1
|
Chen JJ, Chen IC, Wei CY, Lin SY, Chen YM. Utilize polygenic risk score to enhance fracture risk estimation and improve the performance of FRAX in patients with osteoporosis. Arch Osteoporos 2023; 18:147. [PMID: 38036866 DOI: 10.1007/s11657-023-01357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
This study examined the use of polygenic risk scores (PGS) in combination with the Fracture Risk Assessment Tool (FRAX) to enhance fragility fractures risk estimation in osteoporosis patients. Analyzing data from over 57,000 participants, PGS improved fracture risk estimation, especially for individuals with intermediate to low risks, allowing personalized preventive strategies. INTRODUCTION Osteoporosis and fragility fractures are multifactorial, with contributions from both clinical and genetic determinants. However, whether using polygenic risk scores (PGS) may enhance the risk estimation of osteoporotic fracture in addition to Fracture Risk Assessment Tool (FRAX) remains unknown. This study investigated the collective association of PGS and FRAX with fragility fracture. METHODS We conducted a cohort study from the Taiwan Precision Medicine Initiative (TPMI) at Taichung Veterans General Hospital, Taiwan. Genotyping was performed to compute PGS associated with bone mineral density (BMD). Phenome-wide association studies were executed to pinpoint phenotypes correlated with the PGS. Logistic regression analysis was conducted to ascertain factors associated with osteoporotic fractures. RESULTS Among all 57,257 TPMI participants, 3744 (904 men and 2840 women, with a mean age of 66.7) individuals had BMD testing, with 540 (14.42%) presenting with fractures. The 3744 individuals who underwent BMD testing were categorized into four quartiles (Q1-Q4) based on PGS; 540 (14.42%) presented with fractures. Individuals with PGS-Q1 exhibited lower BMD, a higher prevalence of major fractures, and elevated FRAX-major and FRAX-hip than those with PGS-Q4. PGS was associated with major fractures after adjusting age, sex, and FRAX scores. Notably, the risk of major fractures (PGS-Q1 vs. Q4) was significantly higher in the subgroups of FRAX-major scores < 10% and 10-20%, but not in participants with a FRAX-major score ≧ 20%. CONCLUSIONS Our study highlights the potential of PGS to augment fracture risk estimation in conjunction with FRAX, particularly in individuals with middle to low risks. Incorporating genetic testing could empower physicians to tailor personalized preventive strategies for osteoporosis.
Collapse
Affiliation(s)
- Jian-Jiun Chen
- Department of Orthopedics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Yi Wei
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.
- Institute of Biomedical Science and Rong-Hsing Research Center for Translational Medicine, Chung-Hsing University, Taichung, Taiwan.
- Precision Medicine Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Fisher L, Fisher A, Smith PN. Helicobacter pylori Related Diseases and Osteoporotic Fractures (Narrative Review). J Clin Med 2020; 9:E3253. [PMID: 33053671 PMCID: PMC7600664 DOI: 10.3390/jcm9103253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) and osteoporotic fractures (OFs) are common multifactorial and heterogenic disorders of increasing incidence. Helicobacter pylori (H.p.) colonizes the stomach approximately in half of the world's population, causes gastroduodenal diseases and is prevalent in numerous extra-digestive diseases known to be associated with OP/OF. The studies regarding relationship between H.p. infection (HPI) and OP/OFs are inconsistent. The current review summarizes the relevant literature on the potential role of HPI in OP, falls and OFs and highlights the reasons for controversies in the publications. In the first section, after a brief overview of HPI biological features, we analyze the studies evaluating the association of HPI and bone status. The second part includes data on the prevalence of OP/OFs in HPI-induced gastroduodenal diseases (peptic ulcer, chronic/atrophic gastritis and cancer) and the effects of acid-suppressive drugs. In the next section, we discuss the possible contribution of HPI-associated extra-digestive diseases and medications to OP/OF, focusing on conditions affecting both bone homeostasis and predisposing to falls. In the last section, we describe clinical implications of accumulated data on HPI as a co-factor of OP/OF and present a feasible five-step algorithm for OP/OF risk assessment and management in regard to HPI, emphasizing the importance of an integrative (but differentiated) holistic approach. Increased awareness about the consequences of HPI linked to OP/OF can aid early detection and management. Further research on the HPI-OP/OF relationship is needed to close current knowledge gaps and improve clinical management of both OP/OF and HPI-related disorders.
Collapse
Affiliation(s)
- Leon Fisher
- Department of Gastroenterology, Frankston Hospital, Peninsula Health, Melbourne 3199, Australia
| | - Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| | - Paul N Smith
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| |
Collapse
|
4
|
Nguyen TV, Eisman JA. Post-GWAS Polygenic Risk Score: Utility and Challenges. JBMR Plus 2020; 4:e10411. [PMID: 33210063 PMCID: PMC7657393 DOI: 10.1002/jbm4.10411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, through genome‐wide association studies, more than 300 genetic variants have been identified to be associated with either BMD or fracture risk. These genetic variants are common in the general population, but they exert small to modest effects on BMD, suggesting that the utility of any single variant is limited. However, a combination of effect sizes from multiple variants in the form of the polygenic risk score (PRS) can provide a useful indicator of fracture risk beyond that obtained by conventional clinical risk factors. In this perspective, we review the progress of genetics of osteoporosis and approaches for creating PRSs, their uses, and caveats. Recent studies support the idea that the PRS, when integrated into existing fracture prediction models, can help clinicians and patients alike to better assess the fracture risk for an individual, and raise the possibility of precision risk assessment. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tuan V Nguyen
- Healthy Ageing Theme Garvan Institute of Medical Research Sydney Australia.,St Vincent's Clinical School UNSW Medicine, UNSW Sydney Australia.,School of Medicine Sydney University of Notre Dame Sydney Australia.,School of Biomedical Engineering University of Technology Sydney Australia
| | - John A Eisman
- Healthy Ageing Theme Garvan Institute of Medical Research Sydney Australia.,St Vincent's Clinical School UNSW Medicine, UNSW Sydney Australia.,School of Medicine Sydney University of Notre Dame Sydney Australia
| |
Collapse
|
5
|
Mullin BH, Tickner J, Zhu K, Kenny J, Mullin S, Brown SJ, Dudbridge F, Pavlos NJ, Mocarski ES, Walsh JP, Xu J, Wilson SG. Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts. Genome Biol 2020; 21:80. [PMID: 32216834 PMCID: PMC7098081 DOI: 10.1186/s13059-020-01997-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Osteoporosis is a complex disease with a strong genetic contribution. A recently published genome-wide association study (GWAS) for estimated bone mineral density (eBMD) identified 1103 independent genome-wide significant association signals. Most of these variants are non-coding, suggesting that regulatory effects may drive many of the associations. To identify genes with a role in osteoporosis, we integrate the eBMD GWAS association results with those from our previous osteoclast expression quantitative trait locus (eQTL) dataset. Results We identify sixty-nine significant cis-eQTL effects for eBMD GWAS variants after correction for multiple testing. We detect co-localisation of eBMD GWAS and osteoclast eQTL association signals for 21 of the 69 loci, implicating a number of genes including CCR5, ZBTB38, CPE, GNA12, RIPK3, IQGAP1 and FLCN. Summary-data-based Mendelian Randomisation analysis of the eBMD GWAS and osteoclast eQTL datasets identifies significant associations for 53 genes, with TULP4 presenting as a strong candidate for pleiotropic effects on eBMD and gene expression in osteoclasts. By performing analysis using the GARFIELD software, we demonstrate significant enrichment of osteoporosis risk variants among high-confidence osteoclast eQTL across multiple GWAS P value thresholds. Mice lacking one of the genes of interest, the apoptosis/necroptosis gene RIPK3, show disturbed bone micro-architecture and increased osteoclast number, highlighting a new biological pathway relevant to osteoporosis. Conclusion We utilise a unique osteoclast eQTL dataset to identify a number of potential effector genes for osteoporosis risk variants, which will help focus functional studies in this area.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia. .,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Kun Zhu
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jacob Kenny
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nathan J Pavlos
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
6
|
Mullin BH, Zhu K, Xu J, Brown SJ, Mullin S, Tickner J, Pavlos NJ, Dudbridge F, Walsh JP, Wilson SG. Expression Quantitative Trait Locus Study of Bone Mineral Density GWAS Variants in Human Osteoclasts. J Bone Miner Res 2018; 33:1044-1051. [PMID: 29473973 DOI: 10.1002/jbmr.3412] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 12/23/2022]
Abstract
Osteoporosis is a complex disease with a strong genetic component. Genomewide association studies (GWAS) have been very successful at identifying common genetic variants associated with bone parameters. A recently published study documented the results of the largest GWAS for bone mineral density (BMD) performed to date (n = 142,487), identifying 307 conditionally independent single-nucleotide polymorphisms (SNPs) as associated with estimated BMD (eBMD) at the genomewide significance level. The vast majority of these variants are non-coding SNPs. Expression quantitative trait locus (eQTL) studies using disease-specific cell types have increasingly been integrated with the results from GWAS to identify genes through which the observed GWAS associations are likely mediated. We generated a unique human osteoclast-specific eQTL data set using cells differentiated in vitro from 158 participants. We then used this resource to characterize the 307 recently identified BMD GWAS SNPs for association with nearby genes (±500 kb). After correction for multiple testing, 24 variants were found to be significantly associated with the expression of 32 genes in the osteoclast-like cells. Bioinformatics analysis suggested that these variants and those in strong linkage disequilibrium with them are enriched in regulatory regions. Several of the eQTL associations identified are relevant to genes that present strongly as having a role in bone, particularly IQGAP1, CYP19A1, CTNNB1, and COL6A3. Supporting evidence for many of the associations was obtained from publicly available eQTL data sets. We have also generated strong evidence for the presence of a regulatory region on chromosome 15q21.2 relevant to both the GLDN and CYP19A1 genes. In conclusion, we have generated a unique osteoclast-specific eQTL resource and have used this to identify 32 eQTL associations for recently identified BMD GWAS loci, which should inform functional studies of osteoclast biology. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Kun Zhu
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Shelby Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Nathan J Pavlos
- School of Biomedical Sciences, University of Western Australia, Crawley, Australia
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,Medical School, University of Western Australia, Crawley, Australia
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, Australia.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
7
|
Al Kaissi A, Windpassinger C, Chehida FB, Ghachem MB, Nassib NM, Kenis V, Melchenko E, Morenko E, Ryabykh S, Hofstaetter JG, Grill F, Ganger R, Kircher SG. How frequent is osteogenesis imperfecta in patients with idiopathic osteoporosis?: Case reports. Medicine (Baltimore) 2017; 96:e7863. [PMID: 28858097 PMCID: PMC5585491 DOI: 10.1097/md.0000000000007863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RATIONALE The term idiopathic osteoporosis itself is quite a non-specific disease label, which fails to address the etiological understanding. Bone mineral density alone is not a reliable parameter to detect patients at high risk of fracture. The diversity of the clinical phenotypes of discolored teeth, blueness of the sclera, back and joint pain, cardiovascular disease, Diabetes type II, hearing problems and a long list of orthopedic problems are have to be considered. PATIENTS CONCERNS Our study has been designed in accordance with the clinical and radiological phenotype of eleven index cases with the provisional diagnosis of OI, which was followed by genotypic confirmation. This was followed by the invitation of siblings, parents, grandparents and other relatives to participate in the interviews, and to discuss the impact of the diagnosis. Proper collaboration with these families facilitated the process to identify other subjects with a history of fractures and other deformities/disabilities which were seemingly correlated to heritable connective tissue disorder. In total, 63 patients (27 children and 36 parents/grandparents and relatives) were enrolled in the study. Two groups of children were not included in our study. We excluded children with incomplete documentation and children who manifested de novo mutation. The term idiopathic osteoporosis (IOP) has been given to these families in other Institutes and was considered as a definite diagnosis. IOP was solely based on T scores, BMD and certain laboratory tests. Surprisingly, no single adult patient underwent clinical and or radiological phenotypic characterization. DIAGNOSES A constellation of significant disease associations with osteoporotic fracture risk have been encountered. The index cases showed mutations in COL1A1 (17q21.31.q22) and COL1A2 (7q22.1), the genes encoding collagen type I. The phenotype/genotype confirmation in 11 children was the key factor to boost our research and to re-consult each family. Comprehensive clinical and radiological phenotypic documentation has been applied to most of other family subjects who principally received the diagnosis of IOP. INTERVENTIONS All adult patients had normal serum calcium and only three patients showed an average of low serum phosphate of 0.7-0.61 mmol/l. Serumcrosslaps in six parents was in the average of (2.9-3.8 nM) and PTH levels were normal in all patients (the average showed 8.73 pg/ml). OUTCOMES Our efforts to minimize and constrain the usage of the term idiopathic osteoporosis and to understand the sequence of pathological events that occurred in these families were emphasized. These efforts evolved into a remarkable and unique constellation of clinical findings. Strikingly, fracture represented a portion in a series of skeletal and extra-skeletal deformities and abnormalities which are all correlated to connective tissue disorder. This was achieved mainly through comprehensive phenotype/genotype confirmation, followed by scrutinizing the records of each family, clinical examination of the adults and revising the archives of our Hospitals and other Institutes. LESSONS The sequence of diverse pathological events recorded within each family would be almost incomprehensible without a proper etiological understanding of the natural history of each child/family deformity that led to their occurrences. We wish to stress that, our current study is just an attempt to cover only a tiny fraction of the tip of the iceberg and to profoundly explore one of the most under-estimated causes of idiopathic osteoporosis.
