1
|
Delgado S, Fernandez-Trujillo MA, Houée G, Silvent J, Liu X, Corre E, Sire JY. Expression of 20 SCPP genes during tooth and bone mineralization in Senegal bichir. Dev Genes Evol 2023; 233:91-106. [PMID: 37410100 DOI: 10.1007/s00427-023-00706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The African bichir (Polypterus senegalus) is a living representative of Polypteriformes. P. senegalus possesses teeth composed of dentin covered by an enameloid cap and a layer of collar enamel on the tooth shaft, as in lepisosteids. A thin layer of enamel matrix can also be found covering the cap enameloid after its maturation and during the collar enamel formation. Teleosts fish do not possess enamel; teeth are protected by cap and collar enameloid, and inversely in sarcopterygians, where teeth are only covered by enamel, with the exception of the cap enameloid in teeth of larval urodeles. The presence of enameloid and enamel in the teeth of the same organism is an opportunity to solve the evolutionary history of the presence of enamel/enameloid in basal actinopterygians. In silico analyses of the jaw transcriptome of a juvenile bichir provided twenty SCPP transcripts. They included enamel, dentin, and bone-specific SCPPs known in sarcopterygians and several actinopterygian-specific SCPPs. The expression of these 20 genes was investigated by in situ hybridizations on jaw sections during tooth and dentary bone formation. A spatiotemporal expression patterns were established and compared with previous studies of SCPP gene expression during enamel/enameloid and bone formation. Similarities and differences were highlighted, and several SCPP transcripts were found specifically expressed during tooth or bone formation suggesting either conserved or new functions of these SCPPs.
Collapse
Affiliation(s)
- S Delgado
- Sorbonne Université, MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, 75005, Paris, France.
| | - M A Fernandez-Trujillo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - G Houée
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, CR2P (Centre de Recherche en Paléontologie - Paris), UMR 7207, Equipe Formes, Structures et Fonctions, 43 rue Buffon, 75005, Paris, France
| | - J Silvent
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - X Liu
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - E Corre
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - J Y Sire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| |
Collapse
|
2
|
He Y, Wang W, Luo P, Wang Y, He Z, Dong W, Jia M, Yu X, Yang B, Wang J. Mettl3 regulates hypertrophic differentiation of chondrocytes through modulating Dmp1 mRNA via Ythdf1-mediated m 6A modification. Bone 2022; 164:116522. [PMID: 35981698 DOI: 10.1016/j.bone.2022.116522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
As the main cells in endochondral osteogenesis, chondrocytes have limited self-repair ability due to weak proliferation activity, low density, and dedifferentiation tendency. Here, a thorough inquiry about the effect and underlying mechanisms of methyltransferase like-3 (Mettl3) on chondrocytes was made. Functionally, it was indicated that Mettl3 promoted the proliferation and hypertrophic differentiation of chondrocytes. Mechanically, Dmp1 (dentin matrix protein 1) was proved to be the downstream direct target of Mettl3 for m6A modification to regulate the differentiation of chondrocytes through bioinformatics analysis and correlated experiments. The Reader protein Ythdf1 mediated Dmp1 mRNA catalyzed by Mettl3. In vivo, the formation of subcutaneous ectopic cartilage-like tissue further supported the in vitro results. In conclusion, the gene regulation of Mettl3/m6A/Ythdf1/Dmp1 axis in hypertrophic differentiation of chondrocytes for the development of endochondral osteogenesis may supply a promising treatment strategy for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Wang
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Meie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
3
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
4
|
Figueredo CA, Abdelhay N, Gibson MP. The Roles of SIBLING Proteins in Dental, Periodontal and Craniofacial Development. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.898802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The majority of dental, periodontal, and craniofacial tissues are derived from the neural crest cells and ectoderm. Neural crest stem cells are pluripotent, capable of differentiating into a variety of cells. These cells can include osteoblasts, odontoblasts, cementoblasts, chondroblasts, and fibroblasts which are responsible for forming some of the tissues of the oral and craniofacial complex. The hard tissue forming cells deposit a matrix composed of collagen and non-collagenous proteins (NCPs) that later undergoes mineralization. The NCPs play a role in the mineralization of collagen. One such category of NCPs is the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family of proteins. This family is composed of dentin sialophosphosprotein (DSPP), osteopontin (OPN), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), and matrix extracellular phosphoglycoprotein (MEPE). The SIBLING family is known to have regulatory effects in the mineralization process of collagen fibers and the maturation of hydroxyapatite crystals. It is well established that SIBLING proteins have critical roles in tooth development. Recent literature has described the expression and role of SIBLING proteins in other areas of the oral and craniofacial complex as well. The objective of the present literature review is to summarize and discuss the different roles the SIBLING proteins play in the development of dental, periodontal, and craniofacial tissues.
Collapse
|
5
|
Li T, Geng Y, Hu Y, Zhang L, Cui X, Zhang W, Gao F, Liu Z, Luo X. Dentin Matrix Protein 1 Silencing Inhibits Phosphorus Utilization in Primary Cultured Tibial Osteoblasts of Broiler Chicks. Front Vet Sci 2022; 9:875140. [PMID: 35558889 PMCID: PMC9087580 DOI: 10.3389/fvets.2022.875140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Three experiments were carried out in the present study to investigate whether dentin matrix protein 1 (DMP1) was involved in regulating phosphorus (P) metabolic utilization in primary cultured tibial osteoblasts of broiler chicks. Experiment 1 was conducted to select the optimal osteogenic inductive culture medium and the optimal induction time in primary cultured tibial osteoblasts of broiler chicks. In experiment 2, the siRNAs against DMP1 were designed, synthesized and transfected into primary cultured tibial osteoblasts of broiler chicks, and then the inhibitory efficiencies of siRNAs against DMP1 were determined, and the most efficacious siRNA was selected to be used for the DMP1 silencing. In experiment 3, with or without siRNA against DMP1, primary cultured tibial osteoblasts of broiler chicks were treated with the medium supplemented with 0.0, 1.0 or 2.0 mmol/L of P as NaH2PO4 for 12 days. The P metabolic utilization-related parameters were measured. The results showed that the osteogenic induced medium 2 and 12 days of the optimal induction time were selected; Among the designed siRNAs, the si340 was the most effective (P < 0.05) in inhibiting the DMP1 expression; DMP1 silencing decreased (P < 0.05) the expressions of DMP1 mRNA and protein, P retention rate, mineralization formation, alkaline phosphatase activity and bone gla-protein content in tibial osteoblasts at all of added P levels. It is concluded that DMP1 silencing inhibited P utilization, and thus DMP1 was involved in regulating P metabolic utilization in primary cultured tibial osteoblasts of broiler chicks, which provides a novel insight into the regulation of the P utilization in the bone of broilers, and will contribute to develop feasible strategies to improve the bone P utilization efficiency of broilers so as to decrease its excretion.
Collapse
Affiliation(s)
- Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanqiang Geng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Feiyu Gao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Xugang Luo
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
7
|
Yamada M, Nagayama M, Miyamoto Y, Kawano S, Takitani Y, Tanaka M, Ehara M, Nakao J, Ochiai T, Shibukawa Y, Yoshida T. Mineral Trioxide Aggregate (MTA) Upregulates the Expression of DMP1 in Direct Pulp Capping in the Rat Molar. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4640. [PMID: 34443162 PMCID: PMC8400143 DOI: 10.3390/ma14164640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023]
Abstract
Mineral trioxide aggregate (MTA) is an alternative endodontic material that predicts conductive or inductive calcified tissue formation from immature pulp mesenchymal stem cells (IPMSCs). The purpose of this study was to investigate whether MTA could promote reparative odontoblast differentiation via IPMSCs in the early phase of regeneration and compare with calcium hydroxide (CH). Direct pulp capping using calcium hydroxide (CH), MTA, and MTA with platelet-rich plasma (MTA + PRP) was performed on maxillary first molars of 8-week-old male Wistar rats (n = 36). After 3, 7, or 14 days, the teeth were analyzed for mineral density (MD) and volume of MD (VMD) via micro-focusing computed tomography (µCT), nestin, dentin matrix acidic phosphoprotein 1 (DMP1) immunohistochemistry, and real-time PCR for DMP1 mRNA expression. MTA stimulated the early phase differentiation of the IPMSCs into odontoblasts, with positive results for nestin and DMP1 compared with CH. Moreover, MTA + PRP stimulated calcified granule and dentin bridge formation through calcium mineral deposition, following the induction of DMP1 mRNA expression in IPMSCs. Our results suggested that the combination of MTA and PRP is an effective and clinically applicable method for activating endogenous dental pulp stem cells into odontoblasts in the early stages of pulp regeneration.
