1
|
Ivanovic A, Cheng JT, Schmeltz M, Wimmer W, Schlepuetz CM, Remenschneider AK, Bonnin A, Anschuetz L. Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study. J Assoc Res Otolaryngol 2025:10.1007/s10162-024-00971-0. [PMID: 39810072 DOI: 10.1007/s10162-024-00971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV). METHODS We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL). In addition, we performed measurements on these TBs using 1D LDV, a well-established method. RESULTS The normalized displacement values (µm/Pa) at the umbo and the posterior crus of the stapes are consistent or within 5-10 dB differences between all LDV and dynamic microtomography measurements and previously reported literature references. In general, the overall behavior is similar between the two measurement techniques. CONCLUSION In conclusion, our results demonstrate the suitability of dynamic synchrotron-based X-ray microtomography in studying the middle ear's biomechanics. However, this study shows that better standardization regarding acoustic stimulation and measurement points is needed to better compare the two measurement techniques.
Collapse
Affiliation(s)
- Aleksandra Ivanovic
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008, Bern, Switzerland.
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland.
| | - Jeffrey Tao Cheng
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Margaux Schmeltz
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Wilhelm Wimmer
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts Der Isar, Munich, Germany
| | | | - Aaron K Remenschneider
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
- Department of Otolaryngology Head and Neck Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, CHUV Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Lausanne, Switzerland
| |
Collapse
|
2
|
Olson ES, Dong W, Applegate BE, Charaziak KK, Dewey JB, Frost BL, Meenderink SWF, Nam JH, Oghalai JS, Puria S, Ren T, Strimbu CE, van der Heijden M. Visualizing motions within the cochlea's organ of Corti and illuminating cochlear mechanics with optical coherence tomography. Hear Res 2025; 455:109154. [PMID: 39626338 DOI: 10.1016/j.heares.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Beginning in 2006, optical coherence tomography (OCT) has been adapted for use as a vibrometer for hearing research. The application of OCT in this field, particularly for studying cochlear mechanics, represents a revolutionary advance over previous technologies. OCT provides detailed evidence of the motions of components within the organ of Corti, extending beyond the first-encountered surface of observation. By imaging through the bony capsule as well as through the round window membrane, OCT has measured vibration at multiple locations along the cochlear spiral, in vivo, under nearly natural conditions. In this document, we present examples of recent research findings to illustrate the applications of OCT in studying cochlear mechanics in both normal and impaired ears.
Collapse
Affiliation(s)
- Elizabeth S Olson
- Department of Otolaryngology - Head and Neck Surgery, Department of Biomedical Engineering, Columbia University, New York City, NY USA.
| | - Wei Dong
- VA Loma Linda Healthcare System, Loma Linda, CA, USA, Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA USA
| | - Brian E Applegate
- Caruso Department of Otolaryngology -Head and Neck Surgery, Department of Ophthalmology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Karolina K Charaziak
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA USA
| | - James B Dewey
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA USA
| | | | | | - Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY USA
| | - John S Oghalai
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA USA
| | - Sunil Puria
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Tianying Ren
- Department of Otolaryngology - Head and Neck Surgery, Oregon Health and Science University, Portland, OR USA
| | - C Elliott Strimbu
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York City, NY USA
| | | |
Collapse
|
3
|
Desingu Rajan AR, Huang Y, Stundl J, Chu K, Irodi A, Yang Z, Applegate BE, Bronner ME. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2a/b. Dis Model Mech 2024; 17:dmm050862. [PMID: 39415595 PMCID: PMC11646113 DOI: 10.1242/dmm.050862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF-2) is a dominantly inherited genetic disorder that results from variants in the tumor suppressor gene, neurofibromin 2 (NF2). Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by inducible genetic knockout of nf2a/b, the zebrafish homologs of human NF2. Analysis of nf2a and nf2b expression revealed ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displayed lower expression levels. Induction of nf2a/b knockout at early stages increased the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggered the development of a spectrum of tumors, including vestibular Schwannomas, spinal Schwannomas, meningiomas and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Collapse
Affiliation(s)
- Ayyappa Raja Desingu Rajan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuanyun Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925 Vodnany, Czech Republic
| | - Katelyn Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anushka Irodi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA 90033, USA
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, CA 90089, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Ivanovic A, Cheng JT, Schmeltz M, Schlepütz CM, Bonnin A, Anschuetz L. Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study. RESEARCH SQUARE 2024:rs.3.rs-4874430. [PMID: 39149507 PMCID: PMC11326387 DOI: 10.21203/rs.3.rs-4874430/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Purpose There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV). Methods We examined three fresh-frozen temporal bones (TB) using dynamic synchrotron-based X-ray microtomography for 256 Hz and 512 Hz, stimulated at 110 dB and 120 dB SPL. In addition, we performed measurements on these TBs using 1D LDV, a well-established method. Results The normalized displacement values (μm/Pa) at the umbo and the posterior crus of the stapes are consistent or within 5-10 dB differences between all LDV and dynamic microtomography measurements and previously reported literature references. In general, the overall behavior is similar between the two measurement techniques. Conclusion In conclusion, our results demonstrate the suitability of dynamic synchrotron-based X-ray microtomography in studying the middle ear's biomechanics. However, this study shows that better standardization regarding acoustic stimulation and measurement points is needed to better compare the two measurement techniques.
Collapse
Affiliation(s)
- Aleksandra Ivanovic
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland, 2Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland, Paul Scherrer Institut, Swiss Light Source, Villigen PSI, Switzerland
| | - Jeffrey Tao Cheng
- Department of Otolaryngology, Head and Neck Surgery, Mass. Eye and Ear, Boston Children Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - Margaux Schmeltz
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head and Neck Surgery, CHUV Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Kim W, Long R, Yang Z, Oghalai JS, Applegate BE. Optical coherence tomography otoscope for imaging of tympanic membrane and middle ear pathology. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:086005. [PMID: 39165857 PMCID: PMC11334941 DOI: 10.1117/1.jbo.29.8.086005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Significance Pathologies within the tympanic membrane (TM) and middle ear (ME) can lead to hearing loss. Imaging tools available in the hearing clinic for diagnosis and management are limited to visual inspection using the classic otoscope. The otoscopic view is limited to the surface of the TM, especially in diseased ears where the TM is opaque. An integrated optical coherence tomography (OCT) otoscope can provide images of the interior of the TM and ME space as well as an otoscope image. This enables the clinicians to correlate the standard otoscopic view with OCT and then use the new information to improve the diagnostic accuracy and management. Aim We aim to develop an OCT otoscope that can easily be used in the hearing clinic and demonstrate the system in the hearing clinic, identifying relevant image features of various pathologies not apparent in the standard otoscopic view. Approach We developed a portable OCT otoscope device featuring an improved field of view and form-factor that can be operated solely by the clinician using an integrated foot pedal to control image acquisition. The device was used to image patients at a hearing clinic. Results The field of view of the imaging system was improved to a 7.4 mm diameter, with lateral and axial resolutions of 38 μ m and 33.4 μ m , respectively. We developed algorithms to resample the images in Cartesian coordinates after collection in spherical polar coordinates and correct the image aberration. We imaged over 100 patients in the hearing clinic at USC Keck Hospital. Here, we identify some of the pathological features evident in the OCT images and highlight cases in which the OCT image provided clinically relevant information that was not available from traditional otoscopic imaging. Conclusions The developed OCT otoscope can readily fit into the hearing clinic workflow and provide new relevant information for diagnosing and managing TM and ME disease.