Collapse
Affiliation(s)
- Ali Al Kaissi
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital
| | | | | | - Maher Ben Ghachem
- Pediatric Orthopedic Surgery, Children's Hospital of Tunis, Tunis, Tunisia
| | - Nabil M. Nassib
- Pediatric Orthopedic Surgery, Children's Hospital of Tunis, Tunis, Tunisia
| | - Vladimir Kenis
- Department of Foot and Ankle Surgery, Neuroorthopaedics and Systemic Disorders, Pediatric Orthopedic Institute n.a. H. Turner, Saint Petersburg, Russia
| | - Eugene Melchenko
- Department of Foot and Ankle Surgery, Neuroorthopaedics and Systemic Disorders, Pediatric Orthopedic Institute n.a. H. Turner, Saint Petersburg, Russia
| | - Ekatrina Morenko
- Department of Foot and Ankle Surgery, Neuroorthopaedics and Systemic Disorders, Pediatric Orthopedic Institute n.a. H. Turner, Saint Petersburg, Russia
| | - Sergey Ryabykh
- Axial Skeleton and Neurosurgery Department, Restorative Traumatology and Orthopaedics, Ilizarov Center, Kurgan, Russia
| | - Jochen G. Hofstaetter
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital
| | - Franz Grill
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital
| | - Rudolf Ganger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital
| | - Susanne Gerit Kircher
- Institute of Medical Chemistry, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Mullin BH, Zhao JH, Brown SJ, Perry JR, Luan J, Zheng HF, Langenberg C, Dudbridge F, Scott R, Wareham NJ, Spector TD, Richards JB, Walsh JP, Wilson SG. Genome-wide association study meta-analysis for quantitative ultrasound parameters of bone identifies five novel loci for broadband ultrasound attenuation. Hum Mol Genet 2017; 26:2791-2802. [PMID: 28472463 PMCID: PMC5886185 DOI: 10.1093/hmg/ddx174] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 04/06/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a common and debilitating bone disease that is characterised by low bone mineral density, typically assessed using dual-energy X-ray absorptiometry. Quantitative ultrasound (QUS), commonly utilising the two parameters velocity of sound (VOS) and broadband ultrasound attenuation (BUA), is an alternative technology used to assess bone properties at peripheral skeletal sites. The genetic influence on the bone qualities assessed by QUS remains an under-studied area. We performed a comprehensive genome-wide association study (GWAS) including low-frequency variants (minor allele frequency ≥0.005) for BUA and VOS using a discovery population of individuals with whole-genome sequence (WGS) data from the UK10K project (n = 1268). These results were then meta-analysed with those from two deeply imputed GWAS replication cohorts (n = 1610 and 13 749). In the gender-combined analysis, we identified eight loci associated with BUA and five with VOS at the genome-wide significance level, including three novel loci for BUA at 8p23.1 (PPP1R3B), 11q23.1 (LOC387810) and 22q11.21 (SEPT5) (P = 2.4 × 10-8 to 1.6 × 10-9). Gene-based association testing in the gender-combined dataset revealed eight loci associated with BUA and seven with VOS after correction for multiple testing, with one novel locus for BUA at FAM167A (8p23.1) (P = 1.4 × 10-6). An additional novel locus for BUA was seen in the male-specific analysis at DEFB103B (8p23.1) (P = 1.8 × 10-6). Fracture analysis revealed significant associations between variation at the WNT16 and RSPO3 loci and fracture risk (P = 0.004 and 4.0 × 10-4, respectively). In conclusion, by performing a large GWAS meta-analysis for QUS parameters of bone using a combination of WGS and deeply imputed genotype data, we have identified five novel genetic loci associated with BUA.
Collapse
Affiliation(s)
- Benjamin H. Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Perth 6009, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth 6009, Australia
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Suzanne J. Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Perth 6009, Australia
| | - John R.B. Perry
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Hou-Feng Zheng
- Institute of Aging Research and the Affiliated Hospital, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
- Institute for Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310036, China
| | | | - Frank Dudbridge
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Robert Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nick J. Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tim D. Spector
- Twin & Genetic Epidemiology Research Unit, St. Thomas’ Hospital Campus, King’s College London, London SE1 7EH, UK
| | - J. Brent Richards
- Twin & Genetic Epidemiology Research Unit, St. Thomas’ Hospital Campus, King’s College London, London SE1 7EH, UK
- Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Jewish General Hospital, Lady Davis Institute, McGill University, Montreal H3T 1E2, Canada
| | - John P. Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Perth 6009, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth 6009, Australia
| | - Scott G. Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Perth 6009, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth 6009, Australia
- Twin & Genetic Epidemiology Research Unit, St. Thomas’ Hospital Campus, King’s College London, London SE1 7EH, UK
| |
Collapse
|
9
|
Abstract
Over the past decade, several genetic variants or genes for osteoporosis have been identified through genome-wide association studies and candidate gene association studies. These genetic variants are common in the general population but have modest effect sizes, with odds ratio ranging from 1.1 to 1.5. Thus, the utility of any single variant is limited. However, theoretical and empirical studies have suggested that a profiling of multiple variants that are associated with bone phenotypes (i.e., "osteogenomic profile") can improve the accuracy of fracture prediction and classification beyond that obtained by conventional clinical risk factors. These results support the view that an osteogenomic profile, when integrated into existing models, can help clinicians and patients alike to better assess the risk fracture for an individual, and raise the possibility of personalized osteoporosis care.
Collapse
Affiliation(s)
- Tuan V Nguyen
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, UNSW Medicine, UNSW Australia, Sydney, Australia; Centre for Health Technology, University of Technology, Sydney, Australia.
| |
Collapse
|
10
|
Rocha-Braz MGM, Ferraz-de-Souza B. Genetics of osteoporosis: searching for candidate genes for bone fragility. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 60:391-401. [PMID: 27533615 PMCID: PMC10118722 DOI: 10.1590/2359-3997000000178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022]
Abstract
The pathogenesis of osteoporosis, a common disease with great morbidity and mortality, comprises environmental and genetic factors. As with other complex disorders, the genetic basis of osteoporosis has been difficult to identify. Nevertheless, several approaches have been undertaken in the past decades in order to identify candidate genes for bone fragility, including the study of rare monogenic syndromes with striking bone phenotypes (e.g. osteogenesis imperfecta and osteopetroses), the analysis of individuals or families with extreme osteoporotic phenotypes (e.g. idiopathic juvenile and pregnancy-related osteoporosis), and, chiefly, genome-wide association studies (GWAS) in large populations. Altogether, these efforts have greatly increased the understanding of molecular mechanisms behind bone remodelling, which has rapidly translated into the development of novel therapeutic strategies, exemplified by the tales of cathepsin K (CTSK) and sclerostin (SOST). Additional biological evidence of involvement in bone physiology still lacks for several candidate genes arisen from GWAS, opening an opportunity for the discovery of new mechanisms regulating bone strength, particularly with the advent of high-throughput genomic technologies. In this review, candidate genes for bone fragility will be presented in comprehensive tables and discussed with regard to how their association with osteoporosis emerged, highlighting key players such as LRP5, WNT1 and PLS3. Current limitations in our understanding of the genetic contribution to osteoporosis, such as yet unidentified genetic modifiers, may be overcome in the near future with better genotypic and phenotypic characterisation of large populations and the detailed study of candidate genes in informative individuals with marked phenotype.
