1
|
Manca M, Zhang C, Scheffold F, Salentinig S. Optical tweezer platform for the characterization of pH-triggered colloidal transformations in the oleic acid/water system. J Colloid Interface Sci 2022; 627:610-620. [PMID: 35872418 DOI: 10.1016/j.jcis.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
HYPOTHESIS Soft colloidal particles that respond to their environment have innovative potential for many fields ranging from food and health to biotechnology and oil recovery. The in situ characterisation of colloidal transformations that triggers the functional response remain a challenge. EXPERIMENTS This study demonstrates the combination of an optical micromanipulation platform, polarized optical video microscopy and microfluidics in a comprehensive approach for the analysis of pH-driven structural transformations in emulsions. The new platform, together with synchrotron small angle X-ray scattering, was then applied to research the food-relevant, pH-responsive, oleic acid in water system. FINDINGS The experiments demonstrate structural transformations in individual oleic acid particles from micron-sized onion-type multilamellar oleic acid vesicles at pH 8.6, to nanostructured emulsions at pH < 8.0, and eventually oil droplets at pH < 6.5. The smooth particle-water interface of the onion-type vesicles at pH 8.6 was transformed into a rough particle surface at pH below 7.5. The pH-triggered changes of the interfacial tension at the droplet-water interface together with mass transport owing to structural transformations induced a self-propelled motion of the particle. The results of this study contribute to the fundamental understanding of the structure-property relationship in pH-responsive emulsions for nutrient and drug delivery applications.
Collapse
Affiliation(s)
- Marco Manca
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Chi Zhang
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | - Frank Scheffold
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland.
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
2
|
Affiliation(s)
- Irit Rosenhek‐Goldian
- Department of Chemical Research Support Weizmann Institute of Science Herzl 234 Rehovot ISRAEL
| | - Sidney R. Cohen
- Department of Chemical Research Support Weizmann Institute of Science Herzl 234 Rehovot ISRAEL
| |
Collapse
|
3
|
Blázquez-Castro A, Fernández-Piqueras J, Santos J. Genetic Material Manipulation and Modification by Optical Trapping and Nanosurgery-A Perspective. Front Bioeng Biotechnol 2020; 8:580937. [PMID: 33072730 PMCID: PMC7530750 DOI: 10.3389/fbioe.2020.580937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Light can be employed as a tool to alter and manipulate matter in many ways. An example has been the implementation of optical trapping, the so called optical tweezers, in which light can hold and move small objects with 3D control. Of interest for the Life Sciences and Biotechnology is the fact that biological objects in the size range from tens of nanometers to hundreds of microns can be precisely manipulated through this technology. In particular, it has been shown possible to optically trap and move genetic material (DNA and chromatin) using optical tweezers. Also, these biological entities can be severed, rearranged and reconstructed by the combined use of laser scissors and optical tweezers. In this review, the background, current state and future possibilities of optical tweezers and laser scissors to manipulate, rearrange and alter genetic material (DNA, chromatin and chromosomes) will be presented. Sources of undesirable effects by the optical procedure and measures to avoid them will be discussed. In addition, first tentative approaches at cellular-level genetic and organelle surgery, in which genetic material or DNA-carrying organelles are extracted out or introduced into cells, will be presented.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain
| | - José Fernández-Piqueras
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| | - Javier Santos
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
4
|
Ungai-Salánki R, Peter B, Gerecsei T, Orgovan N, Horvath R, Szabó B. A practical review on the measurement tools for cellular adhesion force. Adv Colloid Interface Sci 2019; 269:309-333. [PMID: 31128462 DOI: 10.1016/j.cis.2019.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
Cell-cell and cell-matrix adhesions are fundamental in all multicellular organisms. They play a key role in cellular growth, differentiation, pattern formation and migration. Cell-cell adhesion is substantial in the immune response, pathogen-host interactions, and tumor development. The success of tissue engineering and stem cell implantations strongly depends on the fine control of live cell adhesion on the surface of natural or biomimetic scaffolds. Therefore, the quantitative and precise measurement of the adhesion strength of living cells is critical, not only in basic research but in modern technologies, too. Several techniques have been developed or are under development to quantify cell adhesion. All of them have their pros and cons, which has to be carefully considered before the experiments and interpretation of the recorded data. Current review provides a guide to choose the appropriate technique to answer a specific biological question or to complete a biomedical test by measuring cell adhesion.