Collapse
Affiliation(s)
- Wihan Kim
- University of Southern California, Caruso Department of Otolaryngology–Head & Neck Surgery, Los Angeles, California, United States
| | - Ryan Long
- University of Southern California, Caruso Department of Otolaryngology–Head & Neck Surgery, Los Angeles, California, United States
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology–Head & Neck Surgery, Los Angeles, California, United States
| | - John S. Oghalai
- University of Southern California, Caruso Department of Otolaryngology–Head & Neck Surgery, Los Angeles, California, United States
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, California, United States
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology–Head & Neck Surgery, Los Angeles, California, United States
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, California, United States
| |
Collapse
|
6
|
Rajan ARD, Huang Y, Stundl J, Chu K, Irodi A, Yang Z, Applegate BE, Bronner ME. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590787. [PMID: 38712289 PMCID: PMC11071375 DOI: 10.1101/2024.04.23.590787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Neurofibromatosis Type 2 (NF-2) is a dominantly inherited genetic disorder that results from mutations in the tumor suppressor gene, neurofibromin 2 (NF2) gene. Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by an inducible genetic knockout of nf2a/b, the zebrafish homolog of human NF2. Analysis of nf2a and nf2b expression reveals ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displays lower expression levels. Induction of nf2a/b knockout at early stages increases the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggers the development of a spectrum of tumors, including vestibular schwannomas, spinal schwannomas, meningiomas, and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Collapse
Affiliation(s)
| | - Yuanyun Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katelyn Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anushka Irodi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital NHS Foundation Trust, Cambridge, UK
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, CA, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
7
|
Liu P, Steuer S, Golde J, Morgenstern J, Hu Y, Schieffer C, Ossmann S, Kirsten L, Bodenstedt S, Pfeiffer M, Speidel S, Koch E, Neudert M. The Dresden in vivo OCT dataset for automatic middle ear segmentation. Sci Data 2024; 11:242. [PMID: 38409278 DOI: 10.1038/s41597-024-03000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Endoscopic optical coherence tomography (OCT) offers a non-invasive approach to perform the morphological and functional assessment of the middle ear in vivo. However, interpreting such OCT images is challenging and time-consuming due to the shadowing of preceding structures. Deep neural networks have emerged as a promising tool to enhance this process in multiple aspects, including segmentation, classification, and registration. Nevertheless, the scarcity of annotated datasets of OCT middle ear images poses a significant hurdle to the performance of neural networks. We introduce the Dresden in vivo OCT Dataset of the Middle Ear (DIOME) featuring 43 OCT volumes from both healthy and pathological middle ears of 29 subjects. DIOME provides semantic segmentations of five crucial anatomical structures (tympanic membrane, malleus, incus, stapes and promontory), and sparse landmarks delineating the salient features of the structures. The availability of these data facilitates the training and evaluation of algorithms regarding various analysis tasks with middle ear OCT images, e.g. diagnostics.
Collapse
Affiliation(s)
- Peng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Faculty of Medicine, 01307, Dresden, Germany.
- Department of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC Dresden), German Cancer Research Center (DKFZ), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307, Dresden, Germany.
- Else Kröner Fresenius Center, TUD Dresden University of Technology, 01307, Dresden, Germany.
| | - Svea Steuer
- Else Kröner Fresenius Center, TUD Dresden University of Technology, 01307, Dresden, Germany
- Clinical Sensoring and Monitoring, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Jonas Golde
- Else Kröner Fresenius Center, TUD Dresden University of Technology, 01307, Dresden, Germany
- Clinical Sensoring and Monitoring, TUD Dresden University of Technology, 01307, Dresden, Germany
- Medical Physics and Biomedical Engineering, TUD Dresden University of Technology, 01307, Dresden, Germany
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Joseph Morgenstern
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Faculty of Medicine, 01307, Dresden, Germany
- Else Kröner Fresenius Center, TUD Dresden University of Technology, 01307, Dresden, Germany
- Ear Research Center Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Yujia Hu
- Department of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC Dresden), German Cancer Research Center (DKFZ), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307, Dresden, Germany
| | - Catherina Schieffer
- Ear Research Center Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Steffen Ossmann
- Ear Research Center Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Lars Kirsten
- Clinical Sensoring and Monitoring, TUD Dresden University of Technology, 01307, Dresden, Germany
- Medical Physics and Biomedical Engineering, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Sebastian Bodenstedt
- Department of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC Dresden), German Cancer Research Center (DKFZ), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307, Dresden, Germany
- Else Kröner Fresenius Center, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Micha Pfeiffer
- Department of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC Dresden), German Cancer Research Center (DKFZ), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307, Dresden, Germany
| | - Stefanie Speidel
- Department of Translational Surgical Oncology, National Center for Tumor Diseases (NCT/UCC Dresden), German Cancer Research Center (DKFZ), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307, Dresden, Germany
- Else Kröner Fresenius Center, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Edmund Koch
- Else Kröner Fresenius Center, TUD Dresden University of Technology, 01307, Dresden, Germany
- Clinical Sensoring and Monitoring, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Marcus Neudert
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Faculty of Medicine, 01307, Dresden, Germany.
- Else Kröner Fresenius Center, TUD Dresden University of Technology, 01307, Dresden, Germany.