Collapse
Affiliation(s)
- Manuela G M Rocha-Braz
- Divisão de Endocrinologia e Laboratório de Investigação Médica 18 (LIM-18), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil.,Endocrinologia, Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), São Paulo, SP, Brasil
| | - Bruno Ferraz-de-Souza
- Divisão de Endocrinologia e Laboratório de Investigação Médica 18 (LIM-18), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| |
Collapse
|
11
|
Wang Y, Wactawski-Wende J, Sucheston-Campbell LE, Preus L, Hovey KM, Nie J, Jackson RD, Handelman SK, Nassir R, Crandall CJ, Ochs-Balcom HM. Gene-Hormone Therapy Interaction and Fracture Risk in Postmenopausal Women. J Clin Endocrinol Metab 2017; 102:1908-1916. [PMID: 28324062 PMCID: PMC5470770 DOI: 10.1210/jc.2016-2936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/28/2017] [Indexed: 12/30/2022]
Abstract
CONTEXT Evidence supports a protective effect of menopausal hormone therapy (HT) on bone. However, whether genetic susceptibility modifies the association of HT and fracture risk is not sufficiently explored. OBJECTIVE The objective was to test an interaction between genetic susceptibility and HT on fracture risk. DESIGN We constructed two weighted genetic risk scores (GRSs) based on 16 fracture-associated variants (Fx-GRSs) and 50 bone mineral density variants (BMD-GRSs). We used Cox regression to estimate the main effects of GRSs and their interactions with HT on fracture risk. We estimated the relative excess risk due to interaction (RERI) as a measure of additive interaction. We also used the case-only approach to test for a multiplicative interaction. SETTING Forty US clinical centers. PARTICIPANTS A total of 9922 genotyped white postmenopausal women (age, 50 to 79) from the Women's Health Initiative HT randomized trials. MAIN OUTCOME MEASURES Adjudicated fracture incidence. RESULTS Both GRSs were associated with fracture risk per 1-unit increment in GRS (hazard ratio, 1.04 [95% confidence interval, 1.02 to 1.06] for Fx-GRS and hazard ratio, 1.03 [95% confidence interval,1.02-1.04] for BMD-GRS). We found no evidence for multiplicative interaction for either of the GRS. However, we observed a substantial additive interaction, where the highest quartile of both GRSs and randomization to placebo have excess fracture risk: Fx-GRS P for RERI = 0.047, BMD-GRS P for RERI = 0.046. CONCLUSIONS These results suggest that HT reduces fracture risk in postmenopausal women, especially in those at highest genetic risk of fracture and low BMD.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Lara E. Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Leah Preus
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Kathleen M. Hovey
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Jing Nie
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Rebecca D. Jackson
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, Ohio 43210
| | - Samuel K. Handelman
- Center for Pharmacogenomics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Rami Nassir
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California 95616
| | - Carolyn J. Crandall
- Division of General Internal Medicine and Health Sciences Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Heather M. Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, New York 14214
| |
Collapse
|
12
|
Wang Y, Wactawski-Wende J, Sucheston-Campbell LE, Preus L, Hovey KM, Nie J, Jackson RD, Handelman SK, Nassir R, Crandall CJ, Ochs-Balcom HM. The influence of genetic susceptibility and calcium plus vitamin D supplementation on fracture risk. Am J Clin Nutr 2017; 105:970-979. [PMID: 28148500 PMCID: PMC5366049 DOI: 10.3945/ajcn.116.144550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/04/2017] [Indexed: 01/21/2023] Open
Abstract
Background: Fracture is a complex trait, affected by both genetic and environmental factors. A meta-analysis of genome-wide association studies (GWASs) identified multiple bone mineral density (BMD) and fracture-associated loci.Objective: We conducted a study to evaluate whether fracture genetic risk score (Fx-GRS) and bone mineral density genetic risk score (BMD-GRS) modify the association between the intake of calcium with vitamin D (CaD) and fracture risk.Design: Data from 5823 white postmenopausal women from the Women's Health Initiative CaD randomized trial were included. Participants received 1000 mg elemental Ca with 400 IU vitamin D3/d or placebo (median follow-up: 6.5 y). Total fracture was defined as first fracture of any type. We computed the Fx-GRS with 16 fracture- and BMD-associated variants, and the BMD-GRS with 50 BMD-associated variants. We used Cox regression and a case-only approach to test for multiplicative interaction. Additive interaction was assessed with the relative excess risk due to interaction (RERI). We analyzed genetic risk score as a continuous variable and a categorical variable based on quartile (quartile 1, quartiles 2-3, and quartile 4).Results: We observed no interaction between the Fx-GRS and CaD on fracture risk; however, we observed a significant multiplicative interaction between the BMD-GRS and CaD assignment (P-interaction = 0.01). In addition, there was a significant negative additive interaction between placebo assignment and higher BMD-GRS: quartiles 2-3, PRERI = 0.03; quartile 4, PRERI = 0.03. In a stratified analysis, the protective effect of CaD on fracture risk was observed in women in the lowest BMD-GRS quartile (HR: 0.60, 95% CI: 0.44, 0.81) but not in women with a higher BMD-GRS.Conclusions: We observed significant effects of CaD intake on fracture risk only in women with the lowest genetic predisposition to low BMD. Future large-scale studies with functional characterization of GWAS findings are warranted to assess the utility of genetic risk score in analysis of risks and benefits of CaD for bone.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY
| | | | - Leah Preus
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY
- Department of Cancer Prevention and Control, Division of Cancer Prevention and Population Sciences, Roswell Park Cancer Institute, Buffalo, NY
| | - Kathleen M Hovey
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY
| | - Jing Nie
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, and
| | - Samuel K Handelman
- Center for Pharmacogenomics, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH
| | - Rami Nassir
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA; and
| | - Carolyn J Crandall
- Division of General Internal Medicine and Health Sciences Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY;
| |
Collapse
|
13
|
Gao LH, Li SS, Shao C, Fu WZ, Liu YJ, He JW, Zhang ZL. BMP7 gene polymorphisms are not associated with bone mineral density or osteoporotic fractures in postmenopausal Chinese women. Acta Pharmacol Sin 2016; 37:1076-82. [PMID: 27264311 DOI: 10.1038/aps.2016.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/07/2016] [Indexed: 12/31/2022]
Abstract
AIM A previous study shows that bone morphogenetic protein 7 (BMP7) gene polymorphisms are associated with bone mineral density (BMD) in 920 European Americans. To determine the association of BMP7 polymorphisms and BMD and osteoporotic fracture susceptibility, we performed a case-control association study in postmenopausal Chinese women with or without osteoporotic fracture. METHODS A total of 3815 unrelated postmenopausal Chinese women (1238 with osteoporotic fracture and 2577 healthy controls) were recruited. BMDs of the lumbar spine 1-4 (L1-4) and proximal femur (including total hip and femoral neck) were measured using dual-energy X-ray absorptiometry. Eight tagging single nucleotide polymorphisms (SNPs) in BMP7 gene, including rs11086598, rs4811822, rs12481628, rs6025447, rs230205, rs17404303, rs162316 and rs6127980, were genotyped. RESULTS Among the 8 SNPs, rs6025447 and rs230205 were associated with total hip BMD (P=0.013 and 0.045, respectively). However, the associations became statistically insignificant after adjusting for age, height and weight. The TGTG haplotype of BMP7 gene was associated with total hip BMD (P=0.032), even after adjusting for age, height and weight (P=0.048); but the association was insignificant after performing the Bonferroni multiple-significance-test correction. Moreover, the 8 SNPs and 9 haplotypes of BMP7 gene were not associated with L1-4 or femoral neck BMD or osteoporotic fracture. CONCLUSION This large-sample case-control association study suggests that the common genetic polymorphisms of BMP7 gene are not major contributors to variations in BMD or osteoporotic fracture in postmenopausal Chinese women.
Collapse
|
14
|
Mullin BH, Walsh JP, Zheng HF, Brown SJ, Surdulescu GL, Curtis C, Breen G, Dudbridge F, Richards JB, Spector TD, Wilson SG. Genome-wide association study using family-based cohorts identifies the WLS and CCDC170/ESR1 loci as associated with bone mineral density. BMC Genomics 2016; 17:136. [PMID: 26911590 PMCID: PMC4766752 DOI: 10.1186/s12864-016-2481-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Background Osteoporosis is a common and debilitating bone disease that is characterised by a low bone mineral density (BMD), a highly heritable trait. Genome-wide association studies (GWAS) have proven to be very successful in identifying common genetic variants associated with BMD adjusted for age, gender and weight, however a large portion of the genetic variance for this trait remains unexplained. There is evidence to suggest significant genetic correlation between body size traits and BMD. It has also recently been suggested that unintended bias can be introduced as a result of adjusting a phenotype for a correlated trait. We performed a GWAS meta-analysis in two populations (total n = 6,696) using BMD data adjusted for only age and gender, in an attempt to identify genetic variants associated with BMD including those that may have potential pleiotropic effects on BMD and body size traits. Results We observed a single variant, rs2566752, associated with spine BMD at the genome-wide significance level in the meta-analysis (P = 3.36 × 10−09). Logistic regression analysis also revealed an association between rs2566752 and fracture rate in one of our study cohorts (P = 0.017, n = 5,654). This is an intronic variant located in the wntless Wnt ligand secretion mediator (WLS) gene (1p31.3), a known BMD locus which encodes an integral component of the Wnt ligand secretion pathway. Bioinformatics analyses of variants in moderate LD with rs2566752 produced strong evidence for a regulatory role for the variants rs72670452, rs17130567 and rs1430738. Expression quantitative trait locus (eQTL) analysis suggested that the variants rs12568456 and rs17130567 are associated with expression of the WLS gene in whole blood, cerebellum and temporal cortex brain tissue (P = 0.034–1.19 × 10−23). Gene-wide association testing using the VErsatile Gene-based Association Study 2 (VEGAS2) software revealed associations between the coiled-coil domain containing 170 (CCDC170) gene, located adjacent to the oestrogen receptor 1 (ESR1) gene, and BMD at the spine, femoral neck and total hip sites (P = 1.0 × 10−06, 2.0 × 10−06 and 2.0 × 10−06 respectively). Conclusions Genetic variation at the WLS and CCDC170/ESR1 loci were found to be significantly associated with BMD adjusted for only age and gender at the genome-wide level in this meta-analysis.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia. .,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia.
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia. .,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia.
| | - Hou-Feng Zheng
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia.
| | - Gabriela L Surdulescu
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| | - Charles Curtis
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Gerome Breen
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Frank Dudbridge
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - J Brent Richards
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK. .,Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, Canada.
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia. .,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia. .,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
15
|
Mafi Golchin M, Heidari L, Ghaderian SMH, Akhavan-Niaki H. Osteoporosis: A Silent Disease with Complex Genetic Contribution. J Genet Genomics 2016; 43:49-61. [PMID: 26924688 DOI: 10.1016/j.jgg.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/30/2015] [Accepted: 12/26/2015] [Indexed: 12/17/2022]
Abstract
Osteoporosis is the most common multifactorial metabolic bone disorder worldwide with a strong genetic component. In this review, the evidence for a genetic contribution to osteoporosis and related phenotypes is summarized alongside with methods used to identify osteoporosis susceptibility genes. The key biological pathways involved in the skeleton and bone development are discussed with a particular focus on master genes clustered in these pathways and their mode of action. Furthermore, the most studied single nucleotide polymorphisms (SNPs) analyzed for their importance as genetic markers of the disease are presented. New data generated by next-generation sequencing in conjunction with extensive meta-analyses should contribute to a better understanding of the genetic basis of osteoporosis and related phenotype variability. These data could be ultimately used for identifying at-risk patients for disease prevention by both controlling environmental factors and providing possible therapeutic targets.