Collapse
|
5
|
Hill EH, Li J, Lin L, Liu Y, Zheng Y. Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13252-13262. [PMID: 30350700 PMCID: PMC6246038 DOI: 10.1021/acs.langmuir.8b01979] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipid vesicles are important biological assemblies, which are critical to biological transport processes, and vesicles prepared in the lab are a workhorse for studies of drug delivery, protein unfolding, biomolecular interactions, compartmentalized chemistry, and stimuli-responsive sensing. The current method of using optical tweezers for holding lipid vesicles in place for single-vesicle studies suffers from limitations such as high optical power, rigorous optics, and small difference in the refractive indices of vesicles and water. Herein, we report the use of plasmonic heating to trap vesicles in a temperature gradient, allowing long-range attraction, parallel trapping, and dynamic manipulation. The capabilities and limitations with respect to thermal effects on vesicle structure and optical spectroscopy are discussed. This simple approach allows vesicle manipulation using down to 3 orders of magnitude lower optical power and at least an order of magnitude higher trapping stiffness per unit power than traditional optical tweezers while using a simple optical setup. In addition to the benefit provided by the relaxation of these technical constraints, this technique can complement optical tweezers to allow detailed studies on thermophoresis of optically trapped vesicles and effects of locally generated thermal gradients on the physical properties of lipid vesicles. Finally, the technique itself and the large-scale collection of vesicles have huge potential for future studies of vesicles relevant to detection of exosomes, lipid-raft formation, and other areas relevant to the life sciences.
Collapse
Affiliation(s)
- Eric H. Hill
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Jingang Li
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Linhan Lin
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yaoran Liu
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Pilát Z, Jonáš A, Ježek J, Zemánek P. Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System. SENSORS 2017; 17:s17112640. [PMID: 29144389 PMCID: PMC5712812 DOI: 10.3390/s17112640] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022]
Abstract
Baker's yeast (Saccharomyces cerevisiae) represents a very popular single-celled eukaryotic model organism which has been studied extensively by various methods and whose genome has been completely sequenced. It was also among the first living organisms that were manipulated by optical tweezers and it is currently a frequent subject of optical micromanipulation experiments. We built a microfluidic system for optical trapping experiments with individual cells and used it for the assessment of cell tolerance to phototoxic stress. Using optical tweezers with the wavelength of 1064 nm, we trapped individual Saccharomyces cerevisiae cells for 15 min and, subsequently, observed their stress response in specially designed microfluidic chambers over time periods of several hours by time-lapse video-microscopy. We determined the time between successive bud formations after the exposure to the trapping light, took account of damaged cells, and calculated the population doubling period and cell areas for increasing trapping power at a constant trapping time. Our approach represents an attractive, versatile microfluidic platform for quantitative optical trapping experiments with living cells. We demonstrate its application potential by assessing the limits for safe, non-invasive optical trapping of Saccharomyces cerevisiae with infrared laser light.
Collapse
Affiliation(s)
- Zdeněk Pilát
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic.
| | - Alexandr Jonáš
- Department of Physics, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Jan Ježek
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic.
| | - Pavel Zemánek
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic.
| |
Collapse
|
7
|
Automated Dielectrophoretic Tweezers-Based Force Spectroscopy System in a Microfluidic Device. SENSORS 2017; 17:s17102272. [PMID: 28976941 PMCID: PMC5677021 DOI: 10.3390/s17102272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022]
Abstract
We reported an automated dielectrophoretic (DEP) tweezers-based force spectroscopy system to examine intermolecular weak binding interactions, which consists of three components: (1) interdigitated electrodes and micro-sized polystyrene particles used as DEP tweezers and probes inside a microfluidic device, along with an arbitrary function generator connected to a high voltage amplifier; (2) microscopy hooked up to a high-speed charge coupled device (CCD) camera with an image acquisition device; and (3) a computer aid control system based on the LabVIEW program. Using this automated system, we verified the measurement reliability by measuring intermolecular weak binding interactions, such as hydrogen bonds and Van der Waals interactions. In addition, we also observed the linearity of the force loading rates, which is applied to the probes by the DEP tweezers, by varying the number of voltage increment steps and thus affecting the linearity of the force loading rates. This system provides a simple and low-cost platform to investigate intermolecular weak binding interactions.
