1
|
Mecê P, Gocho K, Harmening W, Rossi E, Young L. Editorial: Advances in optical imaging for ophthalmology: new developments, clinical applications and perspectives. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1496015. [PMID: 39479555 PMCID: PMC11521964 DOI: 10.3389/fopht.2024.1496015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Affiliation(s)
- Pedro Mecê
- Institut Langevin, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Kiyoko Gocho
- Centre d’Investigation Clinique, Quinze-Vingts National Ophthalmology Hospital, Paris, France
| | - Wolf Harmening
- Rheinische Friedrich-Wilhelms-Universität Bonn, University Eye Hospital, Bonn, Germany
| | - Ethan Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Laura Young
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
2
|
Sampani K, Mujat M, Patel AH, Kang C, Iftimia N, Chatziralli I, Sun JK. Characterizing Vascular Wall and Lumen Caliber in Eyes with Diabetic Retinopathy Based on Adaptive Optics Scanning Laser Ophthalmoscopy. Diagnostics (Basel) 2024; 14:2020. [PMID: 39335699 PMCID: PMC11431547 DOI: 10.3390/diagnostics14182020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
(200/200) Purpose: Our aim was to evaluate structural alterations of retinal arterioles due to type 1 diabetes (T1D) and/or diabetic retinopathy (DR) under AOSLO imaging. METHODS Each study eye underwent mydriasis and AOSLO imaging in a single-visit study. The instrument's arrangement of four offset aperture images provided two orthogonal split-detector images and enabled isotropic analysis of the arteriolar boundaries. For each arteriole, we calculated the wall-to-lumen ratio (WLR), mean wall thickness, and luminal and external diameters. RESULTS In total, we enrolled 5 (20.8%) healthy control eyes and 19 eyes of patients with T1D. The DR distribution was: four (16.7%) no-DR, nine (37.5%%) mild or moderate nonproliferative DR (NPDR), and six (25%) severe NPDR or proliferative DR. Mean wall thickness increased significantly in eyes with T1D compared to healthy controls (p = 0.0006) and in eyes with more advanced DR (p = 0.0004). The WLR was significantly higher in eyes with T1D (p = 0.002) or more severe DR (p = 0.004). There was no significant relationship between T1D status or DR severity and any of the arteriolar diameters. CONCLUSIONS In this preliminary study, there appeared to be increases in the WLR and mean wall thickness in eyes with T1D and more severe DR than in the controls and eyes with no/less severe DR. Future studies may further elucidate the relationship between the retinal arteriolar structure and physiologic alterations in DR.
Collapse
Affiliation(s)
- Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA
| | - Ankit H. Patel
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA
| | - Chaerim Kang
- Program in Liberal Medical Education, Brown University, Providence, RI 02903, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Nicusor Iftimia
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA
| | - Irini Chatziralli
- 2nd Department of Ophthalmology, University of Athens, 12462 Athens, Greece
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Ashbery D, Baez HC, Kanarr RE, Kunala K, Power D, Chu CJ, Schallek J, McGregor JE. In Vivo Visualization of Intravascular Patrolling Immune Cells in the Primate Eye. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39283618 PMCID: PMC11407476 DOI: 10.1167/iovs.65.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose Insight into the immune status of the living eye is essential as we seek to understand ocular disease and develop new treatments. The nonhuman primate (NHP) is the gold standard preclinical model for therapeutic development in ophthalmology, owing to the similar visual system and immune landscape in the NHP relative to the human. Here, we demonstrate the utility of phase-contrast adaptive optics scanning light ophthalmoscope (AOSLO) to visualize immune cell dynamics on the cellular scale, label-free in the NHP. Methods Phase-contrast AOSLO was used to image preselected areas of retinal vasculature in five NHP eyes. Images were registered to correct for eye motion, temporally averaged, and analyzed for immune cell activity. Cell counts, dimensions, velocities, and frequency per vessel were determined manually and compared between retinal arterioles and venules. Based on cell appearance and circularity index, cells were divided into three morphologies: ovoid, semicircular, and flattened. Results Immune cells were observed migrating along vascular endothelium with and against blood flow. Cell velocity did not significantly differ between morphology or vessel type and was independent of blow flood. Venules had a significantly higher cell frequency than arterioles. A higher proportion of cells resembled "flattened" morphology in arterioles. Based on cell speeds, morphologies, and behaviors, we identified these cells as nonclassical patrolling monocytes (NCPMs). Conclusions Phase-contrast AOSLO has the potential to reveal the once hidden behaviors of single immune cells in retinal circulation and can do so without the requirement of added contrast agents that may disrupt immune cell behavior.
Collapse
Affiliation(s)
- Drew Ashbery
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hector C Baez
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Rye E Kanarr
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Karteek Kunala
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Colin J Chu
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Department of Neuroscience, University of Rochester, Rochester, New York, United States
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
4
|
Rui Y, Zhang M, Lee DM, Snyder VC, Raghuraman R, Gofas-Salas E, Mecê P, Yadav S, Tiruveedhula P, Grieve K, Sahel JA, Errera MH, Rossi EA. Label-Free Imaging of Inflammation at the Level of Single Cells in the Living Human Eye. OPHTHALMOLOGY SCIENCE 2024; 4:100475. [PMID: 38881602 PMCID: PMC11179426 DOI: 10.1016/j.xops.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 06/18/2024]
Abstract
Purpose Putative microglia were recently detected using adaptive optics ophthalmoscopy in healthy eyes. Here we evaluate the use of nonconfocal adaptive optics scanning light ophthalmoscopy (AOSLO) for quantifying the morphology and motility of presumed microglia and other immune cells in eyes with retinal inflammation from uveitis and healthy eyes. Design Observational exploratory study. Participants Twelve participants were imaged, including 8 healthy participants and 4 posterior uveitis patients recruited from the clinic of 1 of the authors (M.H.E.). Methods The Pittsburgh AOSLO imaging system was used with a custom-designed 7-fiber optical fiber bundle for simultaneous confocal and nonconfocal multioffset detection. The inner retina was imaged at several locations at multiple timepoints in healthy participants and uveitis patients to generate time-lapse images. Main Outcome Measures Microglia and macrophages were manually segmented from nonconfocal AOSLO images, and their morphological characteristics quantified (including soma size, diameter, and circularity). Cell soma motion was quantified across time for periods of up to 30 minutes and their speeds were calculated by measuring their displacement over time. Results A spectrum of cell morphologies was detected in healthy eyes from circular amoeboid cells to elongated cells with visible processes, resembling activated and ramified microglia, respectively. Average soma diameter was 16.1 ± 0.9 μm. Cell movement was slow in healthy eyes (0.02 μm/sec on average), but macrophage-like cells moved rapidly in some uveitis patients (up to 3 μm/sec). In an eye with infectious uveitis, many macrophage-like cells were detected; during treatment their quantity and motility decreased as vision improved. Conclusions In vivo adaptive optics ophthalmoscopy offers promise as a potentially powerful tool for detecting and monitoring inflammation and response to treatment at a cellular level in the living eye. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Yuhua Rui
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
- Eye Center of Xiangya Hospital, Central South University Hunan Key Laboratory of Ophthalmology Changsha, Hunan, China
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Daniel M.W. Lee
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering Pittsburgh, Pennsylvania
| | - Valerie C. Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Rashmi Raghuraman
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Elena Gofas-Salas
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - Pedro Mecê
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, Paris, France
| | - Sanya Yadav
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Marie-Hélène Errera
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
De Bruyn H, Johnson M, Moretti M, Ahmed S, Mujat M, Akula JD, Glavan T, Mihalek I, Aslaksen S, Molday LL, Molday RS, Berkowitz BA, Fulton AB. The Surviving, Not Thriving, Photoreceptors in Patients with ABCA4 Stargardt Disease. Diagnostics (Basel) 2024; 14:1545. [PMID: 39061682 PMCID: PMC11275370 DOI: 10.3390/diagnostics14141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Stargardt disease (STGD1), associated with biallelic variants in the ABCA4 gene, is the most common heritable macular dystrophy and is currently untreatable. To identify potential treatment targets, we characterized surviving STGD1 photoreceptors. We used clinical data to identify macular regions with surviving STGD1 photoreceptors. We compared the hyperreflective bands in the optical coherence tomographic (OCT) images that correspond to structures in the STGD1 photoreceptor inner segments to those in controls. We used adaptive optics scanning light ophthalmoscopy (AO-SLO) to study the distribution of cones and AO-OCT to evaluate the interface of photoreceptors and retinal pigment epithelium (RPE). We found that the profile of the hyperreflective bands differed dramatically between patients with STGD1 and controls. AO-SLOs showed patches in which cone densities were similar to those in healthy retinas and others in which the cone population was sparse. In regions replete with cones, there was no debris at the photoreceptor-RPE interface. In regions with sparse cones, there was abundant debris. Our results raise the possibility that pharmaceutical means may protect surviving photoreceptors and so mitigate vision loss in patients with STGD1.