Collapse
Affiliation(s)
- Maryam Mafi Golchin
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Laleh Heidari
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Seyyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran.
| |
Collapse
|
16
|
Genetic regulation of bone strength: a review of animal model studies. BONEKEY REPORTS 2015; 4:714. [PMID: 26157577 DOI: 10.1038/bonekey.2015.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022]
Abstract
Population- and family-based studies have established that fragility fracture risk is heritable; yet, the genome-wide association studies published to date have only accounted for a small fraction of the known variation for fracture risk of either the femur or the lumbar spine. Much work has been carried out using animal models toward finding genetic loci that are associated with bone strength. Studies using animal models overcome some of the issues associated with using patient data, but caution is needed when interpreting the results. In this review, we examine the types of tests that have been used for forward genetics mapping in animal models to identify loci and/or genes that regulate bone strength and discuss the limitations of these test methods. In addition, we present a summary of the quantitative trait loci that have been mapped for bone strength in mice, rats and chickens. The majority of these loci co-map with loci for bone size and/or geometry and thus likely dictate strength via modulating bone size. Differences in bone matrix composition have been demonstrated when comparing inbred strains of mice, and these matrix differences may be associated with differences in bone strength. However, additional work is needed to identify loci that act on bone strength at the materials level.
Collapse
|
17
|
Lee SH, Kang MI, Ahn SH, Lim KH, Lee GE, Shin ES, Lee JE, Kim BJ, Cho EH, Kim SW, Kim TH, Kim HJ, Yoon KH, Lee WC, Kim GS, Koh JM, Kim SY. Common and rare variants in the exons and regulatory regions of osteoporosis-related genes improve osteoporotic fracture risk prediction. J Clin Endocrinol Metab 2014; 99:E2400-11. [PMID: 25119311 DOI: 10.1210/jc.2014-1584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Osteoporotic fracture risk is highly heritable, but genome-wide association studies have explained only a small proportion of the heritability to date. Genetic data may improve prediction of fracture risk in osteopenic subjects and assist early intervention and management. OBJECTIVE To detect common and rare variants in coding and regulatory regions related to osteoporosis-related traits, and to investigate whether genetic profiling improves the prediction of fracture risk. DESIGN AND SETTING This cross-sectional study was conducted in three clinical units in Korea. PARTICIPANTS Postmenopausal women with extreme phenotypes (n = 982) were used for the discovery set, and 3895 participants were used for the replication set. MAIN OUTCOME MEASURE We performed targeted resequencing of 198 genes. Genetic risk scores from common variants (GRS-C) and from common and rare variants (GRS-T) were calculated. RESULTS Nineteen common variants in 17 genes (of the discovered 34 functional variants in 26 genes) and 31 rare variants in five genes (of the discovered 87 functional variants in 15 genes) were associated with one or more osteoporosis-related traits. Accuracy of fracture risk classification was improved in the osteopenic patients by adding GRS-C to fracture risk assessment models (6.8%; P < .001) and was further improved by adding GRS-T (9.6%; P < .001). GRS-C improved classification accuracy for vertebral and nonvertebral fractures by 7.3% (P = .005) and 3.0% (P = .091), and GRS-T further improved accuracy by 10.2% (P < .001) and 4.9% (P = .008), respectively. CONCLUSIONS Our results suggest that both common and rare functional variants may contribute to osteoporotic fracture and that adding genetic profiling data to current models could improve the prediction of fracture risk in an osteopenic individual.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism (S.H.L., S.H.A., K.-H.L., B.-J.K., G.S.K., J.-M.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Endocrinology and Metabolism (M.I.K., K.-H.Y.), The Catholic University of Korea, College of Medicine, Seoul 137-701, Korea; DNA Link (G.E.L., E.-S.S., J.-E.L.), Seoul 138-736, Korea; Department of Internal Medicine (E.-H.C., S.-W.K.), Kangwon National University College of Medicine, Chuncheon 200-722, Korea; Skeletal Diseases Genome Research Center and Department of Orthopedic Surgery (T.-H.K., H.-J.K., S.-Y.K.), Kyungpook National University School of Medicine, Daegu 702-701, Korea; and Department of Preventive Medicine (W.C.L.), The Catholic University of Korea, College of Medicine, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mohammadi Z, Fayyazbakhsh F, Ebrahimi M, Amoli MM, Khashayar P, Dini M, Zadeh RN, Keshtkar A, Barikani HR. Association between vitamin D receptor gene polymorphisms (Fok1 and Bsm1) and osteoporosis: a systematic review. J Diabetes Metab Disord 2014; 13:98. [PMID: 25364703 PMCID: PMC4215021 DOI: 10.1186/s40200-014-0098-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/30/2014] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a health concern characterized by reduced bone mineral density (BMD) and increased risk of fragility fractures. Many studies have investigated the association between genetic variants and osteoporosis. Polymorphism and allelic variations in the vitamin D receptor gene (VDR) have been found to be associated with bone mineral density. However, many studies have not been able to find this association. Literature review was conducted in several databases, including MEDLINE/Pubmed, Scopus, EMBASE, Ebsco, Science Citation Index Expanded, Ovid, Google Scholar, Iran Medex, Magiran and Scientific Information Database (SID) for papers published between 2000 and 2013 describing the association between Fok1 and Bsm1 polymorphisms of the VDR gene and osteoporosis risk. The majority of the revealed papers were conducted on postmenopausal women. Also, more than 50% studies reported significant relation between Fok1, Bsm1 and osteoporosis. Larger and more rigorous analytical studies with consideration of gene-gene and gene-environment interactions are needed to further dissect the mechanisms by which VDR polymorphisms influence osteoporosis.
Collapse
Affiliation(s)
- Zahra Mohammadi
- />Department of biology, Damghan branch, Islamic Azad University, Damghan, Iran
| | - Fateme Fayyazbakhsh
- />Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- />Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- />Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- />Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- />Biomedical Engineering Department, Maziar University, Rouyan, Iran
- />EMRI, Dr Shariati Hospital, North Karegar St., Tehran, 14114 Iran
| | - Patricia Khashayar
- />Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- />Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Dini
- />Non-communicable Disease Department, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Reza Nezam Zadeh
- />Department of biology, Damghan branch, Islamic Azad University, Damghan, Iran
| | - Abbasali Keshtkar
- />Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- />Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Barikani
- />Dental Implant Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Alonso N, Ralston SH. Unveiling the mysteries of the genetics of osteoporosis. J Endocrinol Invest 2014; 37:925-34. [PMID: 25149083 DOI: 10.1007/s40618-014-0149-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Osteoporosis is a common disease characterised by low bone mineral density and an increased risk of fragility fractures. METHODS We conducted a literature review of relevant studies relating to the genetics of osteoporosis. RESULTS Family studies have revealed that bone density and fractures have a strong heritable component but environmental factors also play an important role. This makes identification of the causative genetic variants challenging. Linkage analysis has been successful in identifying the genes responsible for rare inherited diseases associated with abnormalities of bone mass but has been of limited value in osteoporosis. In contrast, genome-wide association studies in large cohort studies have identified 56 loci with robust evidence of association with bone density and 14 loci that predispose to fractures. Although the effect size of the implicated variants is small, many of the loci contain genes known to be involved in regulating bone cell activity through the RANK and Wnt signalling pathways, whereas others contain novel genes not previously implicated in bone metabolism. In a few instances, whole genome and exome sequencing have been successfully used to identify rare variants of large effect size that influence susceptibility to osteoporosis. CONCLUSION A future challenge will be to conduct fine mapping and functional analysis of the loci implicated in osteoporosis in order to identify the causal genetic variants and examine the mechanisms by which they influence bone cell function and bone mass. Ultimately this may lead to the identification of biomarkers for susceptibility to osteoporosis and fractures or new therapeutic targets.
Collapse
Affiliation(s)
- N Alonso
- Rheumatic Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | | |
Collapse
|
20
|
Liu YJ, Zhang L, Papasian CJ, Deng HW. Genome-wide Association Studies for Osteoporosis: A 2013 Update. J Bone Metab 2014; 21:99-116. [PMID: 25006567 PMCID: PMC4075273 DOI: 10.11005/jbm.2014.21.2.99] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/16/2022] Open
Abstract
In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Lei Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA. ; Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR, China
| | | | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA. ; Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, PR, China
| |
Collapse
|
21
|
Mullin BH, Mamotte C, Prince RL, Wilson SG. Influence of ARHGEF3 and RHOA knockdown on ACTA2 and other genes in osteoblasts and osteoclasts. PLoS One 2014; 9:e98116. [PMID: 24840563 PMCID: PMC4026532 DOI: 10.1371/journal.pone.0098116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/29/2014] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is a common bone disease that has a strong genetic component. Genome-wide linkage studies have identified the chromosomal region 3p14-p22 as a quantitative trait locus for bone mineral density (BMD). We have previously identified associations between variation in two related genes located in 3p14-p22, ARHGEF3 and RHOA, and BMD in women. In this study we performed knockdown of these genes using small interfering RNA (siRNA) in human osteoblast-like and osteoclast-like cells in culture, with subsequent microarray analysis to identify genes differentially regulated from a list of 264 candidate genes. Validation of selected findings was then carried out in additional human cell lines/cultures using quantitative real-time PCR (qRT-PCR). The qRT-PCR results showed significant down-regulation of the ACTA2 gene, encoding the cytoskeletal protein alpha 2 actin, in response to RHOA knockdown in both osteoblast-like (P<0.001) and osteoclast-like cells (P = 0.002). RHOA knockdown also caused up-regulation of the PTH1R gene, encoding the parathyroid hormone 1 receptor, in Saos-2 osteoblast-like cells (P<0.001). Other findings included down-regulation of the TNFRSF11B gene, encoding osteoprotegerin, in response to ARHGEF3 knockdown in the Saos-2 and hFOB 1.19 osteoblast-like cells (P = 0.003–0.02), and down-regulation of ARHGDIA, encoding the Rho GDP dissociation inhibitor alpha, in response to RHOA knockdown in osteoclast-like cells (P<0.001). These studies identify ARHGEF3 and RHOA as potential regulators of a number of genes in bone cells, including TNFRSF11B, ARHGDIA, PTH1R and ACTA2, with influences on the latter evident in both osteoblast-like and osteoclast-like cells. This adds further evidence to previous studies suggesting a role for the ARHGEF3 and RHOA genes in bone metabolism.