Collapse
|
8
|
|
9
|
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chem Rev 2017; 117:4342-4375. [PMID: 28156096 DOI: 10.1021/acs.chemrev.6b00638] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.
Collapse
Affiliation(s)
- Kamilla Norregaard
- Cluster for Molecular Imaging, Department of Biomedical Science and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam , 14476 Potsdam-Golm, Germany
| | - Christine M Ritter
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
|
11
|
Li Y, Xin H, Liu X, Li B. Non-contact intracellular binding of chloroplasts in vivo. Sci Rep 2015; 5:10925. [PMID: 26043396 PMCID: PMC4455249 DOI: 10.1038/srep10925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.
Collapse
Affiliation(s)
- Yuchao Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongbao Xin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaoshuai Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baojun Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Norregaard K, Jauffred L, Berg-Sørensen K, Oddershede LB. Optical manipulation of single molecules in the living cell. Phys Chem Chem Phys 2015; 16:12614-24. [PMID: 24651890 DOI: 10.1039/c4cp00208c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Optical tweezers are the only nano-tools capable of manipulating and performing force-measurements on individual molecules and organelles within the living cell without performing destructive penetration through the cell wall and without the need for inserting a non-endogenous probe. Here, we describe how optical tweezers are used to manipulate individual molecules and perform accurate force and distance measurements within the complex cytoplasm of the living cell. Optical tweezers can grab individual molecules or organelles, if their optical contrast to the medium is large enough, as is the case, e.g., for lipid granules or chromosomes. However, often the molecule of interest is specifically attached to a handle manipulated by the optical trap. The most commonly used handles, their insertion into the cytoplasm, and the relevant micro-rheology of the cell are discussed here and we also review recent and exciting results achieved through optical force manipulation of individual molecules in vivo.
Collapse
|
13
|
Haro-González P, Rodríguez Sevilla P, Sanz-Rodríguez F, Martín Rodríguez E, Bogdan N, Capobianco JA, Dholakia K, Jaque D. Gold nanorod assisted intracellular optical manipulation of silica microspheres. OPTICS EXPRESS 2014; 22:19735-19747. [PMID: 25321056 DOI: 10.1364/oe.22.019735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the improvement of the infrared optical trapping efficiency of dielectric microspheres by the controlled adhesion of gold nanorods to their surface. When trapping wavelength was equal to the surface plasmon resonance wavelength of the gold nanorods (808 nm), a 7 times improvement in the optical force acting on the microspheres was obtained. Such a gold nanorod assisted enhancement of the optical trapping efficiency enabled the intracellular manipulation of the decorated dielectric microsphere by using a low power (22 mW) infrared optical trap.
Collapse
|
14
|
Bennett JS, Gibson LJ, Kelly RM, Brousse E, Baudisch B, Preece D, Nieminen TA, Nicholson T, Heckenberg NR, Rubinsztein-Dunlop H. Spatially-resolved rotational microrheology with an optically-trapped sphere. Sci Rep 2013. [PMCID: PMC3641521 DOI: 10.1038/srep01759] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Abstract
Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.
Collapse
Affiliation(s)
- Hoyoung Yun
- Rowland Institute at Harvard University, MA, USA
| | | | | |
Collapse
|
16
|
Abstract
In the last decade optical manipulation has evolved from a field of interest for physicists to a versatile tool widely used within life sciences. This has been made possible in particular due to the development of a large variety of imaging techniques that allow detailed information to be gained from investigations of single cells. The use of multiple optical traps has high potential within single-cell analysis since parallel measurements provide good statistics. Multifunctional optical tweezers are, for instance, used to study cell heterogeneity in an ensemble, and force measurements are used to investigate the mechanical properties of individual cells. Investigations of molecular motors and forces on the single-molecule level have led to discoveries that would have been difficult to make with other techniques. Optical manipulation has prospects within the field of cell signalling and tissue engineering. When combined with microfluidic systems the chemical environment of cells can be precisely controlled. Hence the influence of pH, salt concentration, drugs and temperature can be investigated in real time. Fast advancing technical developments of automated and user-friendly optical manipulation tools and cross-disciplinary collaboration will contribute to the routinely use of optical manipulation techniques within the life sciences.