- Ear Research Center Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany.
| |
Collapse
|
8
|
Tang JC, Magalhães R, Wisniowiecki A, Razura D, Walker C, Applegate BE. Optical coherence tomography technology in clinical applications. BIOPHOTONICS AND BIOSENSING 2024:285-346. [DOI: 10.1016/b978-0-44-318840-4.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
9
|
Wisniowiecki AM, Applegate BE. Electronic frequency shifting enables long, variable working distance optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:6579-6591. [PMID: 38420318 PMCID: PMC10898551 DOI: 10.1364/boe.504034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024]
Abstract
Increased imaging range is of growing interest in many applications of optical coherence tomography to reduce constraints on sample location, size, and topography. The design of optical coherence tomography systems with sufficient imaging range (e.g., 10s of centimeters) is a significant challenge due to the direct link between imaging range and acquisition bandwidth. We have developed a novel and flexible method to extend the imaging range in optical coherence tomography using electronic frequency shifting, enabling imaging in dynamic environments. In our approach, a laser with a quasi-linear sweep is used to limit the interferometric bandwidth, enabling decoupling of imaging range and acquisition bandwidth, while a tunable lens allows dynamic refocusing in the sample arm. Electronic frequency shifting then removes the need for high frequency digitization. This strategy is demonstrated to achieve high contrast morphological imaging over a > 21 cm working distance range, while maintaining high resolution and phase sensitivity. The system design is flexible to the application while requiring only a simple phase correction in post-processing. By implementing this approach in an auto-focusing paradigm, the proposed method demonstrates strong potential for the translation of optical coherence tomography into emerging applications requiring variable and centimeter-scale imaging ranges.
Collapse
Affiliation(s)
- Anna M. Wisniowiecki
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA
- Caruso Department of Otolaryngology–Head & Neck Surgery, University of Southern California, 1450 San Pablo St, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- Caruso Department of Otolaryngology–Head & Neck Surgery, University of Southern California, 1450 San Pablo St, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Steuer S, Morgenstern J, Kirsten L, Bornitz M, Neudert M, Koch E, Golde J. In vivo microstructural investigation of the human tympanic membrane by endoscopic polarization-sensitive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:121203. [PMID: 37007626 PMCID: PMC10050973 DOI: 10.1117/1.jbo.28.12.121203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Significance Endoscopic optical coherence tomography (OCT) is of growing interest for in vivo diagnostics of the tympanic membrane (TM) and the middle ear but generally lacks a tissue-specific contrast. Aim To assess the collagen fiber layer within the in vivo TM, an endoscopic imaging method utilizing the polarization changes induced by the birefringent connective tissue was developed. Approach An endoscopic swept-source OCT setup was redesigned and extended by a polarization-diverse balanced detection unit. Polarization-sensitive OCT (PS-OCT) data were visualized by a differential Stokes-based processing and the derived local retardation. The left and right ears of a healthy volunteer were examined. Results Distinct retardation signals in the annulus region of the TM and near the umbo revealed the layered structure of the TM. Due to the TM's conical shape and orientation in the ear canal, high incident angles onto the TM's surface, and low thicknesses compared to the axial resolution limit of the system, other regions of the TM were more difficult to evaluate. Conclusions The use of endoscopic PS-OCT is feasible to differentiate birefringent and nonbirefringent tissue of the human TM in vivo. Further investigations on healthy as well as pathologically altered TMs are required to validate the diagnostic potential of this technique.
Collapse
Affiliation(s)
- Svea Steuer
- TU Dresden, Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Dresden, Germany
- TU Dresden, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine, Dresden, Germany
| | - Joseph Morgenstern
- TU Dresden, Otorhinolaryngology, Ear Research Center Dresden, Faculty of Medicine, Dresden, Germany
- TU Dresden, Else Kröner-Fresenius Center for Digital Health, Dresden, Germany
| | - Lars Kirsten
- TU Dresden, Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Dresden, Germany
| | - Matthias Bornitz
- TU Dresden, Otorhinolaryngology, Ear Research Center Dresden, Faculty of Medicine, Dresden, Germany
| | - Marcus Neudert
- TU Dresden, Otorhinolaryngology, Ear Research Center Dresden, Faculty of Medicine, Dresden, Germany
- TU Dresden, Else Kröner-Fresenius Center for Digital Health, Dresden, Germany
| | - Edmund Koch
- TU Dresden, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine, Dresden, Germany
- TU Dresden, Else Kröner-Fresenius Center for Digital Health, Dresden, Germany
| | - Jonas Golde
- TU Dresden, Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Dresden, Germany
- TU Dresden, Else Kröner-Fresenius Center for Digital Health, Dresden, Germany
| |
Collapse
|
11
|
Golabbakhsh M, Funnell WRJ. Use of simulated data to explore the application of optical coherence tomography for classifying middle-ear pathologies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2790-2799. [PMID: 37916864 DOI: 10.1121/10.0022051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Optical coherence tomography (OCT) vibrometry is a non-invasive tool for functional imaging of the middle ear. It provides spatially resolved vibrational responses and also anatomical images of the same ear. Our objective here was to explore the potential of OCT vibration measurements at the incus, as well as at the umbo, to distinguish among middle-ear disorders. Our approach was to build finite-element models of normal and pathological ears, generate large amounts of synthetic data, and then classify the simulated data into normal and pathological groups using a decision tree based on features extracted from simulated vibration magnitudes. We could distinguish between normal ears and ears with incudomallear joint (IMJ) disarticulation or stapes fixation, with the sensitivity and specificity both being 1.0; distinguish between stapes fixation and IMJ disarticulation with a sensitivity of 0.900 and a specificity of 0.889; and distinguish ears with ISJ disarticulation from normal ears with a sensitivity of 0.784 and a specificity of 0.872. Less extreme pathologies were also simulated. The results suggest that the vibration measurements within the middle ear that can be provided by OCT (e.g., at the incus) may be very valuable for diagnosis.