Collapse
Affiliation(s)
- Benjamin H. Mullin
- Dept. of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences and CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
- * E-mail:
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Richard L. Prince
- Dept. of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Scott G. Wilson
- Dept. of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
- Twin and Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, United Kingdom
| |
Collapse
|
22
|
Lee SH, Lee SW, Ahn SH, Kim T, Lim KH, Kim BJ, Cho EH, Kim SW, Kim TH, Kim GS, Kim SY, Koh JM, Kang C. Multiple gene polymorphisms can improve prediction of nonvertebral fracture in postmenopausal women. J Bone Miner Res 2014; 28:2156-64. [PMID: 23572424 DOI: 10.1002/jbmr.1955] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Clinical risk factors (CRFs), with or without bone mineral density (BMD), are used to determine the risk of osteoporotic fracture (OF), which has a heritable component. In this study we investigated whether genetic profiling can additionally improve the ability to predict OF. Using 1229 unrelated Korean postmenopausal women, 39 single-nucleotide polymorphisms (SNPs) in 30 human genomic loci were tested for association with osteoporosis-related traits, such as BMD, osteoporosis, vertebral fracture (VF), nonvertebral fracture (NVF), and any fracture. To estimate the effects of genetic profiling, the genetic risk score (GRS) was calculated using five prediction models: (Model I) GRSs only; (Model II) BMD only; (Model III) CRFs only; (Model IV) CRFs and BMD; and (Model V) CRFs, BMD, and GRS. A total of 21 SNPs within 19 genes associated with one or more osteoporosis-related traits and were included for GRS calculation. GRS associated with BMD before and after adjustment for CRFs (p ranging from <0.001 to 0.018). GRS associated with NVF before and after adjustment for CRFs and BMD (p ranging from 0.017 to 0.045), and with any fracture after adjustment for CRFs and femur neck BMD (p = 0.049). In terms of predicting NVF, the area under the receiver operating characteristic curve (AUC) for Model I was 0.55, which was lower than the AUCs of Models II (0.60), III (0.64), and IV (0.65). Adding GRS to Model IV (in Model V) increased the AUC to 0.67, and improved the accuracy of NVF classification by 11.5% (p = 0.014). In terms of predicting any fracture, the AUC of Model V (0.68) was similar to that of Model IV (0.68), and Model V did not significantly improve the accuracy of any fracture classification (p = 0.39). Thus, genetic profiling may enhance the accuracy of NVF predictions and help to delineate the intervention threshold.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Blott SC, Swinburne JE, Sibbons C, Fox-Clipsham LY, Helwegen M, Hillyer L, Parkin TDH, Newton JR, Vaudin M. A genome-wide association study demonstrates significant genetic variation for fracture risk in Thoroughbred racehorses. BMC Genomics 2014; 15:147. [PMID: 24559379 PMCID: PMC4008154 DOI: 10.1186/1471-2164-15-147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/14/2014] [Indexed: 12/11/2022] Open
Abstract
Background Thoroughbred racehorses are subject to non-traumatic distal limb bone fractures that occur during racing and exercise. Susceptibility to fracture may be due to underlying disturbances in bone metabolism which have a genetic cause. Fracture risk has been shown to be heritable in several species but this study is the first genetic analysis of fracture risk in the horse. Results Fracture cases (n = 269) were horses that sustained catastrophic distal limb fractures while racing on UK racecourses, necessitating euthanasia. Control horses (n = 253) were over 4 years of age, were racing during the same time period as the cases, and had no history of fracture at the time the study was carried out. The horses sampled were bred for both flat and National Hunt (NH) jump racing. 43,417 SNPs were employed to perform a genome-wide association analysis and to estimate the proportion of genetic variance attributable to the SNPs on each chromosome using restricted maximum likelihood (REML). Significant genetic variation associated with fracture risk was found on chromosomes 9, 18, 22 and 31. Three SNPs on chromosome 18 (62.05 Mb – 62.15 Mb) and one SNP on chromosome 1 (14.17 Mb) reached genome-wide significance (p < 0.05) in a genome-wide association study (GWAS). Two of the SNPs on ECA 18 were located in a haplotype block containing the gene zinc finger protein 804A (ZNF804A). One haplotype within this block has a protective effect (controls at 1.95 times less risk of fracture than cases, p = 1 × 10-4), while a second haplotype increases fracture risk (cases at 3.39 times higher risk of fracture than controls, p = 0.042). Conclusions Fracture risk in the Thoroughbred horse is a complex condition with an underlying genetic basis. Multiple genomic regions contribute to susceptibility to fracture risk. This suggests there is the potential to develop SNP-based estimators for genetic risk of fracture in the Thoroughbred racehorse, using methods pioneered in livestock genetics such as genomic selection. This information would be useful to racehorse breeders and owners, enabling them to reduce the risk of injury in their horses.
Collapse
Affiliation(s)
- Sarah C Blott
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mullin BH, Mamotte C, Prince RL, Spector TD, Dudbridge F, Wilson SG. Conditional testing of multiple variants associated with bone mineral density in the FLNB gene region suggests that they represent a single association signal. BMC Genet 2013; 14:107. [PMID: 24176111 PMCID: PMC3818969 DOI: 10.1186/1471-2156-14-107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low bone mineral density (BMD) is a primary risk factor for osteoporosis and is a highly heritable trait, but appears to be influenced by many genes. Genome-wide linkage studies have highlighted the chromosomal region 3p14-p22 as a quantitative trait locus for BMD (LOD 1.1 - 3.5). The FLNB gene, which is thought to have a role in cytoskeletal actin dynamics, is located within this chromosomal region and presents as a strong candidate for BMD regulation. We have previously identified significant associations between four SNPs in the FLNB gene and BMD in women. We have also previously identified associations between five SNPs located 5' of the transcription start site (TSS) and in intron 1 of the FLNB gene and expression of FLNB mRNA in osteoblasts in vitro. The latter five SNPs were genotyped in this study to test for association with BMD parameters in a family-based population of 769 Caucasian women. RESULTS Using FBAT, significant associations were seen for femoral neck BMD Z-score with the SNPs rs11720285, rs11130605 and rs9809315 (P = 0.004 - 0.043). These three SNPs were also found to be significantly associated with total hip BMD Z-score (P = 0.014 - 0.026). We then combined the genotype data for these three SNPs with the four SNPs we previously identified as associated with BMD and performed a conditional analysis to determine whether they represent multiple independent associations with BMD. The results from this analysis suggested that these variants represent a single association signal. CONCLUSIONS The SNPs identified in our studies as associated with BMD appear to be part of a single association signal between the FLNB gene and BMD in our data. FLNB is one of several genes located in 3p14-p22 that has been identified as significantly associated with BMD in Caucasian women.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
| | - Richard L Prince
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tim D Spector
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| | - Frank Dudbridge
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| |
Collapse
|
25
|
Abstract
Osteoporotic fracture carries an enormous public health burden in terms of mortality and morbidity. Current approaches to identify individuals at high risk for fracture are based on assessment of bone mineral density and presence of other osteoporosis risk factors. Bone mineral density and susceptibility to osteoporotic fractures are highly heritable, and over 60 loci have been robustly associated with one or both traits through genome-wide association studies carried out over the past 7 years. In this review, we discuss opportunities and challenges for incorporating these genetic discoveries into strategies to prevent osteoporotic fracture and translating new insights obtained from these discoveries into development of new therapeutic targets.
Collapse
Affiliation(s)
- Braxton D Mitchell
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD, USA
| | - Elizabeth A Streeten
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD, USA
| |
Collapse
|
26
|
Muhammad SI, Maznah I, Mahmud R, Zuki ABZ, Imam MU. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats. Clin Interv Aging 2013; 8:1259-71. [PMID: 24098073 PMCID: PMC3789840 DOI: 10.2147/cia.s45943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. Methods In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). Results The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non-treated groups. Conclusion GABA and ORZ from GBR stimulates osteoblastogenesis by upregulation of bone formation genes, possibly via the activation of GABAB receptors and by inhibiting the activity of inflammatory cytokines and reactive oxygen species. Therefore, it could be used effectively in the management of osteoporosis.
Collapse
Affiliation(s)
- Sani Ismaila Muhammad
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Usmanu Danfodiyo University, Sokoto, Nigeria ; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | | | | | | | | |
Collapse
|
27
|
Abstract
Osteoporosis and its consequence of fragility fracture impose a considerable demand on health-care services because fracture is associated with a series of adverse events, including re-fracture and mortality. One of the major priorities in osteoporosis care is the development of predictive models to identify individuals at high risk of fracture for early intervention and management. Existing predictive models include clinical factors and anthropometric characteristics but have not considered genetic variants in the prediction. Genome-wide association studies conducted in the past decade have identified several genetic variants relevant to fracture risk. These genetic variants are common in frequency but have very modest effect sizes. A remaining challenge is to use these genetic data to individualize fracture risk assessment on the basis of an individual's genetic risk profile. Empirical and simulation studies have shown that the usefulness of a single genetic variant for fracture risk assessment is very limited, but a profile of 50 genetic variants, each with odds ratio ranging from 1.02 to 1.15, could improve the accuracy of fracture prediction beyond that obtained by use of existing clinical risk factors. Thus, genetic profiling when integrated with existing risk assessment models could inform a more accurate prediction of fracture risk in an individual.
Collapse
Affiliation(s)
- Tuan V Nguyen
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia. t.nguyen@ garvan.org.au
| | | |
Collapse
|
28
|
Wang C, Zhang Z, Zhang H, He JW, Gu JM, Hu WW, Hu YQ, Li M, Liu YJ, Fu WZ, Yue H, Ke YH, Zhang ZL. Susceptibility genes for osteoporotic fracture in postmenopausal Chinese women. J Bone Miner Res 2012; 27:2582-91. [PMID: 22807154 DOI: 10.1002/jbmr.1711] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/22/2012] [Accepted: 07/03/2012] [Indexed: 01/01/2023]
Abstract
To identify the susceptibility genes for osteoporotic fracture in postmenopausal Chinese women, a two-stage case-control association study using joint analysis was conducted in 1046 patients with nontraumatic vertebra, hip, or distal radius fractures and 2303 healthy controls. First, 113 single-nucleotide polymorphisms (SNPs) in 16 potential osteoporosis candidate genes reported in recent genomewide association studies, meta-analyses studies, large-scale association studies, and functional studies were genotyped in a small-sample-size subgroup consisting of 541 patients with osteoporotic fractures and 554 healthy controls. Variants and haplotypes in SPTBN1, TNFRSF11B, CNR2, LRP4, and ESR1 that have been identified as being associated with osteoporotic fractures were further reanalyzed in the entire case-control group. We identified one SNP in TNFRSF11B (rs3102734), three SNPs in ESR1 (rs9397448, rs2234693, and rs1643821), two SNPs in LRP4 (rs17790156 and rs898604), and four SNPs in SPTBN1 (rs2971886, rs2941583, rs2941584, and rs12475342) were associated with all of the broadly defined osteoporotic fractures. The most significant polymorphism was rs3102734, with increased risk of osteoporotic fractures (odds ratio, 1.35; 95% confidence interval [CI], 1.17-1.55, Bonferroni p = 2.6 × 10(-4) ). Furthermore, rs3102734, rs2941584, rs12475342, rs9397448, rs2234693, and rs898604 exhibited significant allelic, genotypic, and/or haplotypic associations with vertebral fractures. SNPs rs12475342, rs9397448, and rs2234693 showed significant genotypic associations with hip fractures, whereas rs3102734, rs2073617, rs1643821, rs12475342, and rs2971886 exhibited significant genotypic and/or haplotypic associations with distal radius fractures. Accordingly, we suggest that in addition to the clinical risk factors, the variants in TNFRSF11B, SPTBN1, ESR1, and LRP4 are susceptibility genetic loci for osteoporotic fracture in postmenopausal Chinese women.