Collapse
Affiliation(s)
- Kerstin Ramser
- Department of Computer Science and Electrical Engineering, Luleå University of Technology, Luleå, Sweden
| | | |
Collapse
|
17
|
Lee J, Teh SY, Lee A, Kim HH, Lee C, Shung KK. Transverse acoustic trapping using a gaussian focused ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:350-5. [PMID: 20045590 PMCID: PMC2815109 DOI: 10.1016/j.ultrasmedbio.2009.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/16/2009] [Accepted: 10/06/2009] [Indexed: 05/03/2023]
Abstract
The optical tweezer has become a popular device to manipulate particles in nanometer scales and to study the underlying principles of many cellular or molecular interactions. Theoretical analysis was previously carried out at the authors' laboratory, to show that similar acoustic trapping of microparticles may be possible with a single beam ultrasound. This article experimentally presents the transverse trapping of 125 microm lipid droplets under an acoustically transparent mylar film, which is an intermediate step toward achieving acoustic tweezers in three-dimension. Despite the lack of axial trapping capability in the current experimental arrangement, it was found that a 30 MHz focused beam could be used to laterally direct the droplets toward the focus. The spatial range within which acoustic traps may guide droplet motion was in the range of hundreds of micrometers, much greater than that of optical traps. This suggests that this acoustic device may offer an alternative for manipulating microparticles in a wider spatial range.
Collapse
Affiliation(s)
- Jungwoo Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Bornstein E, Hermans W, Gridley S, Manni J. Near-infrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem Photobiol 2010; 85:1364-74. [PMID: 19709379 DOI: 10.1111/j.1751-1097.2009.00615.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined a laser system (870 and 930 nm), employing wavelengths that have exhibited cellular photodamage properties in optical traps. In vitro, with 1.5 cm diameter flat-top projections (power density of 5.66 W cm(-2)), at physiologic temperatures, we achieved photoinactivation of Staphylococcus aureus, Escherichia coli, Candida albicans and Trichophyton rubrum. Using nonlethal dosimetry, we measured a decrease in trans-membrane potentials (DeltaPsimt and DeltaPsip) and an increase in reactive oxygen species (ROS) generation in methicillin-resistant S. aureus (MRSA), C. albicans and human embryonic kidney cells. We postulate that these multiplexed wavelengths cause an optically mediated mechano-transduction of cellular redox pathways, decreasing DeltaPsi and increasing ROS. The cellular energetics of prokaryotic and fungal pathogens, along with mammalian cells, are affected in a similar manner when treated with these multiplexed wavelengths at the power densities employed. Following live porcine thermal tolerance skin experiments, we then performed human pilot studies, examining photodamage to MRSA in the nose and fungi in onychomycosis. No observable damage to the nares or the nail matrix was observed, yet photodamage to the pathogens was achieved at physiologic temperatures. The selective aspect of this near-infrared photodamage presents the possibility for its future utilization in human cutaneous antimicrobial therapy.
Collapse
|
19
|
Maghelli N, Tolić-Nørrelykke IM. Optical trapping and laser ablation of microtubules in fission yeast. Methods Cell Biol 2010; 97:173-83. [PMID: 20719271 DOI: 10.1016/s0091-679x(10)97010-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Manipulation has been used as a powerful investigation technique since the early history of biology. Every technical advance resulted in more refined instruments that led to the discovery of new phenomena and to the solution of old problems. The invention of laser in 1960 gave birth to what is now called optical manipulation: the use of light to interact with matter. Since then, the tremendous progress of laser technology made optical manipulation not only an affordable, reliable alternative to traditional manipulation techniques but disclosed also new, intriguing applications that were previously impossible, such as contact-free manipulation. Currently, optical manipulation is used in many fields, yet has the potential of becoming an everyday technique in a broader variety of contexts. Here, we focus on two main optical manipulation techniques: optical trapping and laser ablation. We illustrate with selected applications in fission yeast how in vivo optical manipulation can be used to study organelle positioning and the force balance in the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), 01307 Dresden, Germany
| | | |
Collapse
|
20
|
Vieira G, Henighan T, Chen A, Hauser AJ, Yang FY, Chalmers JJ, Sooryakumar R. Magnetic wire traps and programmable manipulation of biological cells. PHYSICAL REVIEW LETTERS 2009; 103:128101. [PMID: 19792462 PMCID: PMC3928075 DOI: 10.1103/physrevlett.103.128101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Indexed: 05/07/2023]
Abstract
We present a multiplex method, based on microscopic programmable magnetic traps in zigzag wires patterned on a platform, to simultaneously apply directed forces on multiple fluid-borne cells or biologically inert magnetic microparticles or nanoparticles. The gentle tunable forces do not produce damage and retain cell viability. The technique is demonstrated with T-lymphocyte cells remotely manipulated (by a joystick) along desired trajectories on a silicon surface with average speeds up to 20 microm/s.
