects on bone mass and mechanical properties were determined. OI bone mass and mechanics were, as previously reported, compromised compared to WT. While rapamycin treatment improved the trabecular parameters of WT and OI bones, the biomechanical deficits of OI bones were not rescued. Importantly, we show that rapamycin treatment suppressed the longitudinal and transverse growth of OI, but not WT, long bones. Our work demonstrates that dietary rapamycin offers no clinical benefit in this OI model and furthermore, the impact of rapamycin on OI bone growth could exacerbate the clinical consequences during periods of active bone growth in patients with OI caused by collagen misfolding mutations.
Collapse
Affiliation(s)
- John F Bateman
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Lisa Sampurno
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Antonio Maurizi
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Tegan L Cheng
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - David G Little
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Scheiber AL, Guess AJ, Kaito T, Abzug JM, Enomoto-Iwamoto M, Leikin S, Iwamoto M, Otsuru S. Endoplasmic reticulum stress is induced in growth plate hypertrophic chondrocytes in G610C mouse model of osteogenesis imperfecta. Biochem Biophys Res Commun 2018; 509:235-240. [PMID: 30579604 DOI: 10.1016/j.bbrc.2018.12.111] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
Osteogenesis imperfecta (OI) is a hereditary bone disorder most commonly caused by autosomal dominant mutations in genes encoding type I collagen. In addition to bone fragility, patients suffer from impaired longitudinal bone growth. It has been demonstrated that in OI, an accumulation of mutated type I collagen in the endoplasmic reticulum (ER) induces ER stress in osteoblasts, causing osteoblast dysfunction leading to bone fragility. We hypothesize that ER stress is also induced in the growth plate where bone growth is initiated, and examined a mouse model of dominant OI that carries a G610C mutation in the procollagen α2 chain. The results demonstrated that G610C OI mice had significantly shorter long bones with growth plate abnormalities including elongated total height and hypertrophic zone. Moreover, we found that mature hypertrophic chondrocytes expressed type I collagen and ER dilation was more pronounced compared to wild type littermates. The results from in vitro chondrocyte cultures demonstrated that the maturation of G610C OI hypertrophic chondrocytes was significantly suppressed and ER stress related genes were upregulated. Given that the alteration of hypertrophic chondrocyte activity often causes dwarfism, our findings suggest that hypertrophic chondrocyte dysfunction induced by ER stress may be an underlying cause of growth deficiency in G610C OI mice.
Collapse
Affiliation(s)
- Amanda L Scheiber
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Adam J Guess
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Joshua M Abzug
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sergey Leikin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, 20892, USA
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| |
Collapse
|
48
|
Besio R, Maruelli S, Battaglia S, Leoni L, Villani S, Layrolle P, Rossi A, Trichet V, Forlino A. Early Fracture Healing is Delayed in the Col1a2 +/G610C Osteogenesis Imperfecta Murine Model. Calcif Tissue Int 2018; 103:653-662. [PMID: 30076439 DOI: 10.1007/s00223-018-0461-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a rare heritable skeletal dysplasia mainly caused by type I collagen abnormalities and characterized by bone fragility and susceptibility to fracture. Over 85% of the patients carry dominant mutations in the genes encoding for the collagen type I α1 and α2 chains. Failure of bone union and/or presence of hyperplastic callus formation after fracture were described in OI patients. Here we used the Col1a2+/G610C mouse, carrying in heterozygosis the α2(I)-G610C substitution, to investigate the healing process of an OI bone. Tibiae of 2-month-old Col1a2+/G610C and wild-type littermates were fractured and the healing process was followed at 2, 3, and 5 weeks after injury from fibrous cartilaginous tissue formation to its bone replacement by radiography, micro-computed tomography (µCT), histological and biochemical approaches. In presence of similar fracture types, in Col1a2+/G610C mice an impairment in the early phase of bone repair was detected compared to wild-type littermates. Smaller callus area, callus bone surface, and bone volume associated to higher percentage of cartilage and lower percentage of bone were evident in Col1a2+/G610C at 2 weeks post fracture (wpf) and no change by 3 wpf. Furthermore, the biochemical analysis of collagen extracted from callus 2 wpf revealed in mutants an increased amount of type II collagen, typical of cartilage, with respect to type I, characteristic of bone. This is the first report of a delay in OI bone fracture repair at the modeling phase.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Silvia Maruelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Severine Battaglia
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Laura Leoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Valerie Trichet
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| |
Collapse
|
49
|
Abstract