Collapse
Affiliation(s)
- Chun Wang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moayyeri A, Hammond CJ, Hart DJ, Spector TD. Effects of age on genetic influence on bone loss over 17 years in women: the Healthy Ageing Twin Study (HATS). J Bone Miner Res 2012; 27:2170-8. [PMID: 22589082 DOI: 10.1002/jbmr.1659] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The rate of bone loss varies across the aging period via multiple complex mechanisms. Therefore, the role of genetic factors on bone loss may also change similarly. In this study, we investigated the effect of age on the genetic component of bone loss in a large twin-based longitudinal study. During 17 years of follow-up in TwinsUK and Healthy Ageing Twin Study (HATS), 15,491 hip and lumbar spine dual-energy X-ray absorptiometry (DXA) scans were performed in 7056 twins. Out of these subjects, 2716 female twins aged >35 years with at least two scans separated for >4 years (mean follow-up 9.7 years) were included in this analysis. We used a mixed-effects random-coefficients regression model to predict hip and spine bone mineral density (BMD) values for exact ages of 40, 45, 50, 55, 60, 65, 70, 75, and 80 years, with adjustment for baseline age, weight, height, and duration of hormone replacement therapy. We then estimated heritability of the changes in BMD measures between these age ranges. Heritability estimates for cross-sectional hip and spine BMD were high (ranging between 69% and 88%) at different ages. Heritability of change of BMD was lower and more variable, generally ranging from 0% to 40% for hip and 0% to 70% for spine; between age 40 and 45 years genetic factors explained 39.9% (95% confidence interval [CI], 25%-53%) of variance of BMD loss for total hip, 46.4% (95% CI, 32%-58%) for femoral neck, and 69.5% (95% CI, 59%-77%) for lumbar spine. These estimates decreased with increasing age, and there appeared to be no heritability of BMD changes after the age of 65 years. There was some evidence at the spine for shared genetic effects between cross-sectional and longitudinal BMD. Whereas genetic factors appear to have an important role in bone loss in early postmenopausal women, nongenetic mechanisms become more important determinants of bone loss with advanced age.
Collapse
Affiliation(s)
- Alireza Moayyeri
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, UK
| | | | | | | |
Collapse
|
30
|
Abstract
Recent genome-wide association studies have identified many genetic variants associated with fracture risk. These genetic variants are common in the general population but have very modest effect sizes. A remaining challenge is to translate these genetic variant discoveries to better predict the risk of fracture based on an individual's genetic profile (ie, individualized risk assessment). Empirical and simulation studies have shown that 1) the utility of a single genetic variant for fracture risk assessment is very limited; but 2) a profile of 50 genetic variants, each with odds ratio ranging from 1.02 to 1.15, can improve the accuracy of fracture prediction and classification beyond that obtained by conventional clinical risk factors. These results are consistent with the view that genetic profiling, when integrated in existing risk assessment models, can inform a more accurate prediction of fracture risk in an individual.
Collapse
Affiliation(s)
- Tuan V Nguyen
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
31
|
Liu CT, Karasik D, Zhou Y, Hsu YH, Genant HK, Broe KE, Lang TF, Samelson EJ, Demissie S, Bouxsein ML, Cupples LA, Kiel DP. Heritability of prevalent vertebral fracture and volumetric bone mineral density and geometry at the lumbar spine in three generations of the Framingham study. J Bone Miner Res 2012; 27:954-8. [PMID: 22222934 PMCID: PMC3375687 DOI: 10.1002/jbmr.1537] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic factors likely contribute to the risk for vertebral fractures; however, there are few studies on the genetic contributions to vertebral fracture (VFrx), vertebral volumetric bone mineral density (vBMD), and geometry. Also, the heritability (h(2)) for VFrx and its genetic correlation with phenotypes contributing to VFrx risk have not been established. This study aims to estimate the h(2) of vertebral fracture, vBMD, and cross-sectional area (CSA) derived from quantitative computed tomography (QCT) scans and to estimate the extent to which they share common genetic association in adults of European ancestry from three generations of Framingham Heart Study (FHS) families. Members of the FHS families were assessed for VFrx by lateral radiographs or QCT lateral scout views at 13 vertebral levels (T(4) to L(4)) using Genant's semiquantitative (SQ) scale (grades 0 to 3). Vertebral fracture was defined as having at least 25% reduction in height of any vertebra. We also analyzed QCT scans at the L(3) level for integral (In.BMD) and trabecular (Tb.BMD) vBMD and CSA. Heritability estimates were calculated, and bivariate genetic correlation analysis was performed, adjusting for various covariates. For VFrx, we analyzed 4099 individuals (148 VFrx cases) including 2082 women and 2017 men from three generations. Estimates of crude and multivariable-adjusted h(2) were 0.43 to 0.69 (p < 1.1 × 10(-2)). A total of 3333 individuals including 1737 men and 1596 women from two generations had VFrx status and QCT-derived vBMD and CSA information. Estimates of crude and multivariable-adjusted h(2) for vBMD and CSA ranged from 0.27 to 0.51. In a bivariate analysis, there was a moderate genetic correlation between VFrx and multivariable-adjusted In.BMD (-0.22) and Tb.BMD (-0.29). Our study suggests vertebral fracture, vertebral vBMD, and CSA in adults of European ancestry are heritable, underscoring the importance of further work to identify the specific variants underlying genetic susceptibility to vertebral fracture, bone density, and geometry.
Collapse
Affiliation(s)
- Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim BJ, Hwang JY, Han BG, Lee JY, Lee JY, Park EK, Lee SH, Chung YE, Kim GS, Kim SY, Koh JM. Association of SMAD2 polymorphisms with bone mineral density in postmenopausal Korean women. Osteoporos Int 2011; 22:2273-82. [PMID: 21052639 DOI: 10.1007/s00198-010-1450-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/24/2010] [Indexed: 01/18/2023]
Abstract
UNLABELLED In a candidate gene association study, we found that SMAD2 promoter alleles and haplotypes were significantly associated with bone mineral density (BMD) at the lumbar spine and various proximal femur sites. Our results suggest that SMAD2 polymorphisms may be one of genetic determinants of BMD in postmenopausal women. INTRODUCTION SMAD2, which is the specific intracellular transducer of TGF-ß, is thought to participate in bone metabolism by playing a critical role in the development and function of osteoclasts and osteoblasts. We performed association analyses of the genetic variation in SMAD2 to ascertain the contribution of this gene to BMD and risk of osteoporotic fracture. METHODS We selected three SMAD2 promoter single-nucleotide polymorphisms (SNPs) based on heterozygosity and validation status. Postmenopausal Korean women (n = 1,329) were genotyped for these SNPs, and their BMD and risk of fractures were assessed. BMD at the lumbar spine and proximal femur was measured using dual-energy X-ray absorptiometry. P values were corrected for multiple testing by the effective number of independent marker loci (P (cor)). RESULTS We found that SMAD2 -35302C>T, -34952A>G, and ht2 were significantly associated with BMD at both the lumbar spine and femur neck (P (cor) = 0.020-0.046), whereas SMAD2 -36201A>G and ht1 affected the femur neck BMD (P (cor) = 0.018-0.031). The genetic effects of these three polymorphisms on BMD at the lumbar spine and femur neck were risk-allele dependent in additive model. The three polymorphisms and two hts were also significantly associated with BMD at other proximal femur sites, such as the total femur, trochanter, and femur shaft (P (cor) = 0.001-0.046). However, none of the polymorphisms or hts was associated with an increased risk of fracture. CONCLUSIONS Our results suggest that SMAD2 polymorphisms may be one of genetic determinants of BMD in postmenopausal women.
Collapse
Affiliation(s)
- B-J Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu WW, He JW, Zhang H, Wang C, Gu JM, Yue H, Ke YH, Hu YQ, Fu WZ, Li M, Liu YJ, Zhang ZL. No association between polymorphisms and haplotypes of COL1A1 and COL1A2 genes and osteoporotic fracture in postmenopausal Chinese women. Acta Pharmacol Sin 2011; 32:947-55. [PMID: 21602843 DOI: 10.1038/aps.2011.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIM To study whether genetic polymorphisms of COL1A1 and COL1A2 genes affected the onset of fracture in postmenopausal Chinese women. METHODS SNPs in COL1A1 and COL1A2 genes were identified via direct sequencing in 32 unrelated postmenopausal Chinese women. Ten SNPs were genotyped in 1252 postmenopausal Chinese women. The associations were examined using both single-SNP and haplotype tests using logistic regression. RESULTS Twenty four (4 novel) and 28 (7 novel) SNPs were identified in COL1A1 and COL1A2 gene, respectively. The distribution frequencies of 2 SNPs in COL1A1 (rs2075554 and rs2586494) and 3 SNPs in COL1A2 (rs42517, rs1801182, and rs42524) were significantly different from those documented for the European Caucasian population. No significant difference was observed between fracture and control groups with respect to allele frequency or genotype distribution in 9 selected SNPs and haplotype. No significant association was found between fragility fracture and each SNP or haplotype. The results remained the same after additional corrections for other risk factors such as weight, height, and bone mineral density. CONCLUSION Our results show no association between common genetic variations of COL1A1 and COL1A2 genes and fracture, suggesting the complex genetic background of osteoporotic fractures.
Collapse
|
34
|
Tran BNH, Nguyen ND, Nguyen VX, Center JR, Eisman JA, Nguyen TV. Genetic profiling and individualized prognosis of fracture. J Bone Miner Res 2011; 26:414-9. [PMID: 20721935 DOI: 10.1002/jbmr.219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fragility fracture is a serious public health problem in the world. The risk of fracture is determined by genetic and nongenetic clinical risk factors. This study sought to quantify the contribution of genetic profiling to fracture prognosis. The study was built on the ongoing Dubbo Osteoporosis Epidemiology Study, in which fracture and risk factors of 858 men and 1358 women had been monitored continuously from 1989 and 2008. Fragility fracture was ascertained by radiologic reports. Bone mineral density at the femoral neck was measured by dual-energy X-ray absorptiometry (DXA). Fifty independent genes with allele frequencies ranging from 0.01 to 0.60 and relative risks (RRs) ranging from 1.01 to 3.0 were simulated. Three predictive models were fitted to the data in which fracture was a function of (1) clinical risk factors only, (2) genes only, and (3) clinical risk factors and 50 genes. The area under the curve (AUC) for model 1 was 0.77, which was lower than that of model II (AUC = 0.82). Adding genes into the clinical risk factors model (model 3) increased the AUC to 0.88 and improved the accuracy of fracture classification by 45%, with most (41%) improvement in specificity. In the presence of clinical risk factors, the number of genes required to achieve an AUC of 0.85 was around 25. These results suggest that genetic profiling could enhance the predictive accuracy of fracture prognosis and help to identify high-risk individuals for appropriate management of osteoporosis or intervention.