Collapse
Affiliation(s)
- Maiko Yamada
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (M.Y.); (S.K.); (Y.T.); (M.T.); (T.Y.)
| | - Motohiko Nagayama
- Department of Oral Pathology, Division of Oral Pathogenesis and Disease Control, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (Y.M.); (M.E.); (J.N.); (T.O.)
| | - Yuka Miyamoto
- Department of Oral Pathology, Division of Oral Pathogenesis and Disease Control, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (Y.M.); (M.E.); (J.N.); (T.O.)
| | - Satoshi Kawano
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (M.Y.); (S.K.); (Y.T.); (M.T.); (T.Y.)
| | - Yoshiaki Takitani
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (M.Y.); (S.K.); (Y.T.); (M.T.); (T.Y.)
| | - Masashi Tanaka
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (M.Y.); (S.K.); (Y.T.); (M.T.); (T.Y.)
| | - Michiko Ehara
- Department of Oral Pathology, Division of Oral Pathogenesis and Disease Control, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (Y.M.); (M.E.); (J.N.); (T.O.)
| | - Juna Nakao
- Department of Oral Pathology, Division of Oral Pathogenesis and Disease Control, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (Y.M.); (M.E.); (J.N.); (T.O.)
| | - Takanaga Ochiai
- Department of Oral Pathology, Division of Oral Pathogenesis and Disease Control, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (Y.M.); (M.E.); (J.N.); (T.O.)
| | - Yoshihiro Shibukawa
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Chiyoda-Ku, Tokyo 101-0061, Japan;
| | - Takakazu Yoshida
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University, Mizuho, Gifu 501-0296, Japan; (M.Y.); (S.K.); (Y.T.); (M.T.); (T.Y.)
| |
Collapse
|
8
|
Silvent J, Robin M, Bussola Tovani C, Wang Y, Soncin F, Delgado S, Azaïs T, Sassoye C, Giraud-Guille MM, Sire JY, Nassif N. Collagen Suprafibrillar Confinement Drives the Activity of Acidic Calcium-Binding Polymers on Apatite Mineralization. Biomacromolecules 2021; 22:2802-2814. [PMID: 34101426 DOI: 10.1021/acs.biomac.1c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone collagenous extracellular matrix provides a confined environment into which apatite crystals form. This biomineralization process is related to a cascade of events partly controlled by noncollagenous proteins. Although overlooked in bone models, concentration and physical environment influence their activities. Here, we show that collagen suprafibrillar confinement in bone comprising intra- and interfibrillar spaces drives the activity of biomimetic acidic calcium-binding polymers on apatite mineralization. The difference in mineralization between an entrapping dentin matrix protein-1 (DMP1) recombinant peptide (rpDMP1) and the synthetic polyaspartate validates the specificity of the 57-KD fragment of DMP1 in the regulation of mineralization, but strikingly without phosphorylation. We show that all the identified functions of rpDMP1 are dedicated to preclude pathological mineralization. Interestingly, transient apatite phases are only found using a high nonphysiological concentration of additives. The possibility to combine biomimetic concentration of both collagen and additives ensures specific chemical interactions and offers perspectives for understanding the role of bone components in mineralization.
Collapse
Affiliation(s)
- Jérémie Silvent
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France.,MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Marc Robin
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Yan Wang
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Fabrice Soncin
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Sidney Delgado
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Capucine Sassoye
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Marie-Madeleine Giraud-Guille
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Jean-Yves Sire
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| |
Collapse
|
9
|
Kang J, Chen H, Zhang F, Yan T, Fan W, Jiang L, He H, Huang F. RORα Regulates Odontoblastic Differentiation and Mediates the Pro-Odontogenic Effect of Melatonin on Dental Papilla Cells. Molecules 2021; 26:1098. [PMID: 33669807 PMCID: PMC7922395 DOI: 10.3390/molecules26041098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022] Open
Abstract
Dental papilla cells (DPCs), precursors of odontoblasts, are considered promising seed cells for tissue engineering. Emerging evidence suggests that melatonin promotes odontoblastic differentiation of DPCs and affects tooth development, although the precise mechanisms remain unknown. Retinoid acid receptor-related orphan receptor α (RORα) is a nuclear receptor for melatonin that plays a critical role in cell differentiation and embryonic development. This study aimed to explore the role of RORα in odontoblastic differentiation and determine whether melatonin exerts its pro-odontogenic effect via RORα. Herein, we observed that RORα was expressed in DPCs and was significantly increased during odontoblastic differentiation in vitro and in vivo. The overexpression of RORα upregulated the expression of odontogenic markers, alkaline phosphatase (ALP) activity and mineralized nodules formation (p < 0.05). In contrast, odontoblastic differentiation of DPCs was suppressed by RORα knockdown. Moreover, we found that melatonin elevated the expression of odontogenic markers, which was accompanied by the upregulation of RORα (p < 0.001). Utilising small interfering RNA, we further demonstrated that RORα inhibition attenuated melatonin-induced odontogenic gene expression, ALP activity and matrix mineralisation (p < 0.01). Collectively, these results provide the first evidence that RORα can promote odontoblastic differentiation of DPCs and mediate the pro-odontogenic effect of melatonin.
Collapse
Affiliation(s)
- Jun Kang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Haoling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Fuping Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Tong Yan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Liulin Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (J.K.); (H.C.); (F.Z.); (T.Y.); (W.F.); (L.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| |
Collapse
|
10
|
Isono K, Takahashi E, Miyoshi I, Tsuneto M, Hikosaka-Kuniishi M, Yamane T, Yamazaki H. Simultaneous Fluorescent Identification of Odontoblasts and Ameloblasts. J Dent Res 2020; 100:532-541. [PMID: 33289448 DOI: 10.1177/0022034520974576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The tooth is mainly composed of dentin and enamel. Identification of dentin-producing odontoblasts and enamel-producing ameloblasts using reporter techniques is useful to study tooth development and regeneration with tissue engineering. Ameloblasts express Amelogenin, Ameloblastin, Enamelin, and Amelotin, whereas odontoblasts express Dentin sialophosphoprotein (Dspp) and Dentin matrix protein1 (Dmp1). Although there are several transgenic lines using promoter elements or bacterial artificial chromosomes (BACs) to label odontoblasts and ameloblasts, there is a possibility that the expression patterns vary from the endogenous genes. Here, we established 2 lines of mice where tdTomato was knocked into the second exon of X-chromosomal Amelogenin (Amelx), and green fluorescent protein (GFP) was knocked into the second exon of Dspp. tdTomato and GFP were highly expressed on secretory ameloblasts and secretory and fully differentiated odontoblasts, respectively. In addition, DSPP and AMELX were not produced in the dentin matrix and enamel matrix of DsppGFP/GFP and AmelxtdTomato male mice (as representative of AmelxtdTomato/Y hemizygous male mice), respectively. Moreover, micro-computed tomography analysis of AmelxtdTomato male mice revealed a notable reduction in enamel volume but increased dentin mineral density. DsppGFP/GFP mice had reduced dentin mineral density. To identify odontoblasts and ameloblasts from developing tooth, we examined the expression of mesenchymal cell surface molecules CD90, CD166 and epithelial cell surface molecules CD49f, Epcam1 with fluorescence on odontoblasts and ameloblasts in these mice. We found that GFP+ odontoblasts and tdTomato+ ameloblasts in tooth germ from 0.5-d-old DsppGFP/+ mice and AmelxtdTomato male mice were enriched in CD45-/Ter119-/Epcam1-/CD90+/Integrin α4+cell fractions and CD45-/Ter119-/Epcam1+/CD49f+/CD147+ cell fractions, respectively. By using antibodies against mesenchymal and epithelial cell surface molecules and fluorescence, we can easily distinguish odontoblasts from ameloblasts and isolate each cell for further studies. These mice would serve as useful models for tooth development and regeneration as well as provide concurrent observation for the differentiation processes of odontoblasts and ameloblasts in vivo and in vitro.