Collapse
Affiliation(s)
- Marzieh Golabbakhsh
- Department of BioMedical Engineering, McGill University, Montréal, Québec, Canada
| | - W Robert J Funnell
- Department of BioMedical Engineering, McGill University, Montréal, Québec, Canada
| |
Collapse
|
12
|
Farrell JD, Wang J, MacDougall D, Yang X, Brewer K, Couvreur F, Shoman N, Morris DP, Adamson RBA. Geometrically accurate real-time volumetric visualization of the middle ear using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:3152-3171. [PMID: 37497518 PMCID: PMC10368046 DOI: 10.1364/boe.488845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 07/28/2023]
Abstract
We introduce a novel system for geometrically accurate, continuous, live, volumetric middle ear optical coherence tomography imaging over a 10.9mm×30∘×30∘ field of view (FOV) from a handheld imaging probe. The system employs a discretized spiral scanning (DC-SC) pattern to rapidly collect volumetric data and applies real-time scan conversion and lateral angular distortion correction to reduce geometric inaccuracies to below the system's lateral resolution over 92% of the FOV. We validate the geometric accuracy of the resulting images through comparison with co-registered micro-computed tomography (micro-CT) volumes of a phantom target and a cadaveric middle ear. The system's real-time volumetric imaging capabilities are assessed by imaging the ear of a healthy subject while performing dynamic pressurization of the middle ear in a Valsalva maneuver.
Collapse
Affiliation(s)
- Joshua D. Farrell
- School of Biomedical Engineering, Dalhousie University, NS B3H 4R2, Canada
| | - Junzhe Wang
- School of Biomedical Engineering, Dalhousie University, NS B3H 4R2, Canada
| | - Dan MacDougall
- Audioptics Medical Incorporated, 1344 Summer St, Halifax NS, B3H 0A8, Canada
| | - Xiaojie Yang
- School of Biomedical Engineering, Dalhousie University, NS B3H 4R2, Canada
| | - Kimberly Brewer
- School of Biomedical Engineering, Dalhousie University, NS B3H 4R2, Canada
- Department of Diagnostic Radiology, Microbiology & Immunology, Physics & Atmospheric Science, Dalhousie University, Halifax NS, B3H 4R2, Canada
| | - Floor Couvreur
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax NS B3H 4R2, Canada
- Department of Otorhinolaryngology, Head and Neck Surgery, AZ Sint-Jan’s Hospital, Ruddershove 10, 8000 Bruges, Belgium
| | - Nael Shoman
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax NS B3H 4R2, Canada
| | - David P Morris
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dalhousie University, Halifax NS B3H 4R2, Canada
| | - Robert B. A. Adamson
- School of Biomedical Engineering, Dalhousie University, NS B3H 4R2, Canada
- Electrical and Computer Engineering Department, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
13
|
Hamra M, Fridman L, Shinnawi S, Vaizer MC, Yelin D. In vivo optical mapping of the tympanic membrane impulse response. Hear Res 2023; 431:108723. [PMID: 36870309 DOI: 10.1016/j.heares.2023.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
The wide frequency range of the human hearing could be narrowed by various pathologies in the middle ear and in the tympanic membrane that lead to conductive hearing loss. Diagnosing such hearing problems is challenging, however, often relying on subjective hearing tests supported by functional tympanometry. Here we present a method for in vivo 2D mapping of the impulse response of the tympanic membrane, and demonstrate its potential on a healthy human volunteer. The imaging technique is based on interferometric spectrally encoded endoscopy, with a handheld probe designed to scan the human tympanic membrane within less than a second. The system obtains high-resolution 2D maps of key functional parameters including peak response, rise and decay times, oscillation bandwidth and resonance frequency. We also show that the system can identify abnormal regions in the membrane by detecting differences in the local mechanical parameters of the tissue. We believe that by offering a full 2D mapping of broad-bandwidth dynamics of the tympanic membrane, the presented imaging modality would be useful for effective diagnosis of conductive hearing loss in patients.
Collapse
Affiliation(s)
- Matan Hamra
- Faculty of Biomedical Engineering, Technion - Israel institute of Technology, Haifa 3200003, Israel
| | - Lidan Fridman
- Faculty of Biomedical Engineering, Technion - Israel institute of Technology, Haifa 3200003, Israel
| | - Shadi Shinnawi
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Haifa 3109601, Israel
| | - Mauricio Cohen Vaizer
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Haifa 3109601, Israel
| | - Dvir Yelin
- Faculty of Biomedical Engineering, Technion - Israel institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
14
|
Transtympanic Visualization of Cochlear Implant Placement With Optical Coherence Tomography: A Pilot Study. Otol Neurotol 2022; 43:e824-e828. [PMID: 35970156 DOI: 10.1097/mao.0000000000003635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to evaluate the ability of transtympanic middle ear optical coherence tomography (ME-OCT) to assess placement of cochlear implants (CIs) in situ. PATIENT A 72-year-old man with bilateral progressive heredodegenerative sensorineural hearing loss due to work-related noise exposure received a CI with a slim modiolar electrode for his right ear 3 months before his scheduled checkup. INTERVENTION A custom-built swept source ME-OCT system (λo = 1550 nm, ∆λ = 40 nm) designed for transtympanic middle ear imaging was used to capture a series of two- and three-dimensional images of the patient's CI in situ. Separately, transtympanic OCT two-dimensional video imaging and three-dimensional imaging were used to visualize insertion and removal of a CI with a slim modiolar electrode in a human cadaveric temporal bone through a posterior tympanotomy. MAIN OUTCOME MEASURE Images and video were analyzed qualitatively to determine the visibility of implant features under ME-OCT imaging and quantitatively to determine insertion depth of the CI. RESULTS After implantation, the CI electrode could be readily visualized in the round window niche under transtympanic ME-OCT in both the patient and the temporal bone. In both cases, characteristic design features of the slim modiolar electrode allowed us to quantify the insertion depth from our images. CONCLUSIONS ME-OCT could potentially be used in a clinic as a noninvasive, nonionizing means to confirm implant placement. This study shows that features of the CI electrode visible under ME-OCT can be used to quantify insertion depth in the postoperative ear.