Collapse
Affiliation(s)
- Bich N H Tran
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Clifton-Bligh RJ, Nguyen TV, Au A, Bullock M, Cameron I, Cumming R, Chen JS, March LM, Seibel MJ, Sambrook PN. Contribution of a common variant in the promoter of the 1-α-hydroxylase gene (CYP27B1) to fracture risk in the elderly. Calcif Tissue Int 2011; 88:109-16. [PMID: 21107545 PMCID: PMC3030947 DOI: 10.1007/s00223-010-9434-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 09/22/2010] [Indexed: 01/01/2023]
Abstract
CYP27B1 encodes mitochondrial 1α-hydroxylase, which converts 25-hydroxyvitamin D to its active 1,25-dihydroxylated metabolite. We tested the hypothesis that common variants in the CYP27B1 promoter are associated with fracture risk. The study was designed as a population-based genetic association study, which involved 153 men and 596 women aged 65-101 years, who had been followed for 2.2 years (range 0.1-5.5) between 1999 and 2006. During the follow-up period, the incidence of fragility fractures was ascertained. Bone ultrasound attenuation (BUA) was measured in all individuals, as were serum 25-hydroxyvitamin D and PTH concentrations; 86% subjects had vitamin D insufficiency. Genotypes were determined for the -1260C>A (rs10877012) and +2838T>C (rs4646536) CYP27B1 polymorphisms. A reporter gene assay was used to assess functional expression of the -1260C>A CYP27B1 variants. The association between genotypes and fracture risk was analyzed by Cox's proportional hazards model. We found that genotypic distribution of CYP27B1 -1260 and CYP27B1 +2838 polymorphisms was consistent with the Hardy-Weinberg equilibrium law. The two polymorphisms were in high linkage disequilibrium, with D' = 0.96 and r² = 0.94. Each C allele of the CYP27B1 -1260 polymorphism was associated with increased risk of fracture (hazard ratio = 1.34, 95% CI 1.03-1.73), after adjustment for age, sex, number of falls, and BUA. In transient transfection studies, a reporter gene downstream of the -1260(A)-containing promoter was more highly expressed than that containing the C allele. These data suggest that a common but functional variation within the CYP27B1 promoter gene is associated with fracture risk in the elderly.
Collapse
Affiliation(s)
- Roderick J Clifton-Bligh
- Northern Metabolic Bone Research Unit, Royal North Shore Hospital, St. Leonards, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Osteoporosis is a common disease with a strong genetic component characterized by reduced bone mass, defects in the microarchitecture of bone tissue, and an increased risk of fragility fractures. Twin and family studies have shown high heritability of bone mineral density (BMD) and other determinants of fracture risk such as ultrasound properties of bone, skeletal geometry, and bone turnover. Osteoporotic fractures also have a heritable component, but this reduces with age as environmental factors such as risk of falling come into play. Susceptibility to osteoporosis is governed by many different genetic variants and their interaction with environmental factors such as diet and exercise. Notable successes in identification of genes that regulate BMD have come from the study of rare Mendelian bone diseases characterized by major abnormalities of bone mass where variants of large effect size are operative. Genome-wide association studies have also identified common genetic variants of small effect size that contribute to regulation of BMD and fracture risk in the general population. In many cases, the loci and genes identified by these studies had not previously been suspected to play a role in bone metabolism. Although there has been extensive progress in identifying the genes and loci that contribute to the regulation of BMD and fracture over the past 15 yr, most of the genetic variants that regulate these phenotypes remain to be discovered.
Collapse
Affiliation(s)
- Stuart H Ralston
- Rheumatic Diseases Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.
| | | |
Collapse
|
37
|
Duncan EL, Brown MA. Clinical review 2: Genetic determinants of bone density and fracture risk--state of the art and future directions. J Clin Endocrinol Metab 2010; 95:2576-87. [PMID: 20375209 DOI: 10.1210/jc.2009-2406] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CONTEXT Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. EVIDENCE ACQUISITION AND SYNTHESIS In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. CONCLUSIONS Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.
Collapse
Affiliation(s)
- Emma L Duncan
- University of Queensland Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland 4102, Australia.
| | | |
Collapse
|
38
|
Hwang JY, Kim SY, Lee SH, Kim GS, Go MJ, Kim SE, Kim HC, Shin HD, Park BL, Kim TH, Hong JM, Park EK, Kim HL, Lee JY, Koh JM. Association of TWIST1 gene polymorphisms with bone mineral density in postmenopausal women. Osteoporos Int 2010; 21:757-64. [PMID: 19597909 DOI: 10.1007/s00198-009-1009-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/12/2009] [Indexed: 12/23/2022]
Abstract
UNLABELLED A novel polymorphism (+1871A>G) in the 3' flanking region and haplotypes were significantly associated with reduced osteoporosis risk and enhanced bone mineral density (BMD). These results suggest that TWIST1 may be a useful genetic marker for osteoporosis. Our results provide preliminary evidence supporting an association of TWIST1 with osteoporosis in postmenopausal women. INTRODUCTION TWIST1, a basic helix-loop-helix (bHLH) transcription factor, has been implicated in cell lineage determination and differentiation. METHODS To address the genetic variations in the TWIST1 gene associated with osteoporosis, we investigated the potential involvement of three TWIST1 single-nucleotide polymorphisms (SNPs) in osteoporosis in 729 postmenopausal women. BMD was measured using dual-energy X-ray absorptiometry. RESULTS A novel polymorphism in the 3' flanking region (+1871A>G) was significantly associated with osteoporosis risk (p = 0.007-0.008) and also in multiple comparison (p = 0.02). Consistent with these results, haplotype analysis showed that Block1_ht2 had protective effects in the dominant and additive model (p = 0.006-0.007). Specifically, the +1871A>G polymorphism was overdominantly associated with higher BMD values of the femoral neck (p = 0.039). CONCLUSION These results suggest that TWIST1 may be a useful genetic marker for osteoporosis and may have a role on bone metabolism in humans. Our results provide preliminary evidence supporting an association of TWIST1 with osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- J-Y Hwang
- The Center for Genome Science, National Institute of Health, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Marini F, Brandi ML. Genetic determinants of osteoporosis: common bases to cardiovascular diseases? Int J Hypertens 2010; 2010:394579. [PMID: 20948561 PMCID: PMC2949079 DOI: 10.4061/2010/394579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/07/2010] [Indexed: 01/18/2023] Open
Abstract
Osteoporosis is the most common and serious age-related skeletal disorder, characterized by a low bone mass and bone microarchitectural deterioration, with a consequent increase in bone fragility and susceptibility to spontaneous fractures, and it represents a major worldwide health care problem with important implications for health care costs, morbidity and mortality. Today is well accepted that osteoporosis is a multifactorial disorder caused by the interaction between environment and genes that singularly exert modest effects on bone mass and other aspects of bone strength and fracture risk. The individuation of genetic factors responsible for osteoporosis predisposition and development is fundamental for the disease prevention and for the setting of novel therapies, before fracture occurrence. In the last decades the interest of the Scientific Community has been concentrated in the understanding the genetic bases of this disease but with controversial and/or inconclusive results. This review tries to summarize data on the most representative osteoporosis candidate genes. Moreover, since recently osteoporosis and cardiovascular diseases have shown to share common physiopathological mechanisms, this review also provides information on the current understanding of osteoporosis and cardiovascular diseases common genetic bases.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Internal Medicine, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | | |
Collapse
|
40
|
Czerny B, Kaminski A, Kurzawski M, Kotrych D, Safranow K, Dziedziejko V, Bohatyrewicz A, Pawlik A. The association of IL-1beta, IL-2, and IL-6 gene polymorphisms with bone mineral density and osteoporosis in postmenopausal women. Eur J Obstet Gynecol Reprod Biol 2010; 149:82-5. [PMID: 20060205 DOI: 10.1016/j.ejogrb.2009.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/17/2009] [Accepted: 12/11/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Osteoporosis is a common disorder with a strong genetic component. The genetics of osteoporosis impacts on the prediction, diagnosis, prognosis, and treatment of the disease. STUDY DESIGN The aim of the present study was to examine associations between cytokine gene polymorphisms (IL-1beta, IL-2, IL-6) and bone mineral density (BMD) values in postmenopausal women. The study included 226 postmenopausal women with a diagnosed BMD T-score lower than -2.5 SD (mean: -3.02+/-.053) and 224 postmenopausal women with a BMD T-score greater than -2.5 SD (mean: -1.33+/-0.51). RESULTS Among the women with T-scores below -2.5 SD, the BMD values were significantly lower in the carriers of the IL-6 GG genotype compared with those with the CC and GC genotypes (0.70+/-0.38 vs. 0.73+/-0.25 and 0.74+/-0.23 for the lumbar spine, 0.54+/-0.18 vs. 0.56+/-0.15 and 0.58+/-0.22 for the femoral neck). There were no statistically significant associations between the IL-1beta and IL-2 genotypes and BMD values in the group of women with T-scores below -2.5 SD. CONCLUSION The results of the present study suggest an association of the IL-6 -174 G/C polymorphism with osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Bogusław Czerny
- Department of Pharmacology, Pomeranian Medical University, ul. Powst. Wlkp. 72, 70-111 Szczecin, Poland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Koh JM, Oh B, Ha MH, Cho KW, Lee JY, Park BL, Shin HD, Bae MA, Kim HJ, Hong JM, Kim TH, Shin HI, Lee SH, Kim GS, Kim SY, Park EK. Association of IL-15 polymorphisms with bone mineral density in postmenopausal Korean women. Calcif Tissue Int 2009; 85:369-78. [PMID: 19756346 DOI: 10.1007/s00223-009-9290-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 08/11/2009] [Indexed: 12/22/2022]
Abstract
Interleukin-15 (IL-15) has been suggested to participate in bone metabolism by stimulating osteoclast differentiation and mediating inflammatory bone loss. This study investigated the effect of IL-15 gene polymorphisms on the bone mineral density (BMD) and bone fracture rates of postmenopausal women. Sequencing of the IL-15 gene in 24 Koreans revealed 16 single-nucleotide polymorphisms (SNPs), of which five were selected for further study. Postmenopausal Korean women (n = 844) were genotyped for these SNPs, and their BMDs and risk of fractures were assessed. It was found that the +20A > G, +13467C > A, +13653A > T, and +13815A > T IL-15 gene polymorphisms were significantly associated with the BMD of the lumbar spine and femoral neck and that their effects were gene-dose dependent. BMD was reduced when the minor allele of +13467A and +13653T or the common allele of +20A and +13815A was present. Haplotype (ht) analyses revealed that ht1 (GCAT) and ht2 (AATA) were associated with BMD of the lumbar spine and femoral neck. However, there was no association between the risk of fracture and IL-15 SNPs or hts. These results suggest that the +20A > G, +13467C > A, +13653A > T, and +13815A > T SNPs in the IL-15 gene affect BMD and, thus, could be genetic markers of osteoporosis.