Collapse
Affiliation(s)
- K Isono
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - E Takahashi
- Support Unit for Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - I Miyoshi
- Department of Laboratory Animal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - M Tsuneto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Tottori, Japan
| | - M Hikosaka-Kuniishi
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - T Yamane
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - H Yamazaki
- Department of Stem Cells and Developmental Biology, Division of Fundamental Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
11
|
Shahabipour F, Oskuee RK, Shokrgozar MA, Naderi-Meshkin H, Goshayeshi L, Bonakdar S. CRISPR/Cas9 mediated GFP-human dentin matrix protein 1 (DMP1) promoter knock-in at the ROSA26 locus in mesenchymal stem cell for monitoring osteoblast differentiation. J Gene Med 2020; 22:e3288. [PMID: 33047833 DOI: 10.1002/jgm.3288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone, playing a critical role in mineralization and phosphate metabolism. One important role for the expression of DMP1 in the nucleus of preosteoblasts is the up-regulation of osteoblast-specific genes such as osteocalcin and alkaline phosphatase1 . The present study aimed to investigate the potential application of human DMP1 promoter as an indicator marker of osteoblastic differentiation. METHODS In the present study, we developed DMP1 promoter-DsRed-GFP knock-in mesenchymal stem cell (MSCs) via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system that enabled automatic detection of osteoblast differentiation. With the application of a homology-directed knock-in strategy, a 2-kb fragment of DMP1 promoter, which was inserted upstream of the GFP and DsRed reporter cassette, was integrated into the human ROSA locus to generate double fluorescent cells. We further differentiated MSCs under osteogenic media to monitor the fate of MSCs. First, cells were transfected using CRISPR/Cas9 plasmids, which culminated in MSCs with a green fluorescence intensity, then GFP-positive cells were selected using puromycin. Second, the GFP-positive MSCs were differentiated toward osteoblasts, which demonstrated an increased red fluorescence intensity. The osteoblast differentiation of MSCs was also verified by performing alkaline phosphatase and Alizarin Red assays. RESULTS We have exploited the DMP1 promoter as a predictive marker of MSC differentiation toward osteoblasts. Using the CRISPR/Cas9 technology, we have identified a distinctive change in the fluorescence intensities of GFP knock-in (green) and osteoblast differentiated MSCs 2 . CONCLUSIONS The data show that DMP1-DsRed-GFP knock-in MSCs through CRISPR/Cas9 technology provide a valuable indicator for osteoblast differentiation. Moreover, The DMP1 promoter might be used as a predictive marker of MSCs differentiated toward osteoblasts.
Collapse
Affiliation(s)
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Welcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Lena Goshayeshi
- Division of Biotechnology, Faculty of veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Greene SL, Mamaeva O, Crossman DK, Lu C, MacDougall M. Gene-Expression Analysis Identifies IGFBP2 Dysregulation in Dental Pulp Cells From Human Cleidocranial Dysplasia. Front Genet 2018; 9:178. [PMID: 29875795 PMCID: PMC5974155 DOI: 10.3389/fgene.2018.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/30/2018] [Indexed: 12/04/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant disorder affecting osteoblast differentiation, chondrocyte maturation, skeletal morphogenesis, and tooth formation. Dental phenotype in CCD include over-retained primary teeth, failed eruption of permanent teeth, and supernumerary teeth. The underlying mechanism is unclear. We previously reported one CCD patient with allelic RUNX2 deletion (CCD-011). In the current study, we determined the transcriptomic profiles of dental pulp cells from this patient compared to one sex-and-age matched non-affected individual. Next Generation RNA sequencing revealed that 60 genes were significantly dysregulated (63% upregulated and 27% downregulated). Among them, IGFBP2 (insulin-like growth factor binding protein-2) was found to be upregulated more than twofold in comparison to control cells. Stable overexpression of RUNX2 in CCD-011 pulp cells resulted in the reduction of IGFBP2. Moreover, ALPL expression was up-regulated in CCD-011 pulp cells after introduction of normal RUNX2. Promoter analysis revealed that there are four proximal putative RUNX2 binding sites in -1.5 kb IGFBP2 promoter region. Relative luciferase assay confirmed that IGFBP2 is a direct target of RUNX2. Immunohistochemistry demonstrated that IGFBP2 was expressed in odontoblasts but not ameloblasts. This report demonstrated the importance of RUNX2 in the regulation of gene profile related to dental pulp cells and provided novel insight of RUNX2 into the negative regulation of IGFBP2.
Collapse
Affiliation(s)
- Stephen L. Greene
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
- Institute of Oral Health Research, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Olga Mamaeva
- Institute of Oral Health Research, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Changming Lu
- Institute of Oral Health Research, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mary MacDougall
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Chen Z, Zhang Q, Wang H, Li W, Wang F, Wan C, Deng S, Chen H, Yin Y, Li X, Xie Z, Chen S. Klf5 Mediates Odontoblastic Differentiation through Regulating Dentin-Specific Extracellular Matrix Gene Expression during Mouse Tooth Development. Sci Rep 2017; 7:46746. [PMID: 28440310 PMCID: PMC5404268 DOI: 10.1038/srep46746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Klf5, a member of the Krüppel-like transcription factor family, has essential roles during embryonic development, cell proliferation, differentiation, migration and apoptosis. This study was to define molecular mechanism of Klf5 during the odontoblastic differentiation. The expression of Klf5, odontoblast-differentiation markers, Dspp and Dmp1 was co-localized in odontoblastic cells at different stages of mouse tooth development and mouse dental papilla mesenchymal cells. Klf5 was able to promote odontoblastic differentiation and enhance mineral formation of mouse dental papilla mesenchymal cells. Furthermore, overexpression of Klf5 could up-regulate Dspp and Dmp1 gene expressions in mouse dental papilla mesenchymal cells. In silico analysis identified that several putative Klf5 binding sites in the promoter and first intron of Dmp1 and Dspp genes that are homologous across species lines. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis indicated that Klf5 bound to these motifs in vitro and in intact cells. The responsible regions of Dmp1 gene were located in the promoter region while effect of Klf5 on Dspp activity was in the first intron of Dspp gene. Our results identify Klf5 as an activator of Dmp1 and Dspp gene transcriptions by different mechanisms and demonstrate that Klf5 plays a pivotal role in odontoblast differentiation.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China.,Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Qi Zhang
- Department of Endodontics, School &Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Han Wang
- Shangyang Dental Clinic, Hangzhou, China
| | - Wentong Li
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Feng Wang
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Chunyan Wan
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America.,Department of Stomatology, Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, College of Somatology, Qingdao University, Qingdao, China
| | - Shuli Deng
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Yixin Yin
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Xiaoyan Li
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| | - Zhijian Xie
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Shuo Chen
- Department of Developmental Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, San Antonio, United States of America
| |
Collapse
|
14
|
Abstract
Experimental studies have shown a great potential for periodontal regeneration. The limitations of periodontal regeneration largely depend on the regenerative potential at the root surface. Cellular intrinsic fiber cementum (CIFC), so-called bone-like tissue, may form instead of the desired acellular extrinsic fiber cementum (AEFC), and the interfacial tissue bonding may be weak. The periodontal ligament harbors progenitor cells that can differentiate into periodontal ligament fibroblasts, osteoblasts, and cementoblasts, but their precise location is unknown. It is also not known whether osteoblasts and cementoblasts arise from a common precursor cell line, or whether distinct precursor cell lines exist. Thus, there is limited knowledge about how cell diversity evolves in the space between the developing root and the alveolar bone. This review supports the hypothesis that AEFC is a unique tissue, while CIFC and bone share some similarities. Morphologically, functionally, and biochemically, however, CIFC is distinctly different from any bone type. There are several lines of evidence to propose that cementoblasts that produce both AEFC and CIFC are unique phenotypes that are unrelated to osteoblasts. Cementum attachment protein appears to be cementum-specific, and the expression of two proteoglycans, fibromodulin and lumican, appears to be stronger in CIFC than in bone. A theory is presented that may help explain how cell diversity evolves in the periodontal ligament. It proposes that Hertwig’s epithelial root sheath and cells derived from it play an essential role in the development and maintenance of the periodontium. The role of enamel matrix proteins in cementoblast and osteoblast differentiation and their potential use for tissue engineering are discussed.