Collapse
|
15
|
Monroy GL, Fitzgerald ST, Locke A, Won J, Spillman DR, Ho A, Zaki FR, Choi H, Chaney EJ, Werkhaven JA, Mason KM, Mahadevan-Jansen A, Boppart SA. Multimodal Handheld Probe for Characterizing Otitis Media - Integrating Raman Spectroscopy and Optical Coherence Tomography. FRONTIERS IN PHOTONICS 2022; 3:929574. [PMID: 36479543 PMCID: PMC9720905 DOI: 10.3389/fphot.2022.929574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Otitis media (OM) is a common disease of the middle ear, affecting 80% of children before the age of three. The otoscope, a simple illuminated magnifier, is the standard clinical diagnostic tool to observe the middle ear. However, it has limited contrast to detect signs of infection, such as clearly identifying and characterizing middle ear fluid or biofilms that accumulate within the middle ear. Likewise, invasive sampling of every subject is not clinically indicated nor practical. Thus, collecting accurate noninvasive diagnostic factors is vital for clinicians to deliver a precise diagnosis and effective treatment regimen. To address this need, a combined benchtop Raman spectroscopy (RS) and optical coherence tomography (OCT) system was developed. Together, RS-OCT can non-invasively interrogate the structural and biochemical signatures of the middle ear under normal and infected conditions.In this paper, in vivo RS scans from pediatric clinical human subjects presenting with OM were evaluated in parallel with RS-OCT data of physiologically relevant in vitro ear models. Component-level characterization of a healthy tympanic membrane and malleus bone, as well as OM-related middle ear fluid, identified the optimal position within the ear for RS-OCT data collection. To address the design challenges in developing a system specific to clinical use, a prototype non-contact multimodal handheld probe was built and successfully tested in vitro. Design criteria have been developed to successfully address imaging constraints imposed by physiological characteristics of the ear and optical safety limits. Here, we present the pathway for translation of RS-OCT for non-invasive detection of OM.
Collapse
Affiliation(s)
- Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Sean T. Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN, United States
- Dept. Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN, United States
- Dept. Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Alexander Ho
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Farzana R. Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jay A. Werkhaven
- Dept. Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kevin M. Mason
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute Nationwide Children’s Hospital, Columbus, OH, United States
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN, United States
- Dept. Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Dept. Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
Monroy GL, Won J, Shi J, Hill MC, Porter RG, Novak MA, Hong W, Khampang P, Kerschner JE, Spillman DR, Boppart SA. Automated classification of otitis media with OCT: augmenting pediatric image datasets with gold-standard animal model data. BIOMEDICAL OPTICS EXPRESS 2022; 13:3601-3614. [PMID: 35781950 PMCID: PMC9208614 DOI: 10.1364/boe.453536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Otitis media (OM) is an extremely common disease that affects children worldwide. Optical coherence tomography (OCT) has emerged as a noninvasive diagnostic tool for OM, which can detect the presence and quantify the properties of middle ear fluid and biofilms. Here, the use of OCT data from the chinchilla, the gold-standard OM model for the human disease, is used to supplement a human image database to produce diagnostically relevant conclusions in a machine learning model. Statistical analysis shows the datatypes are compatible, with a blended-species model reaching ∼95% accuracy and F1 score, maintaining performance while additional human data is collected.
Collapse
Affiliation(s)
- Guillermo L. Monroy
- Beckman Institute for Advanced
Science and Technology, 405 N Mathews Ave, Urbana, IL
61801, USA
| | - Jungeun Won
- Beckman Institute for Advanced
Science and Technology, 405 N Mathews Ave, Urbana, IL
61801, USA
- Department of Bioengineering,
University of Illinois at Urbana-Champaign,
1406 W Green St, Urbana, IL 61801, USA
| | - Jindou Shi
- Beckman Institute for Advanced
Science and Technology, 405 N Mathews Ave, Urbana, IL
61801, USA
- Department of Electrical and Computer
Engineering, University of Illinois at
Urbana-Champaign, 306 N Wright St, Urbana, IL 61801,
USA
| | - Malcolm C. Hill
- Carle Foundation
Hospital, 611 W Park St., Urbana, IL 61801, USA
| | - Ryan G. Porter
- Carle Foundation
Hospital, 611 W Park St., Urbana, IL 61801, USA
- Carle Illinois College of Medicine,
University of Illinois at Urbana-Champaign,
506 S. Mathews Ave., Urbana, IL 61801, USA
| | - Michael A. Novak
- Carle Foundation
Hospital, 611 W Park St., Urbana, IL 61801, USA
- Carle Illinois College of Medicine,
University of Illinois at Urbana-Champaign,
506 S. Mathews Ave., Urbana, IL 61801, USA
| | - Wenzhou Hong
- Department of Otolaryngology and
Communication Sciences, Medical College of
Wisconsin, Milwaukee, WI 53226, USA
| | - Pawjai Khampang
- Department of Otolaryngology and
Communication Sciences, Medical College of
Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph E. Kerschner
- Department of Otolaryngology and
Communication Sciences, Medical College of
Wisconsin, Milwaukee, WI 53226, USA
- Division of Otolaryngology and Pediatric
Otolaryngology, Medical College of
Wisconsin, Milwaukee, WI 53226, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced
Science and Technology, 405 N Mathews Ave, Urbana, IL
61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced
Science and Technology, 405 N Mathews Ave, Urbana, IL
61801, USA
- Department of Bioengineering,
University of Illinois at Urbana-Champaign,
1406 W Green St, Urbana, IL 61801, USA
- Department of Electrical and Computer
Engineering, University of Illinois at
Urbana-Champaign, 306 N Wright St, Urbana, IL 61801,
USA
- Carle Illinois College of Medicine,
University of Illinois at Urbana-Champaign,
506 S. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
17
|
Wang J, Wohlberg B, Adamson RBA. Convolutional dictionary learning for blind deconvolution of optical coherence tomography images. BIOMEDICAL OPTICS EXPRESS 2022; 13:1834-1854. [PMID: 35519239 PMCID: PMC9045938 DOI: 10.1364/boe.447394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
In this study, we demonstrate a sparsity-regularized, complex, blind deconvolution method for removing sidelobe artefacts and stochastic noise from optical coherence tomography (OCT) images. Our method estimates the complex scattering amplitude of tissue on a line-by-line basis by estimating and deconvolving the complex, one-dimensional axial point spread function (PSF) from measured OCT A-line data. We also present a strategy for employing a sparsity weighting mask to mitigate the loss of speckle brightness within tissue-containing regions caused by the sparse deconvolution. Qualitative and quantitative analyses show that this approach suppresses sidelobe artefacts and background noise better than traditional spectral reshaping techniques, with negligible loss of tissue structure. The technique is particularly useful for emerging OCT applications where OCT images contain strong specular reflections at air-tissue boundaries that create large sidelobe artefacts.