Collapse
Affiliation(s)
- G Vieira
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Maghelli N, Tolić-Nørrelykke IM. Versatile laser-based cell manipulator. JOURNAL OF BIOPHOTONICS 2008; 1:299-309. [PMID: 19343653 DOI: 10.1002/jbio.200810026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Here we describe a two-photon microscope and laser ablation setup combined with optical tweezers. We tested the setup on the fission yeast Schizosaccharomyces pombe, a commonly used model organism. We show that long-term imaging can be achieved without significant photo-bleaching or damage of the sample. The setup can precisely ablate sub-micrometer structures, such as microtubules and mitotic spindles, inside living cells, which remain viable after the manipulation. Longer exposure times lead to ablation, while shorter exposures lead to photo-bleaching of the target structure. We used optical tweezers to trap intracellular particles and to displace the cell nucleus. Two-photon fluorescence imaging of the manipulated cell can be performed simultaneously with trapping. The combination of techniques described here may help to solve a variety of problems in cell biology, such as positioning of organelles and the forces exerted by the cytoskeleton.
Collapse
Affiliation(s)
- Nicola Maghelli
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | |
Collapse
|
22
|
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 2008; 5:491-505. [PMID: 18511917 DOI: 10.1038/nmeth.1218] [Citation(s) in RCA: 1391] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.
Collapse
|
23
|
Fischer M, Berg-Sørensen K. Calibration of trapping force and response function of optical tweezers in viscoelastic media. ACTA ACUST UNITED AC 2007. [DOI: 10.1088/1464-4258/9/8/s18] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Burnham DR, Wright GD, Read ND, McGloin D. Holographic and single beam optical manipulation of hyphal growth in filamentous fungi. ACTA ACUST UNITED AC 2007. [DOI: 10.1088/1464-4258/9/8/s09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Wright GD, Read ND, Wright GD, Arlt J, Poon WC, Read ND, Arlt J, Poon WC. Experimentally manipulating fungi with optical tweezers*. MYCOSCIENCE 2007. [DOI: 10.1007/s10267-006-0326-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Daga RR, Lee KG, Bratman S, Salas-Pino S, Chang F. Self-organization of microtubule bundles in anucleate fission yeast cells. Nat Cell Biol 2006; 8:1108-13. [PMID: 16998476 DOI: 10.1038/ncb1480] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 08/31/2006] [Indexed: 11/09/2022]
Abstract
Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of cytoplasmic microtubule bundles regulate cell polarity and nuclear positioning. These bundles are thought to be organized from the nucleus at multiple interphase microtubule organizing centres (iMTOCs). Here, we find that microtubule bundles assemble even in cells that lack a nucleus. These bundles have normal organization, dynamics and orientation, and exhibit anti-parallel overlaps in the middle of the cell. The mechanisms that are responsible for formation of these microtubule bundles include cytoplasmic microtubule nucleation, microtubule release from the equatorial MTOC (eMTOC), and the dynamic fusion and splitting of microtubule bundles. Bundle formation and organization are dependent on mto1p (gamma-TUC associated protein), ase1p (PRC1), klp2p (kinesin-14) and tip1p (CLIP-170). Positioning of nuclear fragments and polarity factors by these microtubules illustrates how self-organization of these bundles contributes to establishing global spatial order.