Collapse
Affiliation(s)
- D D Bosshardt
- Department of Periodontology and Fixed Prosthodontics, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH-3010 Berne, Switzerland.
| |
Collapse
|
15
|
Qin C, D’Souza R, Feng J. Dentin Matrix Protein 1 (DMP1): New and Important Roles for Biomineralization and Phosphate Homeostasis. J Dent Res 2016; 86:1134-41. [DOI: 10.1177/154405910708601202] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previously, non-collagenous matrix proteins, such as DMP1, were viewed with little biological interest. The last decade of research has increased our understanding of DMP1, as it is now widely recognized that this protein is expressed in non-mineralized tissues, as well as in cancerous lesions. Protein chemistry studies have shown that the full length of DMP1, as a precursor, is cleaved into two distinct forms: the C-terminal and N-terminal fragments. Functional studies have demonstrated that DMP1 is essential in the maturation of odontoblasts and osteoblasts, as well as in mineralization via local and systemic mechanisms. The identification of DMP1 mutations in humans has led to the discovery of a novel disease: autosomal-recessive hypophosphatemic rickets. Furthermore, the regulation of phosphate homeostasis by DMP1 through FGF23, a newly identified hormone that is released from bone and targeted in the kidneys, sets a new direction for research that associates biomineralization with phosphate regulation.
Collapse
Affiliation(s)
- C. Qin
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - R. D’Souza
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - J.Q. Feng
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| |
Collapse
|
16
|
Qin C, Baba O, Butler WT. Post-translational Modifications of SIBLING Proteins and Their Roles in Osteogenesis and Dentinogenesis. ACTA ACUST UNITED AC 2016; 15:126-36. [PMID: 15187031 DOI: 10.1177/154411130401500302] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) of bone and dentin contains several non-collagenous proteins. One category of non-collagenous protein is termed the SIBLING (Small Integrin-Binding LIgand, N-linked Glycoprotein) family, that includes osteopontin (OPN), bone sialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP), and matrix extracellular phosphoglycoprotein (MEPE). These polyanionic SIBLING proteins are believed to play key biological roles in the mineralization of bone and dentin. Although the specific mechanisms involved in controlling bone and dentin formation are still unknown, it is clear that some functions of the SIBLING family members are dependent on the nature and extent of post-translational modifications (PTMs), such as phosphorylation, glycosylation, and proteolytic processing, since these PTMs would have significant effects on their structure. OPN and BSP are present in the ECM of bone and dentin as full-length forms, whereas amino acid sequencing indicates that DMP1 and DSPP exist as proteolytically processed fragments that result from scission of X-Asp bonds. We hypothesized that the processing of DMP1 and DSPP is catalyzed by the PHEX enzyme, since this protein, an endopeptidase that is predominantly expressed in bone and tooth, has a strong preference for cleavage at the NH2-terminus of aspartyl residue. We envision that the proteolytic processing of DMP1 and DSPP may be an activation process that plays a significant, crucial role in osteogenesis and dentinogenesis, and that a failure in this processing would cause defective mineralization in bone and dentin, as observed in X-linked hypophosphatemic rickets.
Collapse
Affiliation(s)
- C Qin
- The Department of Endodontics and Periodontics, University of Texas-Houston Health Science Center, Dental Branch, Houston, TX 77030, USA.
| | | | | |
Collapse
|
17
|
Accelerated enamel mineralization in Dspp mutant mice. Matrix Biol 2016; 52-54:246-259. [PMID: 26780724 DOI: 10.1016/j.matbio.2016.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
Abstract
Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases - dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp(-/-) mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp(-/-) animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp(-/-) incisors compared to the Dspp(+/-) control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel.
Collapse
|
18
|
Elucidating the evolution of hominid dentition in the age of phenomics, modularity, and quantitative genetics. Ann Anat 2016; 203:3-11. [DOI: 10.1016/j.aanat.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022]
|
19
|
Maginot M, Lin S, Liu Y, Yuan B, Feng JQ, Aswath PB. The in vivo role of DMP-1 and serum phosphate on bone mineral composition. Bone 2015; 81:602-613. [PMID: 26303287 DOI: 10.1016/j.bone.2015.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
Abstract
Human DMP1 mutations or Dmp1-null (KO) mice display hypophosphatemia rickets, suggesting a causative role of low phosphate (P) in development of osteomalacia. To address the direct contribution of P to the in vivo bone mineralization we analyzed the properties of femurs obtained from Dmp1 null mice and wild type (WT) mice under a normal or high phosphorous (HiP) diet using combined assays, including histological examination, micro computed tomography (μCT), X-ray absorption near edge structure (XANES) spectroscopy and Raman spectroscopy. Histology and XANES indicate that WT mice have phosphate coordinated with Ca in the form of hydroxyapatite and tricalcium phosphate, while the KO mice have poorly coordinated soluble phosphates in their structure in both the normal and HiP diets. Raman spectroscopy and XANES indicate a higher carbonate/phosphate ratio and a low mineral/matrix ratio in the osteoid clusters in the KO femurs, which was only partially improved by HiP diets. Thus, we conclude that the hypophosphatemia induced osteomalacia phenotype in Dmp1 KO mice is contributed by at least two factors: the low Pi level and the DMP1 local function in mineralization.
Collapse
Affiliation(s)
- Megen Maginot
- Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Shuxian Lin
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas TX 75246, United States
| | - Ying Liu
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas TX 75246, United States
| | - Baozhi Yuan
- School of Medicine and Public Health, Univ. Wisconsin, Madison, WI 53715, United States
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas TX 75246, United States
| | - Pranesh B Aswath
- Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|
20
|
Wang L, Tran AB, Nociti FH, Thumbigere-Math V, Foster BL, Krieger CC, Kantovitz KR, Novince CM, Koh AJ, McCauley LK, Somerman MJ. PTH and Vitamin D Repress DMP1 in Cementoblasts. J Dent Res 2015; 94:1408-16. [PMID: 26276370 DOI: 10.1177/0022034515599726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A complex feedback mechanism between parathyroid hormone (PTH), 1,25(OH)2D3 (1,25D), and fibroblast growth factor 23 (FGF-23) maintains mineral homeostasis, in part by regulating calcium and phosphate absorption/reabsorption. Previously, we showed that 1,25D regulates mineral homeostasis by repressing dentin matrix protein 1 (DMP1) via the vitamin D receptor pathway. Similar to 1,25D, PTH may modulate DMP1, but the underlying mechanism remains unknown. Immortalized murine cementoblasts (OCCM.30), similar to osteoblasts and known to express DMP1, were treated with PTH (1-34). Real-time quantitative polymerase chain reaction (PCR) and Western blot revealed that PTH decreased DMP1 gene transcription (85%) and protein expression (30%), respectively. PTH mediated the downregulation of DMP1 via the cAMP/protein kinase A (PKA) pathway. Immunohistochemistry confirmed the decreased localization of DMP1 in vivo in cellular cementum and alveolar bone of mice treated with a single dose (50 µg/kg) of PTH (1-34). RNA-seq was employed to further identify patterns of gene expression shared by PTH and 1,25D in regulating DMP1, as well as other factors involved in mineral homeostasis. PTH and 1,25D mutually upregulated 36 genes and mutually downregulated 27 genes by ≥2-fold expression (P ≤ 0.05). Many identified genes were linked with the regulation of bone/tooth homeostasis, cell growth and differentiation, calcium signaling, and DMP1 transcription. Validation of RNA-seq results via PCR array confirmed a similar gene expression pattern in response to PTH and 1,25D treatment. Collectively, these results suggest that PTH and 1,25D share complementary effects in maintaining mineral homeostasis by mutual regulation of genes/proteins associated with calcium and phosphate metabolism while also exerting distinct roles on factors modulating mineral metabolism. Furthermore, PTH may modulate phosphate homeostasis by downregulating DMP1 expression via the cAMP/PKA pathway. Targeting genes/proteins mutually governed by PTH and 1,25D may be a viable approach for designing new therapies for preserving mineralized tissue health.