Collapse
Affiliation(s)
- Junzhe Wang
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Brendt Wohlberg
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - R. B. A. Adamson
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Electrical & Computer Engineering Department, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
18
|
Badash I, Quiñones PM, Oghalai KJ, Wang J, Lui CG, Macias-Escriva F, Applegate BE, Oghalai JS. Endolymphatic Hydrops is a Marker of Synaptopathy Following Traumatic Noise Exposure. Front Cell Dev Biol 2021; 9:747870. [PMID: 34805158 PMCID: PMC8602199 DOI: 10.3389/fcell.2021.747870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
After acoustic trauma, there can be loss of synaptic connections between inner hair cells and auditory neurons in the cochlea, which may lead to hearing abnormalities including speech-in-noise difficulties, tinnitus, and hyperacusis. We have previously studied mice with blast-induced cochlear synaptopathy and found that they also developed a build-up of endolymph, termed endolymphatic hydrops. In this study, we used optical coherence tomography to measure endolymph volume in live CBA/CaJ mice exposed to various noise intensities. We quantified the number of synaptic ribbons and postsynaptic densities under the inner hair cells 1 week after noise exposure to determine if they correlated with acute changes in endolymph volume measured in the hours after the noise exposure. After 2 h of noise at an intensity of 95 dB SPL or below, both endolymph volume and synaptic counts remained normal. After exposure to 2 h of 100 dB SPL noise, mice developed endolymphatic hydrops and had reduced synaptic counts in the basal and middle regions of the cochlea. Furthermore, round-window application of hypertonic saline reduced the degree of endolymphatic hydrops that developed after 100 dB SPL noise exposure and partially prevented the reduction in synaptic counts in the cochlear base. Taken together, these results indicate that endolymphatic hydrops correlates with noise-induced cochlear synaptopathy, suggesting that these two pathologic findings have a common mechanistic basis.
Collapse
Affiliation(s)
- Ido Badash
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Patricia M Quiñones
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Kevin J Oghalai
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Juemei Wang
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Christopher G Lui
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Frank Macias-Escriva
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Brian E Applegate
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.,Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.,Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Lui CG, Kim W, Dewey JB, Macías-Escrivá FD, Ratnayake K, Oghalai JS, Applegate BE. In vivo functional imaging of the human middle ear with a hand-held optical coherence tomography device. BIOMEDICAL OPTICS EXPRESS 2021; 12:5196-5213. [PMID: 34513251 PMCID: PMC8407818 DOI: 10.1364/boe.430935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
We describe an optical coherence tomography and vibrometry system designed for portable hand-held usage in the otology clinic on awake patients. The system provides clinically relevant point-of-care morphological imaging with 14-44 µm resolution and functional vibratory measures with sub-nanometer sensitivity. We evaluated various new approaches for extracting functional information including a multi-tone stimulus, a continuous chirp stimulus, and alternating air and bone stimulus. We also explored the vibratory response over an area of the tympanic membrane (TM) and generated TM thickness maps. Our results suggest that the system can provide real-time in vivo imaging and vibrometry of the ear and could prove useful for investigating otologic pathology in the clinic setting.
Collapse
Affiliation(s)
- Christopher G. Lui
- Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Suite 5708, Los Angeles, CA 90033, USA
- These authors contributed equally to this work
| | - Wihan Kim
- Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Suite 5708, Los Angeles, CA 90033, USA
- These authors contributed equally to this work
| | - James B. Dewey
- Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Suite 5708, Los Angeles, CA 90033, USA
| | - Frank D. Macías-Escrivá
- Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Suite 5708, Los Angeles, CA 90033, USA
| | - Kumara Ratnayake
- Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Suite 5708, Los Angeles, CA 90033, USA
| | - John S. Oghalai
- Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Suite 5708, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Suite 5708, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Denney Research Center (DRB) 140, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Badash I, Applegate BE, Oghalai JS. In Vivo Cochlear imaging provides a tool to study endolymphatic hydrops. J Vestib Res 2021; 31:269-276. [PMID: 33136083 DOI: 10.3233/ves-200718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Exposure to noise trauma, such as that from improvised explosive devices, can lead to sensorineural hearing loss and a reduced quality of life. In order to elucidate the mechanisms underlying noise-induced hearing loss, we have adapted optical coherence tomography (OCT) for real-time cochlear visualization in live mice after blast exposure. We demonstrated that endolymphatic hydrops develops following blast injury, and that this phenomenon may be associated with glutamate excitotoxicity and cochlear synaptopathy. Additionally, osmotic stabilization of endolymphatic hydrops partially rescues cochlear synapses after blast trauma. OCT is thus a valuable research tool for investigating the mechanisms underlying acoustic trauma and dynamic changes in endolymph volume. It may also help with the diagnosis and treatment of human hearing loss and/or vertigo in the near future.
Collapse
Affiliation(s)
- Ido Badash
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Brian E Applegate
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Doppler Optical Coherence Tomography for Otology Applications: From Phantom Simulation to In Vivo Experiment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In otology, visualization and vibratory analysis have been crucial to enhance the success of diagnosis and surgical operation. Optical coherence tomography (OCT) has been employed in otology to obtain morphological structure of tissues non-invasively, owing to the ability of measuring the entire region of tympanic membrane, which compensates the limitations of conventional methods. As a functional extension of OCT, Doppler OCT, which enables the measurement of the motion information with structural data of tissue, has been applied in otology. Over the years, Doppler OCT systems have been evolved in various forms to enhance the measuring sensitivity of phase difference. In this review, we provide representative algorithms of Doppler OCT and various applications in otology from preclinical analysis to clinical experiments and discuss future developments.
Collapse
|
22
|
Choi S, Ota T, Nin F, Shioda T, Suzuki T, Hibino H. Rapid optical tomographic vibrometry using a swept multi-gigahertz comb. OPTICS EXPRESS 2021; 29:16749-16768. [PMID: 34154231 DOI: 10.1364/oe.425972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We propose a rapid tomographic vibrometer technique using an optical comb to measure internal vibrations, transient phenomena, and tomographic distributions in biological tissue and microelectromechanical system devices at high frequencies. This method allows phase-sensitive tomographic measurement in the depth direction at a multi-MHz scan rate using a frequency-modulated broadband electrooptic multi-GHz supercontinuum comb. The frequency spacing was swept instantaneously in time and axisymmetrically about the center wavelength via a dual-drive Mach-Zehnder modulator driven by a variable radio frequency signal. This unique sweeping method permits direct measurement of fringe-free interferometric amplitude and phase with arbitrarily changeable measurement range and scan rate. Therefore, a compressive measurement can be made in only the depth region where the vibration exists, reducing the number of measurement points. In a proof-of-principle experiment, the interferometric amplitude and phase were investigated for in-phase and quadrature phase-shifted interferograms obtained by a polarization demodulator. Tomographic transient displacement measurements were performed using a 0.12 mm thick glass film and piezo-electric transducer oscillating at 10-100 kHz with scan rates in the range 1-20 MHz. The depth resolution and precision of the vibrometer were estimated to be approximately 25 µm and 1.0 nm, respectively.