Collapse
Affiliation(s)
- Hanna De Bruyn
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
| | - Megan Johnson
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Madelyn Moretti
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Saleh Ahmed
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA;
| | - James D. Akula
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomislav Glavan
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Mihalek
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Sigrid Aslaksen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anne B. Fulton
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Huang BB, Fawzi AA. Hypertension Likely Drives Arteriolar Wall Thickening in Preclinical Diabetic Retinopathy While Diabetes Drives Wall Thickness in Clinical Retinopathy. Transl Vis Sci Technol 2024; 13:8. [PMID: 38874974 PMCID: PMC11182368 DOI: 10.1167/tvst.13.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Purpose Both hypertension and diabetes are known to increase the wall-to-lumen ratio (WLR) of retinal arterioles, but the differential effects are unknown. Here, we study the timing and relative impact of hypertension versus diabetes on the WLR in diabetic retinopathy (DR) to address this unresolved question. Methods This prospective cross-sectional study compared the retinal arteriolar WLR in 17 healthy eyes, 15 with diabetes but no apparent DR (DM no DR), and 8 with diabetic macular edema (DME) and either nonproliferative or proliferative DR. We imaged each arteriole using adaptive optics scanning laser ophthalmoscopy and measured the WLR using ImageJ. Multiple linear regression (MLR) was performed to estimate the effects of hypertension, diabetes, and age on the WLR. Results Both subjects with DM no DR and subjects with DME had significantly higher WLR than healthy subjects (0.36 ± 0.08 and 0.42 ± 0.08 vs. 0.29 ± 0.07, 1-way ANOVA P = 0.0009). MLR in healthy subjects and subjects with DM no DR showed hypertension had the strongest effect (regression coefficient = 0.08, P = 0.009), whereas age and diabetes were not significantly correlated with WLR. MLR in all three groups together (healthy, DM no DR, and DME) showed diabetes had the strongest effect (regression coefficient = 0.05, P = 0.02), whereas age and hypertension were not significantly correlated with WLR. Conclusions Hypertension may be an early driver of retinal arteriolar wall thickening in preclinical DR, independent of age or diabetes, whereas changes specific to DR may drive wall thickening in DME and later DR stages. Translational Relevance We offer a framework for understanding the relative contributions of hypertension and diabetes on the vascular wall, and emphasize the importance of hypertension control early in diabetes even before DR onset.
Collapse
Affiliation(s)
- Bonnie B. Huang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Wang Y, Chen S, Chen X, Xu Z, Lin K, Shi L, Mu Q, Liu L. Coaxial Bright and Dark Field Optical Coherence Tomography. IEEE Trans Biomed Eng 2024; 71:1879-1888. [PMID: 38231824 DOI: 10.1109/tbme.2024.3355174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To improve the signal collection efficiency of Optical Coherence Tomography (OCT) for biomedical applications. A novel coaxial optical design was implemented, utilizing a wavefront-division beam splitter in the sample arm with a 45-degree rod mirror. This design allowed for the simultaneous collection of bright and dark field signals. The bright field signal was detected within its circular aperture in a manner similar to standard OCT, while the dark field signal passed through an annular-shaped aperture and was collected by the same spectrometer via a fiber array. This new configuration improved the signal collection efficiency by ∼3 dB for typical biological tissues. Dark-field OCT images were found to provide higher resolution, contrast and distinct information compared to standard bright-field OCT. By compounding bright and dark field images, speckle noise was suppressed by ∼ √2 . These advantages were validated using Teflon phantoms, chicken breast ex vivo, and human skin in vivo. This new OCT configuration significantly enhances signal collection efficiency and image quality, offering great potential for improving OCT technology with better depth, contrast, resolution, speckles, and signal-to-noise ratio. We believe that the bright and dark field signals will enable more comprehensive tissue characterization with the angled scattered light. This advancement will greatly promote the OCT technology in various clinical and biomedical research applications.
Collapse
|
8
|
Power D, Elstrott J, Schallek J. Photoreceptor loss does not recruit neutrophils despite strong microglial activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595864. [PMID: 38854151 PMCID: PMC11160676 DOI: 10.1101/2024.05.25.595864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In response to central nervous system (CNS) injury, tissue resident immune cells such as microglia and circulating systemic neutrophils are often first responders. The degree to which these cells interact in response to CNS damage is poorly understood, and even less so, in the neural retina which poses a challenge for high resolution imaging in vivo. In this study, we deploy fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) to study fluorescent microglia and neutrophils in mice. We simultaneously track immune cell dynamics using label-free phase-contrast AOSLO at micron-level resolution. Retinal lesions were induced with 488 nm light focused onto photoreceptor (PR) outer segments. These lesions focally ablated PRs, with minimal collateral damage to cells above and below the plane of focus. We used in vivo (AOSLO, SLO and OCT) imaging to reveal the natural history of the microglial and neutrophil response from minutes-to-months after injury. While microglia showed dynamic and progressive immune response with cells migrating into the injury locus within 1-day after injury, neutrophils were not recruited despite close proximity to vessels carrying neutrophils only microns away. Post-mortem confocal microscopy confirmed in vivo findings. This work illustrates that microglial activation does not recruit neutrophils in response to acute, focal loss of photoreceptors, a condition encountered in many retinal diseases.
Collapse
|
9
|
Lee S, Choi SS, Meleppat RK, Zawadzki RJ, Doble N. High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmoscope. BIOMEDICAL OPTICS EXPRESS 2024; 15:1815-1830. [PMID: 38495707 PMCID: PMC10942708 DOI: 10.1364/boe.507449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmosocope (AO-pcMLO) is described. It allows for simultaneous confocal and phase contrast imaging with various directional multi-line illumination by using a single 2D camera and a digital micromirror device (DMD). Both vertical and horizontal line illumination directions were tested, for photoreceptor and vascular imaging. The phase contrast imaging provided improved visualization of retinal structures such as cone inner segments, vessel walls and red blood cells with images being acquired at frame rates up to 500 Hz. Blood flow velocities of small vessels (<40 µm in diameter) were measured using kymographs for capillaries and cross-correlation between subsequent images for arterioles or venules. Cardiac-related pulsatile patterns were observed with normal resting heart-beat rate, and instantaneous blood flow velocities from 0.7 to 20 mm/s were measured.
Collapse
Affiliation(s)
- Soohyun Lee
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, Ohio 43210, USA
| | - Stacey S. Choi
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, Ohio 43210, USA
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, 915 Olentangy River Road, Suite 5000, Ohio 43212, USA
| | - Ratheesh K. Meleppat
- UC Davis Eye Center, Department of Ophthalmology and Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
- UC Davis EyePod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California, Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Robert J. Zawadzki
- UC Davis Eye Center, Department of Ophthalmology and Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
- UC Davis EyePod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California, Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Nathan Doble
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, Ohio 43210, USA
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, 915 Olentangy River Road, Suite 5000, Ohio 43212, USA
| |
Collapse
|
10
|
Huang BB, Fukuyama H, Burns SA, Fawzi AA. Imaging the Retinal Vascular Mural Cells In Vivo: Elucidating the Timeline of Their Loss in Diabetic Retinopathy. Arterioscler Thromb Vasc Biol 2024; 44:465-476. [PMID: 38152885 PMCID: PMC10842708 DOI: 10.1161/atvbaha.123.320169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Vascular mural cells (VMCs) are integral components of the retinal vasculature with critical homeostatic functions such as maintaining the inner blood-retinal barrier and vascular tone, as well as supporting the endothelial cells. Histopathologic donor eye studies have shown widespread loss of pericytes and smooth muscle cells, the 2 main VMC types, suggesting these cells are critical to the pathogenesis of diabetic retinopathy (DR). There remain, however, critical gaps in our knowledge regarding the timeline of VMC demise in human DR. METHODS In this study, we address this gap using adaptive optics scanning laser ophthalmoscopy to quantify retinal VMC density in eyes with no retinal disease (healthy), subjects with diabetes without diabetic retinopathy, and those with clinical DR and diabetic macular edema. We also used optical coherence tomography angiography to quantify capillary density of the superficial and deep capillary plexuses in these eyes. RESULTS Our results indicate significant VMC loss in retinal arterioles before the appearance of classic clinical signs of DR (diabetes without diabetic retinopathy versus healthy, 5.0±2.0 versus 6.5±2.0 smooth muscle cells per 100 µm; P<0.05), while a significant reduction in capillary VMC density (5.1±2.3 in diabetic macular edema versus 14.9±6.0 pericytes per 100 µm in diabetes without diabetic retinopathy; P=0.01) and capillary density (superficial capillary plexus vessel density, 37.6±3.8 in diabetic macular edema versus 45.5±2.4 in diabetes without diabetic retinopathy; P<0.0001) is associated with more advanced stages of clinical DR, particularly diabetic macular edema. CONCLUSIONS Our results offer a new framework for understanding the pathophysiologic course of VMC compromise in DR, which may facilitate the development and monitoring of therapeutic strategies aimed at VMC preservation and potentially the prevention of clinical DR and its associated morbidity. Imaging retinal VMCs provides an unparalleled opportunity to visualize these cells in vivo and may have wider implications in a range of diseases where these cells are disrupted.