Collapse
Affiliation(s)
- L Wang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - A B Tran
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - F H Nociti
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry, Campinas State University, Piracicaba, SP, Brazil
| | - V Thumbigere-Math
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - B L Foster
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - C C Krieger
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - K R Kantovitz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry, Campinas State University, Piracicaba, SP, Brazil
| | - C M Novince
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - A J Koh
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - L K McCauley
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
21
|
Expression of DMP1 in the developing mouse tongue embryo. Ann Anat 2015; 200:136-48. [PMID: 25978185 DOI: 10.1016/j.aanat.2015.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/03/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023]
Abstract
Dentin matrix protein 1 (DMP-1) is an important factor in the mineralization of hard tissues. However, it has many other functions in addition to the regulation of mineralized tissues. We analyzed the expression and localization of DMP-1 by immunohistochemical staining and in situ hybridization in the developing mouse tongue during embryonic days 12.5 (E12.5), E14.5, E17.5, and E18.5. We also detected the mRNA abundance of tongue morphogenesis markers such as FGF6, TGF-β1, Collagen I, osteocalcin, chondromodulin 1, tenomodulin, Vascular endothelial growth factor (VEGF), caspase-3, and Aifm from embryonic stages by real-time RT-PCR. The antisense probe for DMP-1 was detected in a few mesenchymal cells surrounding blood vessels at E12.5, and faint localization was seen at E18.5 in the embryonic mouse tongue by in situ hybridization. The DMP-1 and osteocalcin abundance levels gradually increased compared with the other tongue markers from E12.5 to E18.5 (p<0.001). Cluster analyses identified the following distinct clusters for mRNA abundance in the tongue: cluster 1, E12.5; cluster 2, E14.5 and E17.5; and cluster 3, E18.5. The positive correlation between DMP-1 and osteocalcin (Pearson's r=0.685; p<0.05) and negative correlation between DMP-1 and Caspase-3 (Pearson's r=-0.632; p<0.05) were analyzed. These data suggested that DMP-1 potentially influences osteocalcin and Caspase-3 during mouse tongue development and morphogenesis. DMP-1 also affects the angiogenic marker VEGF in specific stages and areas, terminating the differentiation of the tongue from other developing tissues. We conclude that DMP-1 may be involved in regulating the temporal expression at embryonic stages in the mouse tongue.
Collapse
|
22
|
Padovano JD, Ravindran S, Snee PT, Ramachandran A, Bedran-Russo AK, George A. DMP1-derived peptides promote remineralization of human dentin. J Dent Res 2015; 94:608-14. [PMID: 25694469 DOI: 10.1177/0022034515572441] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Remineralization of dentin during dental caries is of considerable clinical interest. Dentin matrix protein 1 (DMP1) is a non-collagenous calcium-binding protein that plays a critical role in biomineralization. In the present study, we tested if peptides derived from DMP1 can be used for dentin remineralization. Peptide pA (pA, MW = 1.726 kDa) and peptide pB (pB, MW = 2.185), containing common collagen-binding domains and unique calcium-binding domains, were synthesized by solid-phase chemistry. An extreme caries lesion scenario was created by collagenase digestion, and the biomineral-nucleating potential of these peptides was ascertained when coated on collagenase-treated dentin matrix and control, native human dentin matrix under physiological levels of calcium and phosphate. Scanning electron microscopy analysis suggests that peptide pB was an effective nucleator when compared with pA. However, a 1:4 ratio of pA to pB was determined to be ideal for dentin remineralization, based on hydroxyapatite (HA) morphology and calcium/phosphorus ratios. Interestingly, HA was nucleated on collagenase-challenged dentin with as little as 20 min of 1:4 peptide incubation. Electron diffraction confirmed the presence of large HA crystals that produced a diffraction pattern indicative of a rod-like crystal structure. These findings suggest that DMP1-derived peptides may be useful to modulate mineral deposition and subsequent formation of HA when exposed to physiological concentrations of calcium and phosphate.
Collapse
Affiliation(s)
- J D Padovano
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - S Ravindran
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - P T Snee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - A Ramachandran
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - A K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - A George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
24
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
25
|
Jacob A, Zhang Y, George A. Transcriptional regulation of dentin matrix protein 1 (DMP1) in odontoblasts and osteoblasts. Connect Tissue Res 2014; 55 Suppl 1:107-12. [PMID: 25158192 DOI: 10.3109/03008207.2014.923850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dentin matrix protein 1 (DMP1) is a noncollagenous protein important for the mineralization of bones and teeth. Examination of the transcription factor binding sites within the 6.24 kb upstream sequence of rat DMP1 promoter by Matinspector software revealed that TCF11 had the highest number (six) of binding sites with 100% matrix similarity. Four of these sites are conserved in the mouse DMP1 promoter. TCF11 is a member of the Cap-n-Collar (cnc) family of basic leucine zipper transcription factors. Results from this study showed that TCF11 can bind specifically to the DMP1 promoter and activate its transcription in odontoblasts and osteoblasts. This could be attributed to both direct and indirect effects of TCF11. Electrophoretic mobility shift (EMSA) assay showed differential interaction between TCF11 and its binding sites on the DMP1 promoter. 21 bp oligos spanning the TCF11 matrix were used as probes in EMSA, and the results showed that the binding was specific to the sequence of the TCF11 matrix as well as the flanking sequences and this is typical of a heterodimer binding site. Results also showed changes in the binding pattern when cells were differentiated in osteogenic medium for 2 d. Thus, TCF11 may play an important role in the transcriptional regulation of DMP1 gene.
Collapse
Affiliation(s)
- Alexander Jacob
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois , Chicago, IL , USA
| | | | | |
Collapse
|
26
|
Prasadam I, Zhou Y, Shi W, Crawford R, Xiao Y. Role of dentin matrix protein 1 in cartilage redifferentiation and osteoarthritis. Rheumatology (Oxford) 2014; 53:2280-7. [PMID: 24987156 DOI: 10.1093/rheumatology/keu262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE The aim of this study was to test the possible involvement, relevance and significance of dentin matrix protein 1 (DMP1) in chondrocyte redifferentiation and OA. METHODS To examine the function of DMP1 in vitro, bone marrow stromal cells (BMSCs) and articular chondrocytes (ACs) were isolated and differentiated in micromasses in the presence or absence of DMP1 small interfering RNA and analysed for chondrogenic phenotype. The association of DMP1 expression with OA progression was analysed time dependently in the OA menisectomy rat model and in grade-specific OA human samples. RESULTS It was found that DMP1 was strongly related to chondrogenesis, which was evidenced by the strong expression of DMP1 in the 14.5-day mouse embryonic cartilage development stage and in femoral heads of post-natal days 0 and 4. In vitro chondrogenesis in BMSCs and ACs was accompanied by a gradual increase in DMP1 expression at both the gene and protein levels. In addition, knockdown of DMP1 expression led to decreased chondrocyte marker genes, such as COL2A1, ACAN and SOX9, and an increase in the expression of COL10A and MMP13 in ACs. Moreover, treatment with IL-1β, a well-known catabolic culprit of proteoglycan matrix loss, significantly reduced the expression of DMP1. Furthermore, we also observed the suppression of DMP1 protein in a grade-specific manner in knee joint samples from patients with OA. In the menisectomy-induced OA model, an increase in the Mankin score was accompanied by the gradual loss of DMP1 expression. CONCLUSION Observations from this study suggest that DMP1 may play an important role in maintaining the chondrogenic phenotype and its possible involvement in altered cartilage matrix remodelling and degradation in disease conditions like OA.
Collapse
Affiliation(s)
- Indira Prasadam
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia.
| | - Yinghong Zhou
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia
| | - Wei Shi
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia
| | - Ross Crawford
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia. Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia
| | - Yin Xiao
- Medical Device Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology and Orthopaedic Department, Prince Charles Hospital, Brisbane, Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Lee JW, Yamaguchi A, Iimura T. Functional heterogeneity of osteocytes in FGF23 production: the possible involvement of DMP1 as a direct negative regulator. BONEKEY REPORTS 2014; 3:543. [PMID: 24991406 PMCID: PMC4078414 DOI: 10.1038/bonekey.2014.38] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/11/2014] [Indexed: 01/25/2023]
Abstract
Fibroblast growth factor 23 (FGF23) and dentin matrix protein (DMP1) are hallmarks of osteocytes in bone. However, the mechanisms underlying the actions of DMP1 as a local factor regulating FGF23 and bone mineralization are not well understood. We first observed spatially distinct distributions of FGF23- and DMP1-positive osteocytic lacunae in rat femurs using immunohistochemistry. Three-dimensional immunofluorescence morphometry further demonstrated that the distribution and relative expression levels of these two proteins exhibited reciprocally reversed patterns especially in midshaft cortical bone. These in vivo findings suggest a direct role of DMP1 in FGF23 expression in osteocytes. We next observed that the inoculation of recombinant DMP1 in UMR-106 osteoblast/osteocyte-like cells and long-cultured MC3T3-E1 osteoblastic cells showed significant downregulation of FGF23 production. This effect was rescued by incubation with an focal adhesion kinase (FAK) inhibitor or MEK (mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK)) inhibitor but not inhibitors of phosphoinositide 3-kinase or Rho kinase. Consistently, the levels of phosphorylated FAK, ERK and p38 were significantly elevated, indicating that exogenous DMP1 is capable of activating FAK-mediated MAPK signaling. These findings suggest that DMP1 is a local, direct and negative regulator of FGF23 production in osteocytes involved in the FAK-mediated MAPK pathway, proposing a relevant pathway that coordinates the extracellular environment of osteocytic lacunae and bone metabolism.