Collapse
Affiliation(s)
- Rafael R Daga
- Microbiology Department, Columbia University College of Physicians and Surgeons, 701 168th St., New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
27
|
Wright GD, Arlt J, Poon WCK, Read ND. Optical tweezer micromanipulation of filamentous fungi. Fungal Genet Biol 2006; 44:1-13. [PMID: 16908207 DOI: 10.1016/j.fgb.2006.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/03/2006] [Accepted: 07/05/2006] [Indexed: 11/21/2022]
Abstract
Optical tweezers have been little used in experimental studies on filamentous fungi. We have built a simple, compact, easy-to-use, safe and robust optical tweezer system that can be used with brightfield, phase contrast, differential interference contrast and fluorescence optics on a standard research grade light microscope. We have used this optical tweezer system in a range of cell biology applications to trap and micromanipulate whole fungal cells, organelles within cells, and beads. We have demonstrated how optical tweezers can be used to: unambiguously determine whether hyphae are actively homing towards each other; move the Spitzenkörper and change the pattern of hyphal morphogenesis; make piconewton force measurements; mechanically stimulate hyphal tips; and deliver chemicals to localized regions of hyphae. Significant novel experimental findings from our study were that germ tubes generated significantly smaller growth forces than leading hyphae, and that both hyphal types exhibited growth responses to mechanical stimulation with optically trapped polystyrene beads. Germinated spores that had been optically trapped for 25min exhibited no deleterious effects with regard to conidial anastomosis tube growth, homing or fusion.
Collapse
Affiliation(s)
- Graham D Wright
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Rutherford Building, Edinburgh, UK
| | | | | | | |
Collapse
|
28
|
Daga RR, Yonetani A, Chang F. Asymmetric Microtubule Pushing Forces in Nuclear Centering. Curr Biol 2006; 16:1544-50. [PMID: 16890530 DOI: 10.1016/j.cub.2006.06.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 11/28/2022]
Abstract
Dynamic properties of microtubules contribute to the establishment of spatial order within cells. In the fission yeast Schizosaccharomyces pombe, interphase cytoplasmic microtubules are organized into antiparallel bundles that attach to the nuclear envelope and are needed to position the nucleus at the geometric center of the cell. Here, we show that after the nucleus is displaced by cell centrifugation, these microtubule bundles efficiently push the nucleus back to the center. Asymmetry in microtubule number, length, and dynamics contributes to the generation of force responsible for this unidirectional movement. Notably, microtubules facing the distal cell tip are destabilized when the microtubules in the same bundle are pushing from the proximal cell tip. The CLIP-170-like protein tip1p and the microtubule-bundling protein ase1p are required for this asymmetric regulation of microtubule dynamics, indicating contributions of factors both at microtubule plus ends and within the microtubule bundle. Mutants in these factors are defective in nuclear movement. Thus, cells possess an efficient microtubule-based engine that produces and senses forces for centering the nucleus. These studies may provide insights into mechanisms of asymmetric microtubule behaviors and force sensing in other processes such as chromosome segregation and cell polarization.
Collapse
Affiliation(s)
- Rafael R Daga
- Department of Microbiology, Columbia University College of Physicians and Surgeon, New York, New York 10032, USA
| | | | | |
Collapse
|
29
|
Laser literature watch. Photomed Laser Surg 2005; 23:513-24. [PMID: 16262584 DOI: 10.1089/pho.2005.23.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Tolic-Nørrelykke IM, Sacconi L, Stringari C, Raabe I, Pavone FS. Nuclear and division-plane positioning revealed by optical micromanipulation. Curr Biol 2005; 15:1212-6. [PMID: 16005294 DOI: 10.1016/j.cub.2005.05.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
The position of the division plane affects cell shape and size, as well as tissue organization. Cells of the fission yeast Schizosaccharomyces pombe have a centrally placed nucleus and divide by fission at the cell center. Microtubules (MTs) are required for the central position of the nucleus. Genetic studies lead to the hypothesis that the position of the nucleus may determine the position of the division plane. Alternatively, the division plane may be positioned by the spindle or by morphogen gradients or reaction diffusion mechanisms. Here, we investigate the role of MTs in nuclear positioning and the role of the nucleus in division-plane positioning by displacing the nucleus with optical tweezers. A displaced nucleus returned to the cell center by MT pushing against the cell tips. Nuclear displacement during interphase or early prophase resulted in asymmetric cell division, whereas displacement during prometaphase resulted in symmetric division as in unmanipulated cells. These results suggest that the division plane is specified by the predividing nucleus. Because the yeast nucleus is centered by MTs during interphase but not in mitosis, we hypothesize that the establishment of the division plane at the beginning of mitosis is an optimal mechanism for accurate symmetric division in these cells.
Collapse
Affiliation(s)
- Iva M Tolic-Nørrelykke
- European Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Florence), Italy.
| | | | | | | | | |
Collapse
|