Collapse
Affiliation(s)
- Bonnie B. Huang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hisashi Fukuyama
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | | | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Mujat M, Sampani K, Patel AH, Zambrano R, Sun JK, Wollstein G, Ferguson RD, Schuman JS, Iftimia N. Motion Contrast, Phase Gradient, and Simultaneous OCT Images Assist in the Interpretation of Dark-Field Images in Eyes with Retinal Pathology. Diagnostics (Basel) 2024; 14:184. [PMID: 38248061 PMCID: PMC10814023 DOI: 10.3390/diagnostics14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The cellular-level visualization of retinal microstructures such as blood vessel wall components, not available with other imaging modalities, is provided with unprecedented details by dark-field imaging configurations; however, the interpretation of such images alone is sometimes difficult since multiple structural disturbances may be present in the same time. Particularly in eyes with retinal pathology, microstructures may appear in high-resolution retinal images with a wide range of sizes, sharpnesses, and brightnesses. In this paper we show that motion contrast and phase gradient imaging modalities, as well as the simultaneous acquisition of depth-resolved optical coherence tomography (OCT) images, provide additional insight to help understand the retinal neural and vascular structures seen in dark-field images and may enable improved diagnostic and treatment plans.
Collapse
Affiliation(s)
- Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (R.D.F.); (N.I.)
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA; (K.S.); (J.K.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ankit H. Patel
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (R.D.F.); (N.I.)
| | - Ronald Zambrano
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10017, USA; (R.Z.); (G.W.)
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA; (K.S.); (J.K.S.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Gadi Wollstein
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10017, USA; (R.Z.); (G.W.)
| | - R. Daniel Ferguson
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (R.D.F.); (N.I.)
| | | | - Nicusor Iftimia
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (R.D.F.); (N.I.)
| |
Collapse
|
12
|
Mujat M, Sampani K, Patel AH, Sun JK, Iftimia N. Cellular-Level Analysis of Retinal Blood Vessel Walls Based on Phase Gradient Images. Diagnostics (Basel) 2023; 13:3399. [PMID: 37998535 PMCID: PMC10670340 DOI: 10.3390/diagnostics13223399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Diseases such as diabetes affect the retinal vasculature and the health of the neural retina, leading to vision problems. We describe here an imaging method and analysis procedure that enables characterization of the retinal vessel walls with cellular-level resolution, potentially providing markers for eye diseases. Adaptive optics scanning laser ophthalmoscopy is used with a modified detection scheme to include four simultaneous offset aperture channels. The magnitude of the phase gradient derived from these offset images is used to visualize the structural characteristics of the vessels. The average standard deviation image provides motion contrast and enables segmentation of the vessel lumen. Segmentation of blood vessel walls provides quantitative measures of geometrical characteristics of the vessel walls, including vessel and lumen diameters, wall thickness, and wall-to-lumen ratio. Retinal diseases may affect the structural integrity of the vessel walls, their elasticity, their permeability, and their geometrical characteristics. The ability to measure these changes is valuable for understanding the vascular effects of retinal diseases, monitoring disease progression, and drug testing. In addition, loss of structural integrity of the blood vessel wall may result in microaneurysms, a hallmark lesion of diabetic retinopathy, which may rupture or leak and further create vision impairment. Early identification of such structural abnormalities may open new treatment avenues for disease management and vision preservation. Functional testing of retinal circuitry through high-resolution measurement of vasodilation as a response to controlled light stimulation of the retina (neurovascular coupling) is another application of our method and can provide an unbiased evaluation of one's vision and enable early detection of retinal diseases and monitoring treatment results.
Collapse
Affiliation(s)
- Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (N.I.)
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA; (K.S.); (J.K.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ankit H. Patel
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (N.I.)
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA; (K.S.); (J.K.S.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicusor Iftimia
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (N.I.)
| |
Collapse
|
13
|
Sapoznik KA, Gast TJ, Carmichael-Martins A, Walker BR, Warner RL, Burns SA. Retinal Arteriolar Wall Remodeling in Diabetes Captured With AOSLO. Transl Vis Sci Technol 2023; 12:16. [PMID: 37962539 PMCID: PMC10653262 DOI: 10.1167/tvst.12.11.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Purpose Adaptive optics scanning laser ophthalmoscopy (AOSLO) enables the visualization and measurement of the retinal microvasculature structure in humans. We investigated the hypothesis that diabetes mellitus (DM) induces remodeling to the wall structure in small retinal arterioles. These alterations may allow better understanding of vascular remodeling in DM. Methods We imaged retinal arterioles in one eye of 48 participants (26 with DM and 22 healthy controls) with an AOSLO. Structural metrics of 274 arteriole segments (203 with DM and 71 healthy controls) ≤ 50 µm in outer diameter (OD) were quantified and we compared differences in wall thickness (WT), wall-to-lumen ratio (WLR), inner diameter (ID), OD, and arteriolar index ratio (AIR) between controls and participants with DM. We also compared the individual AIR (iAIR) in groups of individuals. Results The WLR, WT, and AIRs were significantly different in the arteriole segments of DM participants (P < 0.001). The iAIR was significantly deviated in the DM group (P < 0.001) and further division of the participants with DM into groups revealed that there was an effect of the presence of diabetic retinopathy (DR) on the iAIR (P < 0.001). Conclusions DM induces remodeling of wall structure in small retinal arterioles and in groups of individuals. The use of AIR allows us to assess remodeling independently of vessel size in the retina and to compute an index for each individual subject. Translational Relevance High-resolution retinal imaging allows noninvasive assessment of small retinal vessel remodeling in DM that can improve our understanding of DM and DR in living humans.
Collapse
Affiliation(s)
- Kaitlyn A. Sapoznik
- School of Optometry, Indiana University, Bloomington, IN, USA
- College of Optometry, University of Houston, Houston, TX, USA
| | - Thomas J. Gast
- School of Optometry, Indiana University, Bloomington, IN, USA
| | | | | | - Raymond L. Warner
- School of Optometry, Indiana University, Bloomington, IN, USA
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
14
|
Krafft L, Senée P, Gofas E, Thouvenin O, Atlan M, Paques M, Meimon S, Mecê P. Multimodal high-resolution retinal imaging using a camera-based DMD-integrated adaptive optics flood-illumination ophthalmoscope. OPTICS LETTERS 2023; 48:3785-3788. [PMID: 37450750 DOI: 10.1364/ol.495515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
We demonstrate the feasibility of a multimodal adaptive optics flood-illumination ophthalmoscope, able to provide both bright-field and dark-field images (such as phase contrast). The multimodality was made possible by integrating a digital micromirror device (DMD) at the illumination path to project a sequence of complementary high-resolution patterns into the retina. Through a versatile post-processing method that digitally selects backscattered or multiply scattered photons, we were able: (1) to achieve up to four-fold contrast increase of bright-field images when imaging the photoreceptor mosaic and nerve fibers; and (2) to visualize translucent retinal features such as capillaries, red blood cells, vessel walls, ganglion cells, and photoreceptor inner segments through phase contrast.
Collapse
|
15
|
Sabesan R, Grieve K, Hammer DX, Ji N, Marcos S. Introduction to the Feature Issue on Adaptive Optics for Biomedical Applications. BIOMEDICAL OPTICS EXPRESS 2023; 14:1772-1776. [PMID: 37078031 PMCID: PMC10110319 DOI: 10.1364/boe.488044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/03/2023]
Abstract
The guest editors introduce a feature issue commemorating the 25th anniversary of adaptive optics in biomedical research.