Collapse
Affiliation(s)
- Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Translational Research Center and Artificial Joint Integrated Center, Ehime University Hospital, Ehime, Japan
| |
Collapse
|
28
|
Xie X, Ma S, Li C, Liu P, Wang H, Chen L, Qin C. Expression of Small Integrin-Binding LIgand N-linked Glycoproteins (SIBLINGs) in the reparative dentin of rat molars. Dent Traumatol 2014; 30:285-95. [PMID: 24502800 DOI: 10.1111/edt.12093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 12/27/2022]
Abstract
AIM To analyze the expression and distribution of Small Integrin-Binding LIgand N-linked Glycoproteins (SIBLINGs) in reparative dentin (RepD). METHODOLOGY Cavities on the mesial surfaces of rat molars were prepared to expose the pulp, and a calcium hydroxide agent was applied to cap the exposed pulp. The molars with pulp capping were extracted at postoperative 1, 2, and 4 weeks. The immunolocalization of four SIBLINGs, dentin matrix protein 1 (DMP1), dentin sialoprotein (DSP), bone sialoprotein (BSP), and osteopontin (OPN) in RepD, was analyzed in comparison with reactionary dentin (ReaD) and primary dentin (PD). RESULTS At two weeks after operation, the region of the exposed pulp formed a layer of reparative dentin bridge sealing the communication between the cavity and pulp chamber. Dentinal tubules in RepD were more irregular in shape and fewer in number than PD. At postoperative 2 and 4 weeks, RepD had lower levels of DMP1 and DSP than PD. BSP and OPN were present in RepD, but not in PD. RepD showed certain similarities to ReaD in the expression of SIBLINGs. CONCLUSIONS The reduced levels of DMP1 and DSP may be associated with the decreased number of dentinal tubules in RepD. The expression of BSP and OPN in RepD indicates that the odontoblast-like cells were attempting to produce a hard tissue at a very rapid pace. These findings suggest that in response to the surgical injury, the newly differentiated odontoblast-like cells altered their synthesis of the dentinogenesis-related proteins and produced a hard tissue that is an intermediate between dentin and bone.
Collapse
Affiliation(s)
- Xiaohua Xie
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Endodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed.
Collapse
Affiliation(s)
- Brian L Foster
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
30
|
Yonekura T, Homma H, Sakurai A, Moriguchi M, Miake Y, Toyosawa S, Shintani S. Identification, characterization, and expression of dentin matrix protein 1 gene inXenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:525-37. [DOI: 10.1002/jez.b.22529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Tomoko Yonekura
- Department of Pediatric Dentistry; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Hiromi Homma
- Department of Pediatric Dentistry; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Atsuo Sakurai
- Department of Pediatric Dentistry; Tokyo Dental College; Mihama-ku Chiba Japan
- Oral Health Science Center hrc8; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Mitsuko Moriguchi
- Department of Ultrastructural Science; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Yasuo Miake
- Department of Ultrastructural Science; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Satoru Toyosawa
- Department of Oral Pathology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Seikou Shintani
- Department of Pediatric Dentistry; Tokyo Dental College; Mihama-ku Chiba Japan
- Oral Health Science Center hrc8; Tokyo Dental College; Mihama-ku Chiba Japan
| |
Collapse
|
31
|
Cao Y, Liu W, Ning T, Mei ML, Li QL, Lo ECM, Chu CH. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine. Clin Oral Investig 2013; 18:873-81. [DOI: 10.1007/s00784-013-1035-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 07/02/2013] [Indexed: 11/29/2022]
|
32
|
Nudelman F, Lausch AJ, Sommerdijk NAJM, Sone ED. In vitro models of collagen biomineralization. J Struct Biol 2013; 183:258-69. [PMID: 23597833 DOI: 10.1016/j.jsb.2013.04.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 11/27/2022]
Abstract
Over the last several years, significant progress has been made toward understanding the mechanisms involved in the mineralization of hard collagenous tissues, such as bone and dentin. Particularly notable are the identification of transient mineral phases that are precursors to carbonated hydroxyapatite, the identification and characterization of non-collagenous proteins that are involved in controlling mineralization, and significant improvements in our understanding of the structure of collagen. These advances not only represent a paradigm shift in the way collagen mineralization is viewed and understood, but have also brought new challenges to light. In this review, we discuss how recent in vitro models have addressed critical questions regarding the role of the non-collagenous proteins in controlling mineralization, the nature of the interactions between amorphous calcium phosphate and collagen during the early stages of mineralization, and the role of collagen in the mineralization process. We discuss the significance of these findings in expanding our understanding of collagen biomineralization, while addressing some of the limitations that are inherent to in vitro systems.
Collapse
Affiliation(s)
- Fabio Nudelman
- Laboratory of Materials and Interface Chemistry and Soft Matter CryoTEM Unit, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Li C, Xie X, Wang X, Sun Y, Liu P, Chen L, Qin C. Differential expression and localization of dentin matrix protein 1 (DMP1) fragments in mouse submandibular glands. J Mol Histol 2013; 44:231-9. [PMID: 23111467 PMCID: PMC3694222 DOI: 10.1007/s10735-012-9464-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
It has been demonstrated that dentin matrix protein 1 (DMP1) is an essential regulator in the formation of bone and tooth. In addition to the mineralized tissues, DMP1 is also expressed in the non-mineralized tissues such as kidney, brain and salivary glands. Some studies have shown that the expression of DMP1 is significantly elevated in cancerous glands, while details about the expression and localization patterns of DMP1 in these glandular tissues still remain largely unknown. In this study, with multiple approaches, we systematically analyzed the expression and localization of DMP1 in mouse submandibular glands (SMGs). The results showed that although DMP1 was expressed in both female and male mouse SMGs, the mRNA levels of DMP1 in male mice were higher than those in female mice after the appearance of granular convoluted tubule (GCT). In mouse SMGs, DMP1 was primarily present as the 46 kDa C-terminal fragment and the 37 kDa N-terminal fragment. The C-terminal fragment was mainly localized in the nuclei of acinar and ductal cells, while the N-terminal fragment was restricted to the cytoplasm of ductal cells. This study showed the expression of DMP1 in the GCT of male mice, a novel finding different from the result of previous reports. Collectively, the differential localization patterns of DMP1 fragments indicate that different forms of DMP1 may play distinct roles in the SMGs.
Collapse
Affiliation(s)
- Changcheng Li
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China. Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| | - Xiaohua Xie
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| | - Yao Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| | - Peihong Liu
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Li Chen
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| |
Collapse
|
34
|
Silvent J, Sire JY, Delgado S. The dentin matrix acidic phosphoprotein 1 (DMP1) in the light of mammalian evolution. J Mol Evol 2013; 76:59-70. [PMID: 23361408 DOI: 10.1007/s00239-013-9539-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/06/2013] [Indexed: 12/17/2022]
Abstract
Dentin matrix acidic phosphoprotein 1 (DMP1) is an acidic, highly phosphorylated, noncollagenous protein secreted during dentin and bone formation. Previous functional studies of DMP1 have revealed various motifs playing a role in either mineralization or cell differentiation. We performed an evolutionary analysis of DMP1 to identify residues and motifs that were conserved during 220 millions years (Ma) of mammalian evolution, and hence have an important function. In silico search provided us with 41 sequences that were aligned and analyzed using the Hyphy program. We showed that DMP1 contains 55 positions that were kept unchanged for 220 Ma. We also defined in a more precise manner some motifs that were already known (i.e., cleavage sites, RGD motif, ASARM peptide, glycosaminoglycan chain attachment site, nuclear localization signal sites, and dentin sialophosphoprotein-binding site), and we found five, highly conserved, new functional motifs. In the near future, functional studies could be performed to understand the role played by them.