Collapse
|
23
|
Won J, Monroy GL, Dsouza RI, Spillman DR, McJunkin J, Porter RG, Shi J, Aksamitiene E, Sherwood M, Stiger L, Boppart SA. Handheld Briefcase Optical Coherence Tomography with Real-Time Machine Learning Classifier for Middle Ear Infections. BIOSENSORS-BASEL 2021; 11:bios11050143. [PMID: 34063695 PMCID: PMC8147830 DOI: 10.3390/bios11050143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
A middle ear infection is a prevalent inflammatory disease most common in the pediatric population, and its financial burden remains substantial. Current diagnostic methods are highly subjective, relying on visual cues gathered by an otoscope. To address this shortcoming, optical coherence tomography (OCT) has been integrated into a handheld imaging probe. This system can non-invasively and quantitatively assess middle ear effusions and identify the presence of bacterial biofilms in the middle ear cavity during ear infections. Furthermore, the complete OCT system is housed in a standard briefcase to maximize its portability as a diagnostic device. Nonetheless, interpreting OCT images of the middle ear more often requires expertise in OCT as well as middle ear infections, making it difficult for an untrained user to operate the system as an accurate stand-alone diagnostic tool in clinical settings. Here, we present a briefcase OCT system implemented with a real-time machine learning platform for middle ear infections. A random forest-based classifier can categorize images based on the presence of middle ear effusions and biofilms. This study demonstrates that our briefcase OCT system coupled with machine learning can provide user-invariant classification results of middle ear conditions, which may greatly improve the utility of this technology for the diagnosis and management of middle ear infections.
Collapse
Affiliation(s)
- Jungeun Won
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - Roshan I. Dsouza
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - Jonathan McJunkin
- Department of Otolaryngology, Carle Foundation Hospital, Champaign, IL 61822, USA; (J.M.); (R.G.P.)
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Ryan G. Porter
- Department of Otolaryngology, Carle Foundation Hospital, Champaign, IL 61822, USA; (J.M.); (R.G.P.)
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Jindou Shi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - MaryEllen Sherwood
- Stephens Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; (M.S.); (L.S.)
| | - Lindsay Stiger
- Stephens Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; (M.S.); (L.S.)
| | - Stephen A. Boppart
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
24
|
Hamra M, Shinnawi S, Vaizer MC, Yelin D. Rapid imaging of tympanic membrane vibrations in humans. BIOMEDICAL OPTICS EXPRESS 2020; 11:6470-6479. [PMID: 33282502 PMCID: PMC7687925 DOI: 10.1364/boe.402097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Functional imaging of the human ear is an extremely challenging task because of its minute anatomic structures and nanometer-scale motion in response to sound. Here, we demonstrate noninvasive in vivo functional imaging of the human tympanic membrane under various acoustic excitations, and identify unique vibration patterns that vary between human subjects. By combining spectrally encoded imaging with phase-sensitive spectral-domain interferometry, our system attains high-resolution functional imaging of the two-dimensional membrane surface, within a fraction of a second, through a handheld imaging probe. The detailed physiological data acquired by the system would allow measuring a wide range of clinically relevant parameters for patient diagnosis, and provide a powerful new tool for studying middle and inner ear physiology.
Collapse
Affiliation(s)
- Matan Hamra
- Department of Biomedical Engineering, Technion-Israel institute of Technology, Haifa 3200003, Israel
| | - Shadi Shinnawi
- Department of Otolarynglogy Head and Neck Surgery, Rambam Healthcare Campus, Haifa 3109601, Israel
| | - Mauricio Cohen Vaizer
- Department of Otolarynglogy Head and Neck Surgery, Rambam Healthcare Campus, Haifa 3109601, Israel
| | - Dvir Yelin
- Department of Biomedical Engineering, Technion-Israel institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
25
|
Optical coherence tomography: current and future clinical applications in otology. Curr Opin Otolaryngol Head Neck Surg 2020; 28:296-301. [PMID: 32833887 DOI: 10.1097/moo.0000000000000654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews literature on the use of optical coherence tomography (OCT) in otology and provides the reader with a timely update on its current clinical and research applications. The discussion focuses on the principles of OCT, the use of the technology for the diagnosis of middle ear disease and for the delineation of in-vivo cochlear microarchitecture and function. RECENT FINDINGS Recent advances in OCT include the measurement of structural and vibratory properties of the tympanic membrane, ossicles and inner ear in healthy and diseased states. Accurate, noninvasive diagnosis of middle ear disease, such as otosclerosis and acute otitis media using OCT, has been validated in clinical studies, whereas inner ear OCT imaging remains at the preclinical stage. The development of recent microscopic, otoscopic and endoscopic systems to address clinical and research problems is reviewed. SUMMARY OCT is a real-time, noninvasive, nonionizing, point-of-care imaging modality capable of imaging ear structures in vivo. Although current clinical systems are mainly focused on middle ear imaging, OCT has also been shown to have the ability to identify inner ear disease, an exciting possibility that will become increasingly relevant with the advent of targeted inner ear therapies.
Collapse
|
26
|
Palma-Chavez JA, Kim W, Serafino M, Jo JA, Charoenphol P, Applegate BE. Methylene blue-filled biodegradable polymer particles as a contrast agent for optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:4255-4274. [PMID: 32923040 PMCID: PMC7449750 DOI: 10.1364/boe.399322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 05/11/2023]
Abstract
Optical coherence tomography (OCT) images largely lack molecular information or molecular contrast. We address that issue here, reporting on the development of biodegradable micro and nano-spheres loaded with methylene blue (MB) as molecular contrast agents for OCT. MB is a constituent of FDA approved therapies and widely used as a dye in off-label clinical applications. The sequestration of MB within the polymer reduced toxicity and improved signal strength by drastically reducing the production of singlet oxygen and leuco-MB. The former leads to tissue damage and the latter to reduced image contrast. The spheres are also strongly scattering which improves molecular contrast signal localization and enhances signal strength. We demonstrate that these contrast agents may be imaged using both pump-probe OCT and photothermal OCT, using a 830 nm frequency domain OCT system and a 1.3 µm swept source OCT system. We also show that these contrast agents may be functionalized and targeted to specific receptors, e.g. the VCAM receptor known to be overexpressed in inflammation.