Collapse
Affiliation(s)
- Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Na Ji
- Department of Physics, Department of Molecular & Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Susana Marcos
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Wang X, Sadda SR, Ip MS, Sarraf D, Zhang Y. In Vivo Longitudinal Measurement of Cone Photoreceptor Density in Intermediate Age-Related Macular Degeneration. Am J Ophthalmol 2023; 248:60-75. [PMID: 36436549 PMCID: PMC10038851 DOI: 10.1016/j.ajo.2022.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate cone photoreceptor density in clinically unremarkable retinal regions in patients with age-related macular degeneration (AMD) using adaptive optics scanning laser ophthalmoscopy (AOSLO). DESIGN Prospective case series with normal comparison group. METHODS Ten eyes of 7 patients with intermediate AMD were studied, including 4 with predominantly subretinal drusenoid deposits (SDD) and 3 without SDD. Macular regions with a clinical absence of AMD-associated lesions were identified by cone packing structure on AOSLO and optical coherence tomography. Cone density was measured in 1174 clinically unremarkable regions within the central subfield (CSF), the inner (IR), and outer rings (OR) of the Early Treatment Diabetic Retinopathy Study grid over 39.6 ± 3.3 months and compared with age-matched normal values obtained in 17 participants. RESULTS Cone density decreased at 98.3% of the examined locations over time in the eyes with AMD. In the CSF, IR, and OR, cones declined by -255 ± 135, -133 ± 45, and -59 ± 24 cones/degree2/year, respectively, in eyes with SDD, and by -212 ± 89, -83 ± 37, and -27 ± 18 cones/degree2/year, respectively, in eyes without SDD. The percentage of retinal loci with cone density lower than normal (Z score < -2) increased over the follow-up: from 42% at the baseline to 80% at the last visit in eyes with SDD and from 31% to 70% in eyes without SDD. CONCLUSIONS AOSLO revealed cone photoreceptor loss in regions that appear otherwise unremarkable clinically. These findings may help explain the loss of mesopic sensitivity reported in these areas in eyes with intermediate AMD.
Collapse
Affiliation(s)
- Xiaolin Wang
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California
| | - SriniVas R Sadda
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California; Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California
| | - Michael S Ip
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California; Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California
| | - David Sarraf
- Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California; Stein Eye Institute (David Sarraf), Los Angeles, California, USA
| | - Yuhua Zhang
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California; Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California.
| |
Collapse
|
17
|
Williams DR, Burns SA, Miller DT, Roorda A. Evolution of adaptive optics retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:1307-1338. [PMID: 36950228 PMCID: PMC10026580 DOI: 10.1364/boe.485371] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/02/2023]
Abstract
This review describes the progress that has been achieved since adaptive optics (AO) was incorporated into the ophthalmoscope a quarter of a century ago, transforming our ability to image the retina at a cellular spatial scale inside the living eye. The review starts with a comprehensive tabulation of AO papers in the field and then describes the technological advances that have occurred, notably through combining AO with other imaging modalities including confocal, fluorescence, phase contrast, and optical coherence tomography. These advances have made possible many scientific discoveries from the first maps of the topography of the trichromatic cone mosaic to exquisitely sensitive measures of optical and structural changes in photoreceptors in response to light. The future evolution of this technology is poised to offer an increasing array of tools to measure and monitor in vivo retinal structure and function with improved resolution and control.
Collapse
Affiliation(s)
- David R. Williams
- The Institute of Optics and the Center for
Visual Science, University of Rochester,
Rochester NY, USA
| | - Stephen A. Burns
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Donald T. Miller
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and
Vision Science, University of California at Berkeley, Berkeley CA, USA
| |
Collapse
|
18
|
Morgan JIW, Chui TYP, Grieve K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:387-428. [PMID: 36698659 PMCID: PMC9841996 DOI: 10.1364/boe.472274] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 05/02/2023]
Abstract
Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Contributed equally
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
- Contributed equally
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
- Contributed equally
| |
Collapse
|
19
|
Pinhas A, Migacz JV, Zhou DB, Castanos Toral MV, Otero-Marquez O, Israel S, Sun V, Gillette PN, Sredar N, Dubra A, Glassberg J, Rosen RB, Chui TY. Insights into Sickle Cell Disease through the Retinal Microvasculature: Adaptive Optics Scanning Light Ophthalmoscopy Correlates of Clinical OCT Angiography. OPHTHALMOLOGY SCIENCE 2022; 2:100196. [PMID: 36531581 PMCID: PMC9754983 DOI: 10.1016/j.xops.2022.100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 05/06/2023]
Abstract
PURPOSE Clinical OCT angiography (OCTA) of the retinal microvasculature offers a quantitative correlate to systemic disease burden and treatment efficacy in sickle cell disease (SCD). The purpose of this study was to use the higher resolution of adaptive optics scanning light ophthalmoscopy (AOSLO) to elucidate OCTA features of parafoveal microvascular compromise identified in SCD patients. DESIGN Case series of 11 SCD patients and 1 unaffected control. PARTICIPANTS A total of 11 eyes of 11 SCD patients (mean age, 33 years; range, 23-44; 8 female, 3 male) and 1 eye of a 34-year-old unaffected control. METHODS Ten sequential 3 × 3 mm parafoveal OCTA full vascular slab scans were obtained per eye using a commercial spectral domain OCT system (Avanti RTVue-XR; Optovue). These were used to identify areas of compromised perfusion near the foveal avascular zone (FAZ), designated as regions of interest (ROIs). Immediately thereafter, AOSLO imaging was performed on these ROIs to examine the cellular details of abnormal perfusion. Each participant was imaged at a single cross-sectional time point. Additionally, 2 of the SCD patients were imaged prospectively 2 months after initial imaging to study compromised capillary segments across time and with treatment. MAIN OUTCOME MEASURES Detection and characterization of parafoveal perfusion abnormalities identified using OCTA and resolved using AOSLO imaging. RESULTS We found evidence of abnormal blood flow on OCTA and AOSLO imaging among all 11 SCD patients with diverse systemic and ocular histories. Adaptive optics scanning light ophthalmoscopy imaging revealed a spectrum of phenomena, including capillaries with intermittent blood flow, blood cell stasis, and sites of thrombus formation. Adaptive optics scanning light ophthalmoscopy imaging was able to resolve single sickled red blood cells, rouleaux formations, and blood cell-vessel wall interactions. OCT angiography and AOSLO imaging were sensitive enough to document improved retinal perfusion in an SCD patient 2 months after initiation of oral hydroxyurea therapy. CONCLUSIONS Adaptive optics scanning light ophthalmoscopy imaging was able to reveal the cellular details of perfusion abnormalities detected using clinical OCTA. The synergy between these clinical and laboratory imaging modalities presents a promising avenue in the management of SCD through the development of noninvasive ocular biomarkers to prognosticate progression and measure the response to systemic treatment.
Collapse
Key Words
- ADD, airy disk diameter
- AOSLO, adaptive optics scanning light ophthalmoscopy
- Adaptive optics
- BCVA, best-corrected visual acuity
- D, diopters
- FA, fluorescein angiography
- FAZ, foveal avascular zone
- HbSC, hemoglobin SC
- HbSS, hemoglobin SS
- IOP, intraocular pressure
- OCT angiography
- OCTA, OCT angiography
- Oculomics
- RBC, red blood cell
- ROI, region of interest
- Retinal microvasculature
- SCD, sickle cell disease
- SCR, sickle cell retinopathy
- Sickle cell disease
Collapse
Affiliation(s)
- Alexander Pinhas
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Justin V. Migacz
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Davis B. Zhou
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria V. Castanos Toral
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Oscar Otero-Marquez
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Sharon Israel
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Department of Human Biology, City University of New York Hunter College, New York, New York
| | - Vincent Sun
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Peter N. Gillette
- Department of Hematology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Nripun Sredar
- Department of Ophthalmology, Stanford University, Palo Alto, California
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California
| | | | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Toco Y.P. Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
- Correspondence: Toco Y.P. Chui, PhD, New York Eye and Ear Infirmary of Mount Sinai, 310 E 14th Street, New York, NY 10003.
| |
Collapse
|
20
|
Li K, Yin Q, Ren J, Song H, Zhang J. Automatic quantification of cone photoreceptors in adaptive optics scanning light ophthalmoscope images using multi-task learning. BIOMEDICAL OPTICS EXPRESS 2022; 13:5187-5201. [PMID: 36425624 PMCID: PMC9664876 DOI: 10.1364/boe.471426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 05/02/2023]
Abstract
Adaptive optics scanning light ophthalmoscope (AO-SLO) can directly image the cone photoreceptor mosaic in the living human retina, which offers a potentially great tool to detect cone-related ocular pathologies by quantifying the changes in the cone mosaic. However, manual quantification is very time-consuming and automation is highly desirable. In this paper, we developed a fully automatic method based on multi-task learning to identify and quantify cone photoreceptors. By including cone edges in the labels as the third dimension of the classification, our method provided more accurate and reliable results than the two previously reported methods. We trained and validated our network in an open data set consisting of over 200,000 cones, and achieved a 99.20% true positive rate, 0.71% false positive rate, and 99.24% Dice's coefficient on the test set consisting of 44,634 cones. All are better than the reported methods. In addition, the reproducibility of all three methods was also tested and compared, and the result showed the performance of our method was generally closer to the gold standard. Bland-Altman plots show that our method was more stable and accurate than the other two methods. Then ablation experiment was further done, and the result shows that multi-task learning is essential to achieving accurate quantifications. Finally, our method was also extended to segment the cones to extract the size information. Overall, the method proposed here demonstrated great performance in terms of accuracy and reliability, which can be used to efficiently quantify the subtle changes associated with the progression of many diseases affecting cones.