Type I collagen, a major component of bone, skin, and other connective tissues, is synthesized in the endoplasmic reticulum (ER) and passes through the secretory pathway. Rerouting of its procollagen precursor to a degradative pathway is crucial for reducing intracellular buildup in pathologies caused by defects in procollagen folding and trafficking. Here, we identify an autophagy pathway initiated at ER exit sites (ERESs). Procollagen proteins following this pathway accumulate at ERESs modified with ubiquitin, LC3, p62, and other autophagy machinery. Modified ERESs carrying procollagen are then engulfed by lysosomes through a microautophagy-like mechanism, not involving conventional, double-membrane autophagosomes. Procollagen homeostasis thus involves a noncanonical mode of autophagy initiated at ERESs, which might also be important in degradation of other secretory proteins. Type I collagen is the main component of bone matrix and other connective tissues. Rerouting of its procollagen precursor to a degradative pathway is crucial for osteoblast survival in pathologies involving excessive intracellular buildup of procollagen that is improperly folded and/or trafficked. What cellular mechanisms underlie this rerouting remains unclear. To study these mechanisms, we employed live-cell imaging and correlative light and electron microscopy (CLEM) to examine procollagen trafficking both in wild-type mouse osteoblasts and osteoblasts expressing a bone pathology-causing mutant procollagen. We found that although most procollagen molecules successfully trafficked through the secretory pathway in these cells, a subpopulation did not. The latter molecules appeared in numerous dispersed puncta colocalizing with COPII subunits, autophagy markers and ubiquitin machinery, with more puncta seen in mutant procollagen-expressing cells. Blocking endoplasmic reticulum exit site (ERES) formation suppressed the number of these puncta, suggesting they formed after procollagen entry into ERESs. The punctate structures containing procollagen, COPII, and autophagic markers did not move toward the Golgi but instead were relatively immobile. They appeared to be quickly engulfed by nearby lysosomes through a bafilomycin-insensitive pathway. CLEM and fluorescence recovery after photobleaching experiments suggested engulfment occurred through a noncanonical form of autophagy resembling microautophagy of ERESs. Overall, our findings reveal that a subset of procollagen molecules is directed toward lysosomal degradation through an autophagic pathway originating at ERESs, providing a mechanism to remove excess procollagen from cells.
Collapse
|
50
|
Jeong Y, Daghlas SA, Yixia X, Hulbert MA, Pfeiffer FM, Dallas MR, Omosule CL, Pearsall RS, Dallas SL, Phillips CL. Skeletal Response to Soluble Activin Receptor Type IIB in Mouse Models of Osteogenesis Imperfecta. J Bone Miner Res 2018; 33:1760-1772. [PMID: 29813187 PMCID: PMC6400483 DOI: 10.1002/jbmr.3473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 01/21/2023]
Abstract
Osteogenesis imperfecta (OI) is a heritable connective tissue disorder primarily due to mutations in the type I collagen genes (COL1A1 and COL1A2), leading to compromised biomechanical integrity in type I collagen-containing tissues such as bone. Bone is inherently mechanosensitive and thus responds and adapts to external stimuli, such as muscle mass and contractile strength, to alter its mass and shape. Myostatin, a member of the TGF-β superfamily, signals through activin receptor type IIB to negatively regulate muscle fiber growth. Because of the positive impact of myostatin deficiency on bone mass, we utilized a soluble activin receptor type IIB-mFc (sActRIIB-mFc) fusion protein in two molecularly distinct OI mouse models (G610C and oim) and evaluated their bone properties. Wild-type (WT), +/G610C, and oim/oim mice were treated from 2 to 4 months of age with either vehicle (Tris-buffered saline) or sActRIIB-mFc (10 mg/kg). Femurs of sActRIIB-mFc-treated mice exhibited increased trabecular bone volume regardless of genotype, whereas the cortical bone microarchitecture and biomechanical strength were only improved in WT and +/G610C mice. Dynamic histomorphometric analyses suggest the improved cortical bone geometry and biomechanical integrity reflect an anabolic effect due to increased mineral apposition and bone formation rates, whereas static histomorphometric analyses supported sActRIIB-mFc treatment also having an anti-catabolic impact with decreased osteoclast number per bone surface on trabecular bone regardless of sex and genotype. Together, our data suggest that sActRIIB-mFc may provide a new therapeutic direction to improve both bone and muscle properties in OI. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
| | - Salah A. Daghlas
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
| | - Xie Yixia
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, 64108
| | - Molly A Hulbert
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, 64108
| | - Ferris M. Pfeiffer
- Department of Orthopaedic Surgery and Bioengineering, University of Missouri, Columbia, MO, 65211
| | - Mark R. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, 64108
| | | | | | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, 64108
| | - Charlotte L. Phillips
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
- Department of Child Health, University of Missouri, Columbia, Missouri, 65211
| |
Collapse
|