Collapse
Affiliation(s)
- Jorge A. Palma-Chavez
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Wihan Kim
- Department of Otolaryngology–Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael Serafino
- Department of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Javier A. Jo
- Department of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Phapanin Charoenphol
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Brian E. Applegate
- Department of Otolaryngology–Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
27
|
Cho NH, Jang JH. Future Directions of Optical Coherence Tomography in Otology: A Morphological and Functional Approach. Clin Exp Otorhinolaryngol 2020; 13:85-86. [PMID: 32434305 PMCID: PMC7248606 DOI: 10.21053/ceo.2020.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/18/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nam Hyun Cho
- Department of Otolaryngology and Head-Neck Surgery, Harvard Medical School, Boston, MA, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
28
|
Ota T, Nin F, Choi S, Muramatsu S, Sawamura S, Ogata G, Sato MP, Doi K, Doi K, Tsuji T, Kawano S, Reichenbach T, Hibino H. Characterisation of the static offset in the travelling wave in the cochlear basal turn. Pflugers Arch 2020; 472:625-635. [PMID: 32318797 PMCID: PMC7239825 DOI: 10.1007/s00424-020-02373-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
In mammals, audition is triggered by travelling waves that are evoked by acoustic stimuli in the cochlear partition, a structure containing sensory hair cells and a basilar membrane. When the cochlea is stimulated by a pure tone of low frequency, a static offset occurs in the vibration in the apical turn. In the high-frequency region at the cochlear base, multi-tone stimuli induce a quadratic distortion product in the vibrations that suggests the presence of an offset. However, vibrations below 100 Hz, including a static offset, have not been directly measured there. We therefore constructed an interferometer for detecting motion at low frequencies including 0 Hz. We applied the interferometer to record vibrations from the cochlear base of guinea pigs in response to pure tones. When the animals were exposed to sound at an intensity of 70 dB or higher, we recorded a static offset of the sinusoidally vibrating cochlear partition by more than 1 nm towards the scala vestibuli. The offset’s magnitude grew monotonically as the stimuli intensified. When stimulus frequency was varied, the response peaked around the best frequency, the frequency that maximised the vibration amplitude at threshold sound pressure. These characteristics are consistent with those found in the low-frequency region and are therefore likely common across the cochlea. The offset diminished markedly when the somatic motility of mechanosensitive outer hair cells, the force-generating machinery that amplifies the sinusoidal vibrations, was pharmacologically blocked. Therefore, the partition offset appears to be linked to the electromotile contraction of outer hair cells.
Collapse
Affiliation(s)
- Takeru Ota
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Samuel Choi
- AMED-CREST, AMED, Niigata, 951-8510, Japan.,Department of Electrical and Electronics Engineering, Niigata University, Niigata, 950-2181, Japan
| | - Shogo Muramatsu
- Department of Electrical and Electronics Engineering, Niigata University, Niigata, 950-2181, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Genki Ogata
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Mitsuo P Sato
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka, 589-8511, Japan
| | - Katsumi Doi
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka, 589-8511, Japan
| | - Kentaro Doi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Tetsuro Tsuji
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan.,Department of Advanced Mathematical Sciences, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoyuki Kawano
- AMED-CREST, AMED, Niigata, 951-8510, Japan.,Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Tobias Reichenbach
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan. .,AMED-CREST, AMED, Niigata, 951-8510, Japan.
| |
Collapse
|
29
|
Seong D, Kwon J, Jeon D, Wijesinghe RE, Lee J, Ravichandran NK, Han S, Lee J, Kim P, Jeon M, Kim J. In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography. SENSORS (BASEL, SWITZERLAND) 2019; 20:E64. [PMID: 31877652 PMCID: PMC6982896 DOI: 10.3390/s20010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022]
Abstract
Non-invasive characterization of micro-vibrations in the tympanic membrane (TM) excited by external sound waves is considered as a promising and essential diagnosis in modern otolaryngology. To verify the possibility of measuring and discriminating the vibrating pattern of TM, here we describe a micro-vibration measurement method of latex membrane resembling the TM. The measurements are obtained with an externally generated audio stimuli of 2.0, 2.2, 2.8, 3.1 and 3.2 kHz, and their respective vibrations based tomographic, volumetric and quantitative evaluations were acquired using optical Doppler tomography (ODT). The micro oscillations and structural changes which occurred due to diverse frequencies are measured with sufficient accuracy using a highly sensitive ODT system implied phase subtraction method. The obtained results demonstrated the capability of measuring and analyzing the complex varying micro-vibration of the membrane according to implied sound frequency.
Collapse
Affiliation(s)
- Daewoon Seong
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Jaehwan Kwon
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Deokmin Jeon
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Ruchire Eranga Wijesinghe
- Department of Biomedical Engineering, College of Engineering, Kyungil University, Gyeongsan 38428, Korea;
| | - Jaeyul Lee
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Naresh Kumar Ravichandran
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Sangyeob Han
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Junsoo Lee
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Pilun Kim
- School of Medicine, Institute of Biomedical Engineering, Kyungpook National University, Daegu 41944, Korea;
| | - Mansik Jeon
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| | - Jeehyun Kim
- School of Electronics Engineering, College of IT engineering, Kyungpook National University, Daegu 41566, Korea; (D.S.); (J.K.); (D.J.); (J.L.); (N.K.R.); (S.H.); (J.L.)
| |
Collapse
|
30
|
Kim S, Oghalai JS, Applegate BE. Noise and sensitivity in optical coherence tomography based vibrometry. OPTICS EXPRESS 2019; 27:33333-33350. [PMID: 31878404 PMCID: PMC7046037 DOI: 10.1364/oe.27.033333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 05/30/2023]
Abstract
There is growing interest in using the exquisite phase sensitivity of optical coherence tomography (OCT) to measure the vibratory response in organ systems such as the middle and inner ear. Using frequency domain analysis, it is possible to achieve picometer sensitivity to vibration over a wide frequency band. Here we explore the limits of the frequency domain vibratory sensitivity due to additive noise and consider the implication of phase noise statistics on the estimation of vibratory amplitude and phase. Noise statistics are derived in both the Rayleigh (s/n = 0) and Normal distribution (s/n > 3) limits. These theoretical findings are explored using simulation and verified with experiments using a swept-laser system and a piezo electric element. A metric for sensitivity is proposed based on the 98% confidence interval for the Rayleigh distribution.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - John S. Oghalai
- Caruso Department of Otolaryngology – Head & Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- Caruso Department of Otolaryngology – Head & Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|