Collapse
|
35
|
Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol 2012; 214:241-55. [PMID: 22700194 DOI: 10.1530/joe-12-0143] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein. These proteins share many structural characteristics and are primarily located in bone and dentin. Accumulating evidence has implicated the SIBLING proteins in matrix mineralisation. Therefore, in this review, we discuss the individual role that each of the SIBLING proteins has in this highly orchestrated process. In particular, we emphasise how the nature and extent of their proteolytic processing and post-translational modification affect their functional role. Finally, we describe the likely roles of the SIBLING proteins in clinical disorders of hypophosphataemia and their potential therapeutic use.
Collapse
Affiliation(s)
- Katherine A Staines
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Edinburgh, Midlothian EH25 9RG, UK.
| | | | | |
Collapse
|
36
|
Orsini G, Ruggeri A, Mazzoni A, Nato F, Manzoli L, Putignano A, Di Lenarda R, Tjäderhane L, Breschi L. A review of the nature, role, and function of dentin non-collagenous proteins. Part 1: proteoglycans and glycoproteins. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00270.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Riksen EA, Petzold C, Brookes S, Lyngstadaas SP, Reseland JE. Human osteoblastic cells discriminate between 20-kDa amelogenin isoforms. Eur J Oral Sci 2012; 119 Suppl 1:357-65. [PMID: 22243268 DOI: 10.1111/j.1600-0722.2011.00912.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enamel matrix derivative (EMD) is used to stimulate healing of alveolar bone after destructive marginal periodontitis; however, the roles of the different EMD constituents are unclear. The aim here was to compare the effect of two EMD fractions (A1 and A2) on primary human osteoblasts cultured in the presence of 50 μg ml(-1) of A1, A2, or EMD. SDS-PAGE showed that A1 and A2 were comprised of amelogenins migrating at around 20 kDa. Fourier transform infrared (FTIR) analysis revealed that A1 and A2 had different secondary structures, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) identified different peptide mass values. Osteoblasts responded differently to A1 and A2. Whereas A1 enhanced the proliferation [measured by the incorporation of 5-bromo-2'-deoxyuridine (BrdU)] of osteoblasts, the expression of runt-related transcription factor-2 (RUNX2) mRNA, and the secretion of interleukin 6 (IL-6) into the cell culture medium, exposure to A2 resulted in increased alkaline phosphatase (ALP) activity, increased expression of CD44 mRNA, and increased secretion of osteoprotegrin (OPG) and receptor activator of nuclear factor-kappaB ligand (RANKL). The level of osteocalcin in the cell culture medium was increased after all treatments, while A2 stimulated the expression of dentin matrix protein 1 (DMP1) mRNA. The results suggest that both A1 and A2 participate in the observed effect of EMD, but have different effects on the expression of osteoblast mRNA and the secretion of osteoblast protein, and thus might facilitate the differentiation of a different phenotype.
Collapse
Affiliation(s)
- Elisabeth A Riksen
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
38
|
Phylogenetic analysis and expression patterns of p16 and p19 in Paracentrotus lividus embryos. Dev Genes Evol 2012; 222:245-51. [DOI: 10.1007/s00427-012-0405-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
39
|
YUE JING, WU BULING, GAO JIE, HUANG XIN, LI CHANGXIA, MA DANDAN, FANG FUCHUN. DMP1 is a target of let-7 in dental pulp cells. Int J Mol Med 2012; 30:295-301. [DOI: 10.3892/ijmm.2012.982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/05/2012] [Indexed: 11/06/2022] Open
|
40
|
Lee HK, Park SJ, Oh HJ, Kim JW, Bae HS, Park JC. Expression pattern, subcellular localization, and functional implications of ODAM in ameloblasts, odontoblasts, osteoblasts, and various cancer cells. Gene Expr Patterns 2012; 12:102-8. [DOI: 10.1016/j.gep.2012.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/01/2012] [Accepted: 02/19/2012] [Indexed: 10/28/2022]
|
41
|
|
42
|
Quispe-Salcedo A, Ida-Yonemochi H, Nakatomi M, Ohshima H. Expression patterns of nestin and dentin sialoprotein during dentinogenesis in mice. Biomed Res 2012; 33:119-32. [DOI: 10.2220/biomedres.33.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Bhatia A, Albazzaz M, Espinoza Orías AA, Inoue N, Miller LM, Acerbo A, George A, Sumner DR. Overexpression of DMP1 accelerates mineralization and alters cortical bone biomechanical properties in vivo. J Mech Behav Biomed Mater 2011; 5:1-8. [PMID: 22100074 DOI: 10.1016/j.jmbbm.2011.08.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 11/26/2022]
Abstract
Dentin matrix protein-1 (DMP1) is a key regulator of biomineralization. Here, we examine changes in structural, geometric, and material properties of cortical bone in a transgenic mouse model overexpressing DMP1. Micro-computed tomography and three-point bending were performed on 90 femora of wild type and transgenic mice at 1, 2, 4, and 6 months. Fourier transform infrared imaging was performed at 2 months. We found that the transgenic femurs were longer (p<0.01), more robust in cross-section (p<0.05), stronger (p<0.05), but had less post-yield strain and displacement (p<0.01), and higher tissue mineral density (p<0.01) than the wild type femurs at 1 and 2 months. At 2 months, the transgenic femurs also had a higher mineral-to-matrix ratio (p<0.05) and lower carbonate substitution (p<0.05) compared to wild type femurs. These findings indicate that increased mineralization caused by overexpressing DMP1 led to increased structural cortical bone properties associated with decreased ductility during the early post-natal period.
Collapse
Affiliation(s)
- Ankush Bhatia
- Department of Anatomy and Cell Biology, Rush Medical College, 600 S Paulina St., Rm 507, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Deshpande AS, Fang PA, Zhang X, Jayaraman T, Sfeir C, Beniash E. Primary structure and phosphorylation of dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP) uniquely determine their role in biomineralization. Biomacromolecules 2011; 12:2933-45. [PMID: 21736373 DOI: 10.1021/bm2005214] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The SIBLING (small integrin-binding ligand N-linked glycoproteins) family is the major group of noncollagenous proteins in bone and dentin. These extremely acidic and highly phosphorylated extracellular proteins play critical roles in the formation of collagenous mineralized tissues. Whereas the lack of individual SIBLINGs causes significant mineralization defects in vivo, none of them led to a complete cessation of mineralization suggesting that these proteins have overlapping functions. To assess whether different SIBLINGs regulate biomineralization in a similar manner and how phosphorylation impacts their activity, we studied the effects of two SIBLINGs, dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP), on mineral morphology and organization in vitro. Our results demonstrate distinct differences in the effects of these proteins on mineralization. We show that phosphorylation has a profound effect on the regulation of mineralization by both proteins. Specifically, both phosphorylated proteins facilitated organized mineralization of collagen fibrils and phosphorylated DMP1-induced formation of organized mineral bundles in the absence of collagen. In summary, these results indicate that the primary structure and phosphorylation uniquely determine functions of individual SIBLINGs in regulation of mineral morphology and organization.