Collapse
Affiliation(s)
- Kaiwen Li
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, 210000, China
| | - Qi Yin
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, 210000, China
| | - Ji Ren
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, 210000, China
| | - Hongxin Song
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Jie Zhang
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, 210000, China
| |
Collapse
|
21
|
Pham AT, Onghanseng N, Halim MS, Ormaechea MS, Hassan M, Akhavanrezayat A, Uludag G, Tran ANT, Razeen MM, Sredar N, Dubra A, Nguyen QD. Reflectance adaptive optics findings in a patient with Vogt-Koyanagi-Harada disease. Am J Ophthalmol Case Rep 2022; 27:101660. [PMID: 35880207 PMCID: PMC9307596 DOI: 10.1016/j.ajoc.2022.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/25/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose To describe the reflectance adaptive optics scanning laser ophthalmoscopy (AOSLO) findings in different stages of Vogt-Koyanagi-Harada (VKH) disease and correlate them to visual gain post treatment. Confocal (cAOSLO) and non-confocal split-detector AOSLO (sdAOSLO) were used to assess longitudinally the status of the photoreceptors in a patient with VKH managed on corticosteroid and immunomodulatory therapy. Observation A 32-year-old Japanese American female presented with a 2-week history of blurred vision in both eyes (OU) and worsening headache previously diagnosed as a case of VKH and treated with high dose oral prednisone. At the time of presentation, though vision was improving, and frank serous retinal detachments were absent, spectral domain optical coherence tomography (SD-OCT) showed presence of residual subretinal fluid with disruption of the photoreceptor inner segments and outer segments (IS/OS) involving OU. The photoreceptor mosaic at the foveal center appeared very sparse with large areas devoid of visible photoreceptors on cAOSLO, in agreement with the SD-OCT data. sdAOSLO imaging over the same location shows a higher number of contiguous photoreceptors. After imaging, the patient was started on mycophenolate mofetil as steroid-sparing long-term therapy. Three months later, visual acuity improved to 20/20 OU, and SD-OCT showed almost complete resolution of subretinal fluid with significant improvement of the IS/OS SD-OCT signal, OU. cAOSLO imaging revealed a contiguous photoreceptor mosaic without gaps and of normal appearance. Conclusions and Importance VKH patients may demonstrate transient photoreceptor abnormalities on SD-OCT and cAOSLO imaging. sdAOSLO imaging revealed intact photoreceptor segments in areas that appeared as voids on cAOSLO, which later showed structural recovery on SD-OCT and cAOSLO. Therefore, sdAOSLO may predict potential for improvement in patients wherein there appears to be photoreceptor loss in cAOSLO and/or SD-OCT.
Collapse
|
22
|
Shao W, Yi J. Non-interferometric volumetric imaging in living human retina by confocal oblique scanning laser ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3576-3592. [PMID: 35781976 PMCID: PMC9208584 DOI: 10.1364/boe.457408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) imaging of the human retina is instrumental in vision science and ophthalmology. While interferometric retinal imaging is well established by optical coherence tomography (OCT), non-interferometric volumetric imaging in the human retina has been challenging up to date. Here, we report confocal oblique scanning laser ophthalmoscopy (CoSLO) to fill that void and harness non-interferometric optical contrast in 3D. CoSLO decouples the illumination and detection by utilizing oblique laser scanning and oblique imaging to achieve ∼4x better axial resolution than conventional SLO. By combining remote focusing, CoSLO permits the acquisition of depth signals in parallel and over a large field of view. Confocal gating is introduced by a linear sensor array to improve the contrast and resolution. For the first time, we reported non-interferometric 3D human retinal imaging with >20° viewing angle, and revealed detailed features in the inner, outer retina, and choroid. CoSLO shows potential to be another useful technique by offering 3D non-interferometric contrasts.
Collapse
Affiliation(s)
- Wenjun Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| | - Ji Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| |
Collapse
|
23
|
Abstract
The eye, the photoreceptive organ used to perceive the external environment, is of great importance to humans. It has been proven that some diseases in humans are accompanied by fundus changes; therefore, the health status of people may be interpreted from retinal images. However, the human eye is not a perfect refractive system for the existence of ocular aberrations. These aberrations not only affect the ability of human visual discrimination and recognition, but restrict the observation of the fine structures of human eye and reduce the possibility of exploring the mechanisms of eye disease. Adaptive optics (AO) is a technique that corrects optical wavefront aberrations. Once integrated into ophthalmoscopes, AO enables retinal imaging at the cellular level. This paper illustrates the principle of AO in correcting wavefront aberrations in human eyes, and then reviews the applications and advances of AO in ophthalmology, including the adaptive optics fundus camera (AO-FC), the adaptive optics scanning laser ophthalmoscope (AO-SLO), the adaptive optics optical coherence tomography (AO-OCT), and their combined multimodal imaging technologies. The future development trend of AO in ophthalmology is also prospected.
Collapse
|
24
|
Migacz JV, Otero-Marquez O, Zhou R, Rickford K, Murillo B, Zhou DB, Castanos MV, Sredar N, Dubra A, Rosen RB, Chui TYP. Imaging of vitreous cortex hyalocyte dynamics using non-confocal quadrant-detection adaptive optics scanning light ophthalmoscopy in human subjects. BIOMEDICAL OPTICS EXPRESS 2022; 13:1755-1773. [PMID: 35414987 PMCID: PMC8973177 DOI: 10.1364/boe.449417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/20/2022] [Accepted: 02/20/2022] [Indexed: 05/06/2023]
Abstract
Vitreous cortex hyalocytes are resident macrophage cells that help maintain the transparency of the media, provide immunosurveillance, and respond to tissue injury and inflammation. In this study, we demonstrate the use of non-confocal quadrant-detection adaptive optics scanning light ophthalmoscopy (AOSLO) to non-invasively visualize the movement and morphological changes of the hyalocyte cell bodies and processes over 1-2 hour periods in the living human eye. The average velocity of the cells 0.52 ± 0.76 µm/min when sampled every 5 minutes and 0.23 ± 0.29 µm/min when sampled every 30 minutes, suggesting that the hyalocytes move in quick bursts. Understanding the behavior of these cells under normal physiological conditions may lead to their use as biomarkers or suitable targets for therapy in eye diseases such as diabetic retinopathy, preretinal fibrosis and glaucoma.
Collapse
Affiliation(s)
- Justin V. Migacz
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Oscar Otero-Marquez
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Rebecca Zhou
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Kara Rickford
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Brian Murillo
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Davis B. Zhou
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Maria V. Castanos
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Nripun Sredar
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
| | - Richard B. Rosen
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| |
Collapse
|
25
|
Dholakia KY, Guevara-Torres A, Feng G, Power D, Schallek J. In Vivo Capillary Structure and Blood Cell Flux in the Normal and Diabetic Mouse Eye. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35138346 PMCID: PMC8842443 DOI: 10.1167/iovs.63.2.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose To characterize the early structural and functional changes in the retinal microvasculature in response to hyperglycemia in the Ins2Akita mouse. Methods A custom phase-contrast adaptive optics scanning light ophthalmoscope was used to image retinal capillaries of 9 Ins2Akita positive (hyperglycemic) and 9 Ins2Akita negative (euglycemic) mice from postnatal weeks 5 to 18. A 15 kHz point scan was used to image capillaries and measure red blood cell flux at biweekly intervals; measurements were performed manually. Retinal thickness and fundus photos were captured monthly using a commercial scanning laser ophthalmoscope/optical coherence tomography. Retinal thickness was calculated using a custom algorithm. Blood glucose and weight were tracked throughout the duration of the study. Results Elevated blood glucose (>250 mg/dL) was observed at 4 to 5 weeks of age in Ins2Akita mice and remained elevated throughout the study, whereas euglycemic littermates maintained normal glucose levels. There was no significant difference in red blood cell flux, capillary anatomy, lumen diameter, or occurrence of stalled capillaries between hyperglycemic and euglycemic mice between postnatal weeks 5 and 18. Hyperglycemic mice had a thinner retina than euglycemic littermates (p < 0.001), but retinal thickness did not change with duration of hyperglycemia despite glucose levels that were more than twice times normal. Conclusions In early stages of hyperglycemia, retinal microvasculature structure (lumen diameter, capillary anatomy) and function (red blood cell flux, capillary perfusion) were not impaired despite 3 months of chronically elevated blood glucose. These findings suggest that hyperglycemia alone for 3 months does not alter capillary structure or function in profoundly hyperglycemic mice.