Collapse
Affiliation(s)
- Jung-Min Koh
- Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu 700-412, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sirola J, Salovaara K, Tuppurainen M, Jurvelin JS, Alhava E, Kröger H. Sister's fracture history may be associated with perimenopausal bone fragility and modifies the predictability of fracture risk. Osteoporos Int 2009; 20:557-65. [PMID: 18661087 DOI: 10.1007/s00198-008-0704-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/23/2008] [Indexed: 11/28/2022]
Abstract
SUMMARY The present study investigated the effects of first degree relatives' fractures on fracture incidence after the menopause. Sister's, but not other relatives', wrist or hip fracture history was associated with increased risk of fragility fractures after the menopause. This suggests genetic predisposition to bone fragility among postmenopausal women. OBJECTIVE The aim of the present study was to investigate the association between first degree relatives' fractures and perimenopausal bone fragility. MATERIALS AND METHODS The study sample of 971 perimenopausal women was extracted from randomly selected Kuopio Osteoporosis Risk Factor and Prevention cohort and measured with dual X-ray absorptiometry in femoral neck (FN) in baseline (1989-1991), in 5 years (1994-97), and in 10 years (1999-2001). All low-trauma energy fractures during the 10-year follow-up were recorded based on self-reports and validated from medical records. First degree relatives' history of life-time hip and wrist fractures (exact classification or trauma energy not specified) was questioned by postal inquiries. RESULTS There was a significant correlation between fathers' vs. brothers' and mothers' vs. sisters' fractures (p < 0.01 in Pearson bivariate correlations). Sister's, but not mother's, father's, or brother's wrist and hip fractures were associated with significantly lowered 10-year fragility fracture-free survival rate (HR = 0.56, p = 0.006). Sisters' or other relatives' fractures were not associated with FN bone loss rate or bone mineral density (BMD) in the follow-up measurements (p = NS in ANCOVA). The predictive power of BMD for fragility fractures differed according to sisters' fracture history: Baseline FN T score predicted fracture-free survival only among women without sisters' fracture history (HR 0.62, p < 0.001 vs. women with sisters' fracture in Cox regression). CONCLUSIONS In conclusion, sisters' fracture history is associated with 10-year fracture-free survival in perimenopausal women but not with BMD or its changes. Predictability of fragility fracture risk with BMD may depend on sister's fracture history. This may indirectly suggest genetic predisposition to bone fragility independently of BMD.
Collapse
Affiliation(s)
- J Sirola
- Bone and Cartilage Research Unit (BCRU), University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
43
|
Park LY. An Alternative Way of Constructing Ancestral Graphs Using Marker Allele Ages from Population Linkage Disequilibrium Information. Genomics Inform 2009. [DOI: 10.5808/gi.2009.7.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Hwang JY, Lee SH, Kim GS, Koh JM, Go MJ, Kim TH, Hong JM, Park EK, Kim SY, Lee JY. Association of Common Vitamin D Receptor Gene Variations with Fracture Risk and Bone Mineral Density in Postmenopausal Korean Population. Genomics Inform 2009. [DOI: 10.5808/gi.2009.7.1.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Chen Y, Shen H, Yang F, Liu PY, Tang N, Recker RR, Deng HW. Choice of study phenotype in osteoporosis genetic research. J Bone Miner Metab 2009; 27:121-6. [PMID: 19184673 DOI: 10.1007/s00774-008-0020-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 04/20/2008] [Indexed: 01/23/2023]
Abstract
Osteoporosis is a common disease characterized by compromised bone strength predisposing a person to an increased risk of osteoporotic fracture (OF). Recently, extensive efforts have been made to identify candidate genes underlying osteoporosis by the use of surrogate phenotypes, such as bone mineral density (BMD) and bone geometry. Among them, BMD is a suitable choice if we aim to classify the role of biological pathways for bone strength and to understand the bone conditions in the development of osteoporosis. However, evidences show that the genetic correlation between BMD and OF is very limited. In this review, we are mainly concerned with an important issue, i.e., phenotype choice in osteoporosis genetic research. For clarity, we address this issue with several arguments, and comments are made on most representative literature.
Collapse
Affiliation(s)
- Yuan Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shannxi 710049, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Nguyen TV, Center JR, Eisman JA. Pharmacogenetics of osteoporosis and the prospect of individualized prognosis and individualized therapy. Curr Opin Endocrinol Diabetes Obes 2008; 15:481-8. [PMID: 18971675 DOI: 10.1097/med.0b013e32831a46be] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Description of recent progress in genetics and pharmacogenetics of osteoporosis. RECENT FINDINGS Osteoporosis and its consequence of fragility fracture are characterized by highly complex phenotypes, which include bone mineral density, bone strength, bone turnover markers, and nonskeletal traits. Recent developments in the genome-wide studies using high-throughput single-nucleotide polymorphisms have yielded reliable findings. Four genome-wide studies have identified 40 single-nucleotide polymorphisms in various chromosomes that were modestly associated with either bone mineral density or fracture risk. Clinical response, including adverse reactions, to antiosteoporosis therapy (such as bisphosphonates and selective estrogen receptor modulators) is highly variable among treated individuals. Candidate gene studies have found that common polymorphic variations within the collagen I alpha 1 and vitamin D receptor genes were associated with variability in response to antiosteoporosis treatment. Moreover, a recent genome-wide study identified four single-nucleotide polymorphisms that were associated with bisphosphonate-related osteonecrosis of the jaw with relative risk being between 10 and 13. SUMMARY The evaluation of osteoporosis and fracture risk is moving from a risk stratification approach to a more individualized approach, in which an individual's absolute risk of fracture is evaluable as a constellation of the individual's environmental exposure and genetic makeup. Therefore, the identification of gene variants that are associated with osteoporosis phenotypes or response to therapy can eventually help individualize the prognosis, treatment and prevention of fracture and its adverse outcomes.
Collapse
Affiliation(s)
- Tuan V Nguyen
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
47
|
Abstract
A family history of hip fracture carries a twofold increased risk of fracture among descendants. Genetic factors indeed play a major role in the determination of bone mineral density (BMD) and osteoporosis risk. Multiple chromosomal loci have been mapped by linkage approaches which potentially carry hundreds of genes involved in the determination of bone mass and quality. Association studies based on candidate gene polymorphisms and subsequent meta-analyses, and the more recent genome-wide association studies (GWAS), have clearly identified a handful of genes associated with BMD and/or fragility fractures. Among them are genes coding for the LDL-receptor related protein 5 (LRP5), estrogen receptor alpha (ESR1) and osteoprotegerin, OPG (TNFRSf11b). However, the percentage of osteoporosis risk explained by any of these polymorphisms is small, indicating that most genetic risk factors remain to be discovered and/or that interaction with environmental factors needs further consideration.
Collapse
Affiliation(s)
- Serge Ferrari
- Department of Rehabilitation and Geriatrics, WHO Collaborating Center for Osteoporosis Prevention, Geneva University Hospital and Faculty of Medicine, Genève 14, Switzerland.
| |
Collapse
|
48
|
Abstract
Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.
Collapse
Affiliation(s)
- Emma L Duncan
- The University of Queensland, Diamantina Institute for Cancer Immunology and Metabolic Medicine, Princess Alexandra Hospital, Woolloongabba Qld 4102, Australia.
| | | |
Collapse
|
49
|
Abstract
Common diseases result from the complex relationship between genetic and environmental factors. The aim of this review is to provide perspective for a conceptual framework aimed at studying the interplay of gender-specific genetic and environmental factors in the etiology of complex disease, using osteoporosis as an example. In recent years, gender differences in the heritability of the osteoporosis-related phenotypes have been reported and sex-specific quantitative-trait loci were discovered by linkage studies in humans and mice. Results of numerous allelic association studies also differed by gender. In most cases, it was not clear whether or not this phenomenon should be attributed to the effect of sex-chromosomes, sex hormones, or other intrinsic or extrinsic differences between the genders, such as the level of bioavailable estrogen and of physical activity. We conclude that there is need to consider gender-specific genetic and environmental factors in the planning of future association studies on the etiology of osteoporosis and other complex diseases prevalent in the general population.
Collapse
Affiliation(s)
- D Karasik
- Hebrew SeniorLife/IFAR and Harvard Medical School, Boston, MA 02131, USA.
| | | |
Collapse
|
50
|
Chang SF. Knowledge, health beliefs and health-related behaviours of first-degree relatives of women suffering from osteoporosis in Taiwan: a questionnaire survey. J Clin Nurs 2008; 17:1280-6. [PMID: 17394538 DOI: 10.1111/j.1365-2702.2006.01859.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND No previous study has examined knowledge, health beliefs and health-related behaviours in first-degree relatives (FDRs) of osteoporosis sufferers, especially focusing on Asian women. AIM This study explored osteoporosis knowledge, beliefs and behaviours of women with a family history of osteoporosis, and drew a comparison with women with no such history. DESIGN This study recruited women at a large public health centre in northern Taiwan. A questionnaire was applied on FDRs and non-FDRs women with a focus on osteoporosis knowledge, health beliefs and behaviours. Descriptive analysis was initially conducted. Differences between FDRs and non-FDRs were rated via Student's t-tests for continuous variables and the chi-squared test for categorical variables. RESULTS Overall, most of the participants were aware of some osteoporosis-related information but the proportions of correct responses to the questions that tested knowledge between FDRs and non-FDRs were only 44.0% and 42%, respectively. Meanwhile, participants in the FDRs group not only reported higher concern in developing the disease, but also perceived higher barriers compared with the non-FDRs group. As the study demonstrates, for health-related behaviours, the FDRs group did not undertake actual preventive behaviours, and only bone mineral density screening behaviour differed significantly from the non-FDRs group. CONCLUSIONS This study highlights the inadequate information on osteoporosis and constraining beliefs of FDRs women. Additionally, as preventative behaviours for osteoporosis were not noted in FDRs group, community health nurses and researchers should make efforts to assist and encourage women to take practical preventative behaviours. RELEVANCE TO CLINICAL PRACTICE This investigation reviews the knowledge, beliefs and behaviours of the FDRs group for Taiwanese women with osteoporosis. The results of this work can be used to provide effective implementation guidelines for preventing osteoporosis especially for women with a family history of the disease.
Collapse
Affiliation(s)
- Shu-Fang Chang
- Department of Industrial Education, National Taiwan Normal University, Taiwan.
| |
Collapse
|