Collapse
Affiliation(s)
- Atul Suresh Deshpande
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | | | | | | |
Collapse
|
45
|
Tada H, Nemoto E, Foster BL, Somerman MJ, Shimauchi H. Phosphate increases bone morphogenetic protein-2 expression through cAMP-dependent protein kinase and ERK1/2 pathways in human dental pulp cells. Bone 2011; 48:1409-16. [PMID: 21419244 DOI: 10.1016/j.bone.2011.03.675] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 03/08/2011] [Indexed: 12/11/2022]
Abstract
Extracellular phosphate (Pi) is known to play a key role in promoting osteoblastic differentiation by altering gene expression and cellular function. Importantly, it may be possible to use this knowledge as a means to deliver Pi to local sites to regenerate mineralized tissues associated with the oral cavity. Therefore, we determined the ability of Pi to regulate differentiation of pulp cells toward an odontoblast phenotype and further determined if this was in part due to an increase in the expression of bone morphogenetic protein (BMP)-2, a crucial regulator of mineralization. Results showed that Pi increased BMP-2 expression at both mRNA and protein level and BMP-2 promoter activity. Signaling inhibitors revealed that increased BMP-2 expression was dependent on cAMP/protein kinase A but not the protein kinase C signaling pathway. Treatment with 8-Br-cAMP, a cell-permeable analog of cAMP, enhanced Pi-mediated BMP-2 expression, but treatment with 8-Br-cAMP alone did not increase BMP-2, suggesting that cAMP is indispensable but not sufficient for Pi-mediated BMP-2 expression. Pi activated ERK1/2, and treatment with PD98059, an ERK1/2 inhibitor, suppressed Pi-mediated BMP-2 increase, indicating a requirement for activation of ERK1/2. ERK1/2 pathway may operate independently of cAMP-dependent signaling because MDL12,330A, an adenylate cyclase inhibitor, did not inhibit phosphorylation of ERK1/2 in response to Pi. Pulp cells expressed the sodium-dependent Pi transporter (NaPi) III type, but not NaPi-I type or NaPi-II type. Pi-mediated BMP-2 increase was inhibited in the presence of phosphonoformic acid, an inhibitor not only of NaPi transport but also of crystal nucleation. Furthermore, a similar inhibition was observed in the presence of pyrophosphate, a mineralization inhibitor. These findings demonstrate, for the first time, that Pi regulates BMP-2 expression via cAMP/protein kinase A and ERK1/2 pathways in human dental pulp cells.
Collapse
Affiliation(s)
- Hiroyuki Tada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | | | | | | | | |
Collapse
|
46
|
Gorski JP. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed) 2011; 16:2598-621. [PMID: 21622198 DOI: 10.2741/3875] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of genetics has dramatically affected our understanding of the functions of non-collagenous proteins. Specifically, mutations and knockouts have defined their cellular spectrum of actions. However, the biochemical mechanisms mediated by non-collagenous proteins in biomineralization remain elusive. It is likely that this understanding will require more focused functional testing at the protein, cell, and tissue level. Although initially viewed as rather redundant and static acidic calcium binding proteins, it is now clear that non-collagenous proteins in mineralizing tissues represent diverse entities capable of forming multiple protein-protein interactions which act in positive and negative ways to regulate the process of bone mineralization. Several new examples from the author's laboratory are provided which illustrate this theme including an apparent activating effect of hydroxyapatite crystals on metalloproteinases. This review emphasizes the view that secreted non-collagenous proteins in mineralizing bone actively participate in the mineralization process and ultimately control where and how much mineral crystal is deposited, as well as determining the quality and biomechanical properties of the mineralized matrix produced.
Collapse
Affiliation(s)
- Jeffrey Paul Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Dept. of Oral Biology, Sch. Of Dentistry, Univ. of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
47
|
Sun Y, Chen L, Ma S, Zhou J, Zhang H, Feng JQ, Qin C. Roles of DMP1 processing in osteogenesis, dentinogenesis and chondrogenesis. Cells Tissues Organs 2011; 194:199-204. [PMID: 21555863 DOI: 10.1159/000324672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dentin matrix protein 1 (DMP1) is an acidic protein that plays critical roles in osteogenesis and dentinogenesis. Protein chemistry studies have demonstrated that DMP1 primarily exists as processed NH₂⁻ and COOH-terminal fragments in the extracellular matrix of bone and dentin. Our earlier work showed that the substitution of Asp²¹³ (a residue at a cleavage site) by Ala²¹³ blocks the processing of mouse DMP1 in vitro. Recently, we generated transgenic mice expressing this mutant DMP1 (designated 'D213A-DMP1'). By crossbreeding these transgenic mice with Dmp1-knockout (Dmp1-KO) mice, we obtained mice expressing the D213A-DMP1 transgene in the Dmp1-null background (named 'Dmp1-KO/D213A-Tg' mice). In this study, we analyzed the long bone, mandible, dentin, and cartilage of Dmp1-KO/D213A-Tg mice in comparison with wild-type, Dmp1-KO, and Dmp1-KO mice expressing the normal DMP1 transgene (Dmp1-KO/normal-Tg). Our results showed that D213A-DMP1 was barely cleaved in the dentin matrix of Dmp1-KO/D213A-Tg mice and the expression of D213A-DMP1 failed to rescue the developmental defects in Dmp1-null mice. Interestingly, enlarged growth plates and condylar cartilages were observed in Dmp1-KO/D213A-Tg mice, indicating a potential role of the full-length form of DMP1 in chondrogenesis.
Collapse
Affiliation(s)
- Yao Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Tex., USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Eapen A, Ramachandran A, Pratap J, George A. Activation of the ERK1/2 mitogen-activated protein kinase cascade by dentin matrix protein 1 promotes osteoblast differentiation. Cells Tissues Organs 2011; 194:255-60. [PMID: 21546758 PMCID: PMC3178087 DOI: 10.1159/000324258] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DMP1 has been shown to play many roles in osteogenesis. We recently demonstrated that calcium-mediated stress kinase activation by DMP1 leads to osteoblast differentiation. In this study we demonstrate that DMP1 can also activate the extracellular signal-regulated kinase (ERK)-MAPK pathway. This activation was mediated through the RGD integrin-binding domain in DMP1. Further, we demonstrate that Runx2, an essential transcription factor, is stimulated by the ERK-MAPK pathway.
Collapse
Affiliation(s)
- Asha Eapen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago, Chicago, Ill., USA
| | - Amsaveni Ramachandran
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago, Chicago, Ill., USA
| | - Jitesh Pratap
- Anatomy and Cell Biology, Rush University Medical Center, Chicago, Ill., USA
| | - Anne George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago, Chicago, Ill., USA
| |
Collapse
|
49
|
Bardet C, Vincent C, Lajarille MC, Jaffredo T, Sire JY. OC-116, the chicken ortholog of mammalian MEPE found in eggshell, is also expressed in bone cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 314:653-62. [PMID: 20665709 DOI: 10.1002/jez.b.21366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In chicken, ovocleidin 116 (OC-116) is found in the eggshell matrix and its encoding gene, OC-116, is expressed in uterine cells. In mammals, its orthologue MEPE encodes the matrix extracellular phosphoglycoprotein (MEPE), which has been shown to be involved in bone mineralization. Using RT-PCR and in situ hybridization on sections, we have checked whether OC-116 was also expressed in osteoblasts and osteocytes during bone development and mineralization in chicken embryos. We monitored OC-116 expression in the tibia and mandible of a growth series of chicken embryos from E3 to E19. Transcripts were identified in the osteoblasts as early as E5 in the tibia and E7 in the mandible, before matrix mineralization, then from these stages onwards in both the osteoblasts lining the mineralized bone matrix and the osteocytes. Therefore, early in chicken ontogeny and as soon as osteogenesis begins, OC-116 is involved. Its function, which remains still unknown, is maintained during further bone growth and mineralization, and later in adult, in which it is recruited for eggshell formation. We hypothesize that the ancestral OC-116/MEPE in a stem amniote was involved in these two functions and that the loss of eggshell in the mammalian lineage has probably favored the recruitment of some MEPE domains toward new functions in osteogenesis and mineralization, and in phosphatemia regulation.
Collapse
Affiliation(s)
- Claire Bardet
- Université Pierre et Marie Curie, Systématique-Adaptation-Evolution, 7 quai Saint-Bernard, Paris, France
| | | | | | | | | |
Collapse
|
50
|
Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YYW. Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 2011; 239:2659-73. [PMID: 20803598 DOI: 10.1002/dvdy.22405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Otoconia, developed during late gestation and perinatal stages, couple mechanic force to the sensory hair cells in the vestibule for motion detection and bodily balance. In the present work, we have investigated whether compensatory deposition of another protein(s) may have taken place to partially alleviate the detrimental effects of Oc90 deletion by analyzing a comprehensive list of plausible candidates, and have found a drastic increase in the deposition of Sparc-like 1 (aka Sc1 or hevin) in Oc90 null versus wt otoconia. We show that such up-regulation is specific to Sc1, and that stable transfection of Oc90 and Sc1 full-length expression constructs in NIH/3T3 cells indeed promotes matrix calcification. Analysis and modeling of Oc90 and Sc1 protein structures show common features that may be critical requirements for the otoconial matrix backbone protein. Such information will serve as the foundation for future regenerative purposes.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | |
Collapse
|