Collapse
Affiliation(s)
- Kosha Y Dholakia
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Andres Guevara-Torres
- Center for Visual Science, University of Rochester, Rochester, New York, United States.,The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Guanping Feng
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, New York, United States.,Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, New York, United States.,Flaum Eye Institute, University of Rochester, Rochester, New York, United States.,Department of Neuroscience, University of Rochester, Rochester, New York, United States
| |
Collapse
|
26
|
Gofas-Salas E, Norberg N, Louapre C, Beigneux Y, Vignal Clermont C, Paques M, Grieve K. Phase contrast imaging to detect transparent cells in the retinal ganglion cells layer. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226604003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The eye is an optical window giving access to neural networks in a non-invasive way. It is possible to find in the retina biomarkers informing about the pathological state of other parts of the human body, and in particular of the brain. Neurodegenerative diseases could thus be diagnosed early and monitored by high-resolution imaging of the retina. However, a large part of the neurons in the retina are too transparent to be detected by existing techniques. At the Quinze-Vingts hospital, we have a unique retinal imaging platform in which ophthalmologists, neurologists and engineers participate. We implemented a technique based on scanning laser ophthalmoscopy (SLO) to capture the fine variations in refractive index between retinal cells. In this project we aimed at imaging and monitor cellular changes on transparent cells in the retinal ganglion cells layer in vivo on healthy participants and patients with neurodegenerative diseases.
Collapse
|
27
|
Gofas-Salas E, Rui Y, Mecê P, Zhang M, Snyder VC, Vienola KV, Lee DMW, Sahel JA, Grieve K, Rossi EA. Design of a radial multi-offset detection pattern for in vivo phase contrast imaging of the inner retina in humans. BIOMEDICAL OPTICS EXPRESS 2022; 13:117-132. [PMID: 35154858 PMCID: PMC8803027 DOI: 10.1364/boe.441808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 05/06/2023]
Abstract
Previous work has shown that multi-offset detection in adaptive optics scanning laser ophthalmoscopy (AOSLO) can be used to image transparent cells such as retinal ganglion cells (RGCs) in monkeys and humans. Though imaging in anesthetized monkeys with high light levels produced high contrast images of RGCs, images from humans failed to reach the same contrast due to several drawbacks in the previous dual-wavelength multi-offset approach. Our aim here was to design and build a multi-offset detection pattern for humans at safe light levels that could reveal transparent cells in the retinal ganglion cell layer with a contrast and acquisition time approaching results only previously obtained in monkeys. Here, we present a new single-wavelength solution that allows for increased light power and eliminates problematic chromatic aberrations. Then, we demonstrate that a radial multi-offset detection pattern with an offset distance of 8-10 Airy Disk Diameter (ADD) is optimal to detect photons multiply scattered in all directions from weakly reflective retinal cells thereby enhancing their contrast. This new setup and image processing pipeline led to improved imaging of inner retinal cells, including the first images of microglia with multi-offset imaging in AOSLO.
Collapse
Affiliation(s)
- Elena Gofas-Salas
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
- Denotes that each of these authors contributed equally to this work
| | - Yuhua Rui
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
- Eye center of Xiangya Hospital, Central South University, Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 401302, China
- Denotes that each of these authors contributed equally to this work
| | - Pedro Mecê
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Valerie C. Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Kari V. Vienola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Daniel M. W. Lee
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh 15106, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | | | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh 15106, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh 15106, USA
| |
Collapse
|
28
|
Warner RL, Gast TJ, Sapoznik KA, Carmichael-Martins A, Burns SA. Measuring Temporal and Spatial Variability of Red Blood Cell Velocity in Human Retinal Vessels. Invest Ophthalmol Vis Sci 2021; 62:29. [PMID: 34846516 PMCID: PMC8648047 DOI: 10.1167/iovs.62.14.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The retinal circulation regulates blood flow through various internal and external factors; however, it is unclear how locally these factors act within the retinal microcirculation. We measured the temporal and spatial variability of blood velocity in small retinal vessels using a dual-beam adaptive optics scanning laser ophthalmoscope. Methods In young healthy subjects (n = 3), temporal blood velocity variability was measured in a local vascular region consisting of an arteriole, capillary, and venule repeatedly over 2 days. Data consisted of 10 imaging periods separated into two sessions: (1) five 6-minute image acquisition periods with 30-minute breaks, and (2) five 6-minute image acquisition periods with 10-minute breaks. In another group of young healthy subjects (n = 5), spatial distribution of velocity variability was measured by imaging three capillary segments during three 2-minute conditions: (1) baseline imaging condition (no flicker), (2) full-field flicker, and (3) no flicker condition again. Results Blood velocities were measurable in all subjects with a reliability of about 2%. The coefficient of variation (CV) was used as an estimate of the physiological variability of each vessel. Over 2 days, the average CV in arterioles was 7% (±2%); in capillaries, it was 19% (±6%); and, in venules, it was 8% (±2%). During flicker stimulation, the average capillary CV was 16% during baseline, 15% during flicker stimulation, and 18% after flicker stimulation. Conclusions Capillaries in the human retina exhibit spatial and temporal variations in blood velocity. This inherent variation in blood velocity places limits on studying the vascular regulation of individual capillaries, and the study presented here serves as a foundation for future endeavors.
Collapse
Affiliation(s)
- Raymond L Warner
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Thomas J Gast
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Kaitlyn A Sapoznik
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | | | - Stephen A Burns
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
29
|
Joseph A, Power D, Schallek J. Imaging the dynamics of individual processes of microglia in the living retina in vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:6157-6183. [PMID: 34745728 PMCID: PMC8547988 DOI: 10.1364/boe.426157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 05/18/2023]
Abstract
Microglia are an essential population of resident immune cells in the central nervous system (CNS) and retina. These microscopic cells possess sub-cellular processes that make them challenging to image due to limited resolution and contrast. The baseline behavior of microglial processes in the living retina has been poorly characterized, and yet are essential to understanding how these cells respond under conditions of health, development, stress and disease. Here we use in vivo adaptive optics scanning light ophthalmoscopy combined with time-lapse imaging and quantification of process motility, to reveal the detailed behavior of microglial cells in a population of healthy mice. We find microglial processes to be dynamic at all branch-levels, from primary to end-protrusions. Cell-processes remodel at average speeds of 0.6 ± 0.4 µm/min with growth and deletion bursts of 0-7.6 µm/min. Longitudinal imaging in the same mice showed cell-somas to remain stable over seconds to minutes, but show migration over days to months. In addition to characterizing in vivo process motility and Sholl analysis using a microglial reporter mouse, we also demonstrate that microglia can be imaged without fluorescent labels at all. Phase-contrast imaging using safe levels of near-infrared light successfully imaged microglia soma and process remodeling with micron-level detail noninvasively, confirmed by simultaneous imaging of fluorescent microglial cells in transgenic mice. This label-free approach provides a new opportunity to investigate CNS immune system noninvasively without requiring transgenic or antibody labeling which could have off-target effects of changing normal microglial behavior. Additionally, CNS microglia study can now be conducted without the need for cranial window surgery which have the potential to change their behavior due to local or systemic inflammation.
Collapse
Affiliation(s)
- Aby Joseph
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
30
|
Abstract
Advances in retinal imaging are enabling researchers and clinicians to make precise noninvasive measurements of the retinal vasculature in vivo. This includes measurements of capillary blood flow, the regulation of blood flow, and the delivery of oxygen, as well as mapping of perfused blood vessels. These advances promise to revolutionize our understanding of vascular regulation, as well as the management of retinal vascular diseases. This review provides an overview of imaging and optical measurements of the function and structure of the ocular vasculature. We include general characteristics of vascular systems with an emphasis on the eye and its unique status. The functions of vascular systems are discussed, along with physical principles governing flow and its regulation. Vascular measurement techniques based on reflectance and absorption are briefly introduced, emphasizing ways of generating contrast. One of the prime ways to enhance contrast within vessels is to use techniques sensitive to the motion of cells, allowing precise measurements of perfusion and blood velocity. Finally, we provide a brief introduction to retinal vascular diseases.
Collapse
Affiliation(s)
- Stephen A Burns
- Indiana University School of Optometry, Bloomington, Indiana 47405, USA; , ,
| | - Ann E Elsner
- Indiana University School of Optometry, Bloomington, Indiana 47405, USA; , ,
| | - Thomas J Gast
- Indiana University School of Optometry, Bloomington, Indiana 47405, USA; , ,
| |
Collapse
|
31
|
Afsharan H, Hackmann MJ, Wang Q, Navaeipour F, Jayasree SVK, Zawadzki RJ, Silva D, Joo C, Cense B. Polarization properties of retinal blood vessel walls measured with polarization sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:4340-4362. [PMID: 34457418 PMCID: PMC8367251 DOI: 10.1364/boe.426079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 05/08/2023]
Abstract
A new method based on polarization-sensitive optical coherence tomography (PS-OCT) is introduced to determine the polarization properties of human retinal vessel walls, in vivo. Measurements were obtained near the optic nerve head of three healthy human subjects. The double pass phase retardation per unit depth (DPPR/UD), which is proportional to the birefringence, is higher in artery walls, presumably because of the presence of muscle tissue. Measurements in surrounding retinal nerve fiber layer tissue yielded lower DPPR/UD values, suggesting that the retinal vessel wall tissue near the optic nerve is not covered by retinal nerve fiber layer tissue (0.43°/µm vs. 0.77°/µm, respectively). Measurements were obtained from multiple artery-vein pairs, to quantify the different polarization properties. Measurements were taken along a section of the vessel wall, with changes in DPPR/UD up to 15%, while the vessel wall thickness remained relatively constant. A stationary scan pattern was applied to determine the influence of involuntary eye motion on the measurement, which was significant. Measurements were also analyzed by two examiners, with high inter-observer agreement. The measurement repeatability was determined with measurements that were acquired during multiple visits. An improvement in accuracy can be achieved with an ultra-broad-bandwidth PS-OCT system since it will provide more data points in-depth, which reduces the influence of discretization and helps to facilitate better fitting of the birefringence data.
Collapse
Affiliation(s)
- Hadi Afsharan
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth WA 6009, Australia
| | - Michael J. Hackmann
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth WA 6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | - Qiang Wang
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth WA 6009, Australia
| | - Farzaneh Navaeipour
- Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Stephy Vijaya Kumar Jayasree
- Department of Physics, School of Physics, Mathematics and Computing, The University of Western Australia, Perth WA 6009, Australia
| | - Robert J. Zawadzki
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA 95817, USA
| | - Dilusha Silva
- Microelectronics Research Group, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth WA 6009, Australia
| | - Chulmin Joo
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Barry Cense
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth WA 6009, Australia
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
32
|
Wynne N, Carroll J, Duncan JL. Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). Prog Retin Eye Res 2021; 83:100920. [PMID: 33161127 PMCID: PMC8639282 DOI: 10.1016/j.preteyeres.2020.100920] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) allows visualization of the living human retina with exquisite single-cell resolution. This technology has improved our understanding of normal retinal structure and revealed pathophysiological details of a number of retinal diseases. Despite the remarkable capabilities of AOSLO, it has not seen the widespread commercial adoption and mainstream clinical success of other modalities developed in a similar time frame. Nevertheless, continued advancements in AOSLO hardware and software have expanded use to a broader range of patients. Current devices enable imaging of a number of different retinal cell types, with recent improvements in stimulus and detection schemes enabling monitoring of retinal function, microscopic structural changes, and even subcellular activity. This has positioned AOSLO for use in clinical trials, primarily as exploratory outcome measures or biomarkers that can be used to monitor disease progression or therapeutic response. AOSLO metrics could facilitate patient selection for such trials, to refine inclusion criteria or to guide the choice of therapy, depending on the presence, absence, or functional viability of specific cell types. Here we explore the potential of AOSLO retinal imaging by reviewing clinical applications as well as some of the pitfalls and barriers to more widespread clinical adoption.
Collapse
Affiliation(s)
- Niamh Wynne
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA.
| |
Collapse
|
33
|
Kadomoto S, Uji A, Arichika S, Muraoka Y, Kido A, Nishijima K, Akagi T, Kawai K, Tsujikawa A. Macular Cone Abnormalities in Behçet's Disease Detected by Adaptive Optics Scanning Light Ophthalmoscope. Ophthalmic Surg Lasers Imaging Retina 2021; 52:218-225. [PMID: 34039187 DOI: 10.3928/23258160-20210330-06] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Investigations of morphological changes in photoreceptors in Behçet's disease (BD) using adaptive optics scanning light ophthalmoscope (AOSLO) are lacking. The authors aimed to evaluate macular cone density and regularity in BD patients with or without a history of uveitis with good visual acuity (VA). PATIENTS AND METHODS The authors included 16 patients (29 eyes) with BD and 12 healthy volunteers (12 eyes) as controls. All subjects had VA of 20/20 or higher. Subjects underwent AOSLO to evaluate the photoreceptor status including cone density (numbers/mm2) and proportion of hexagonal Voronoi domains. RESULTS Hyporeflective patches that were not detected in color fundus photograph or optical coherence tomography were observed by AOSLO in BD patients both with and without past uveitis history; these were not detected in the control group. Cone density was significantly reduced in BD patients with a history of uveitis compared to controls (P = .002). The proportion of hexagonal Voronoi domains was significantly reduced in BD eyes both with and without history of uveitis relative to controls (P < .001). CONCLUSION Macular photoreceptor damage was observed in BD patients with and without a history of uveitis. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:218-225.].
Collapse
|
34
|
Bedggood P, Metha A. Adaptive optics imaging of the retinal microvasculature. Clin Exp Optom 2021; 103:112-122. [DOI: 10.1111/cxo.12988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia,
| | - Andrew Metha
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia,
| |
Collapse
|
35
|
Lu R, Aguilera N, Liu T, Liu J, Giannini JP, Li J, Bower AJ, Dubra A, Tam J. In-vivo sub-diffraction adaptive optics imaging of photoreceptors in the human eye with annular pupil illumination and sub-Airy detection. OPTICA 2021; 8:333-343. [PMID: 34504903 PMCID: PMC8425240 DOI: 10.1364/optica.414206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/08/2021] [Indexed: 05/18/2023]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) allows non-invasive visualization of the living human eye at the microscopic scale; but even with correction of the ocular wavefront aberrations over a large pupil, the smallest cells in the photoreceptor mosaic cannot always be resolved. Here, we synergistically combine annular pupil illumination with sub-Airy disk confocal detection to demonstrate a 33% improvement in transverse resolution (from 2.36 to 1.58 μm) and a 13% axial resolution enhancement (from 37 to 32 μm), an important step towards the study of the complete photoreceptor mosaic in heath and disease. Interestingly, annular pupil illumination also enhanced the visualization of the photoreceptor mosaic in non-confocal detection schemes such as split detection AOSLO, providing a strategy for enhanced multimodal imaging of the cone and rod photoreceptor mosaic.
Collapse
Affiliation(s)
- Rongwen Lu
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jianfei Liu
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John P. Giannini
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew J. Bower
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California 94305, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
36
|
Mecê P, Gofas-Salas E, Rui Y, Zhang M, Sahel JA, Rossi EA. Spatial-frequency-based image reconstruction to improve image contrast in multi-offset adaptive optics ophthalmoscopy. OPTICS LETTERS 2021; 46:1085-1088. [PMID: 33649663 PMCID: PMC9202470 DOI: 10.1364/ol.417903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 05/08/2023]
Abstract
Off-axis detection methods in adaptive optics (AO) ophthalmoscopy can enhance image contrast of translucent retinal structures such as cone inner segments and retinal ganglion cells. Here, we propose a 2D optical model showing that the phase contrast produced by these methods depends on the offset orientation. While one axis provides an asymmetric light distribution, hence high phase contrast, the perpendicular axis provides a symmetric one, thus substantially lower contrast. We support this model with in vivo human data acquired with a multi-offset AO scanning light ophthalmoscope. Then, using this finding, we provide a post-processing method, named spatial-frequency-based image reconstruction, to optimally combine images from different off-axis detector orientations, significantly increasing the structural cellular contrast of in vivo human retinal neurons such as cone inner segment, putative rods, and retinal ganglion cells.
Collapse
Affiliation(s)
- Pedro Mecê
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elena Gofas-Salas
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuhua Rui
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Eye center of Xiangya Hospital, Central South Univeristy; Hunan Key Laboratory of Ophthalmology; Changsha, Hunan, China
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Luo T, Warner RL, Sapoznik KA, Walker BR, Burns SA. Template free eye motion correction for scanning systems. OPTICS LETTERS 2021; 46:753-756. [PMID: 33577506 PMCID: PMC8447858 DOI: 10.1364/ol.415285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 05/18/2023]
Abstract
Scanning imaging systems are susceptible to image warping in the presence of target motion occurring within the time required to acquire an individual image frame. In this Letter, we introduce the use of a dual raster scanning approach to correct for motion distortion without the need for prior knowledge of the undistorted image. In the dual scanning approach, the target is imaged simultaneously with two imaging beams from the same imaging system. The two imaging beams share a common pupil but have a spatial shift between the beams on the imaging plane. The spatial shift can be used to measure high speed events, because it measures an identical region at two different times within the time required for acquisition of a single frame. In addition, it provides accurate spatial information, since two different regions on the target are imaged simultaneously, providing an undistorted estimate of the spatial relation between regions. These spatial and temporal relations accurately measure target motion. Data from adaptive optics scanning laser ophthalmoscope (AOSLO) imaging of the human retina are used to demonstrate this technique. We apply the technique to correct the shearing of retinal images produced by eye motion. Three control subjects were measured while imaging different retinal layers and retinal locations to qualify the effectiveness of the algorithm. Since the time shift between channels is readily adjustable, this method can be tuned to match different imaging situations. The major requirement is the need to separate the two images; in our case, we used different near infrared spectral regions and dichroic filters.
Collapse
Affiliation(s)
- Ting Luo
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Raymond L. Warner
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Kaitlyn A Sapoznik
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Brittany R. Walker
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Stephen A. Burns
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| |
Collapse
|
38
|
Sajdak BS, Postlewaite JT, Eliceiri KW, Rogers JD. Measuring the spatial distribution of multiply scattered light using a de-scanned image sensor for examining retinal structure contrast. OPTICS EXPRESS 2021; 29:552-563. [PMID: 33726288 PMCID: PMC7920524 DOI: 10.1364/oe.408587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
An optical platform is presented for examining intrinsic contrast detection strategies when imaging retinal structure using ex vivo tissue. A custom microscope was developed that scans intact tissue and collects scattered light distribution at every image pixel, allowing digital masks to be applied after image collection. With this novel approach at measuring the spatial distribution of multiply scattered light, known and novel methods of detecting intrinsic cellular contrast can be explored, compared, and optimized for retinal structures of interest.
Collapse
Affiliation(s)
- Benjamin S. Sajdak
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jack T. Postlewaite
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W. Eliceiri
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jeremy D. Rogers
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
39
|
Ambrosio L, Williams JS, Gutierrez A, Swanson EA, Munro RJ, Ferguson RD, Fulton AB, Akula JD. Carbonic anhydrase inhibition in X-linked retinoschisis: An eye on the photoreceptors. Exp Eye Res 2020; 202:108344. [PMID: 33186570 DOI: 10.1016/j.exer.2020.108344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
The retinoschisin protein is encoded on the short arm of the X-chromosome by RS1, is expressed abundantly in photoreceptor inner segments and in bipolar cells, and is secreted as an octamer that maintains the structural integrity of the retina. Mutations in RS1 lead to X-linked retinoschisis (XLRS), a disease characterized by the formation of cystic spaces between boys' retinal layers that frequently present in ophthalmoscopy as a "spoke-wheel" pattern on their maculae and by progressively worsening visual acuity (VA). There is no proven therapy for XLRS, but there is mixed evidence that carbonic anhydrase inhibitors (CAIs) produce multiple beneficial effects, including improved VA and decreased volume of cystic spaces. Consequently, linear mixed-effects (LME) models were used to evaluate the effects of CAI therapy on VA and central retinal thickness (CRT, a proxy for cystic cavity volume) in a review of 19 patients' records. The mechanism of action of action of CAIs is unclear but, given that misplaced retinoschisin might accumulate in the photoreceptors, it is possible-perhaps even likely-that CAIs act to benefit the function of photoreceptors and the neighboring retinal pigment epithelium by acidification of the extracellular milieu; patients on CAIs have among the most robust photoreceptor responses. Therefore, a small subset of five subjects were recruited for imaging on a custom multimodal adaptive optics retinal imager for inspection of their parafoveal cone photoreceptors. Those cones that were visible, which numbered far fewer than in controls, were enlarged, consistent with the retinoschisin accumulation hypothesis. Results of the LME modeling found that there is an initial benefit to both VA and CRT in CAI therapy, but these wane, in both cases, after roughly two years. That said, even a short beneficial effect of CAIs on the volume of the cystic spaces may give CAI therapy an important role as pretreatment before (or immediately following) administration of gene therapy.
Collapse
Affiliation(s)
- Lucia Ambrosio
- Ophthalmology, Boston Children's Hospital, USA; Ophthalmology, Harvard Medical School, USA
| | - Jacqueline S Williams
- Ophthalmology, Boston Children's Hospital, USA; Biology, Northeastern University, USA
| | - Alfredo Gutierrez
- Ophthalmology, Boston Children's Hospital, USA; Community Health, Tufts University, USA
| | | | | | | | - Anne B Fulton
- Ophthalmology, Boston Children's Hospital, USA; Ophthalmology, Harvard Medical School, USA
| | - James D Akula
- Ophthalmology, Boston Children's Hospital, USA; Ophthalmology, Harvard Medical School, USA; Psychology, Northeastern University, USA.
| |
Collapse
|
40
|
Kadomoto S, Muraoka Y, Uji A, Tamiya R, Ooto S, Murakami T, Oritani Y, Kawai K, Tsujikawa A. Ultrastructure and hemodynamics of microaneurysms in retinal vein occlusion examined by an offset pinhole adaptive optics scanning light ophthalmoscope. BIOMEDICAL OPTICS EXPRESS 2020; 11:6078-6092. [PMID: 33282476 PMCID: PMC7687975 DOI: 10.1364/boe.402331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 05/06/2023]
Abstract
Retinal microaneurysms (MAs) associated with retinal vein occlusions often cause macular edema due to vascular leakage from the MAs, which can lead to severe vision loss. However, studies using conventional imaging modalities have not shown a significant association between MAs and retinal functional changes. The recent technological advancements to the adaptive optics scanning light ophthalmoscope (AOSLO) have enabled real-time observation of the human retinal microvasculature. Additionally, offsetting the confocal aperture in the AOSLO enables the blocking of specular reflection from the inner retina and the enhancement of the image contrast of the retinal capillaries. This study investigated the ultrastructure and hemodynamics of MAs examined by structural images and perfusion maps of the offset pinhole AOSLO and evaluated their associations with vascular leakage on fluorescein angiography. Our results show the diverse configurations of the MAs, some of which are occasionally accompanied by a cap structure on the aneurysmal surface. Moreover, the morphological and hemodynamic changes were significantly associated with vascular leakage.
Collapse
|
41
|
Joseph A, Chu CJ, Feng G, Dholakia K, Schallek J. Label-free imaging of immune cell dynamics in the living retina using adaptive optics. eLife 2020; 9:e60547. [PMID: 33052099 PMCID: PMC7556865 DOI: 10.7554/elife.60547] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022] Open
Abstract
Our recent work characterized the movement of single blood cells within the retinal vasculature (Joseph et al. 2019) using adaptive optics ophthalmoscopy. Here, we apply this technique to the context of acute inflammation and discover both infiltrating and tissue-resident immune cells to be visible without any labeling in the living mouse retina using near-infrared light alone. Intravital imaging of immune cells can be negatively impacted by surgical manipulation, exogenous dyes, transgenic manipulation and phototoxicity. These confounds are now overcome, using phase contrast and time-lapse videography to reveal the dynamic behavior of myeloid cells as they interact, extravasate and survey the mouse retina. Cellular motility and differential vascular responses were measured noninvasively and in vivo across hours to months at the same retinal location, from initiation to the resolution of inflammation. As comparable systems are already available for clinical research, this approach could be readily translated to human application.
Collapse
Affiliation(s)
- Aby Joseph
- The Institute of Optics, University of RochesterRochesterUnited States
| | - Colin J Chu
- Translational Health Sciences, University of BristolBristolUnited Kingdom
| | - Guanping Feng
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Kosha Dholakia
- Flaum Eye Institute, University of RochesterRochesterUnited States
| | - Jesse Schallek
- Flaum Eye Institute, University of RochesterRochesterUnited States
- Department of Neuroscience and the Del Monte Institute for Neuroscience, University of RochesterRochesterUnited States
- Center for Visual Science, University of RochesterRochesterUnited States
| |
Collapse
|
42
|
Full-field flicker evoked changes in parafoveal retinal blood flow. Sci Rep 2020; 10:16051. [PMID: 32994535 PMCID: PMC7524838 DOI: 10.1038/s41598-020-73032-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
When retinal activity is increased by exposure to dynamic visual stimuli, blood vessels dilate and the flow of blood within vessels increases to meet the oxygen and glucose demands of the neurons. This relationship is termed ‘neurovascular coupling’ and it is critical for regulating control of the human retinal vasculature. In this study, we used a recently developed technique based on a dual-beam adaptive optics scanning laser ophthalmoscope to measure changes in red blood cell velocities, vessel diameter, and flow in interconnected small parafoveal retinal vessels (< 50 µm) of nine healthy participants. A full-field flicker stimulus was presented onto the retina to induce a vascular response to neural activity. Flicker stimulation increased blood velocity, vessel diameter, and therefore flow in arterioles, capillaries, and venules in all nine subjects. ANOVA and post hoc t-test showed significant increases in velocity and flow in arterioles and venules. These measurements indicate that the mechanism of neurovascular coupling systematically affects the vascular response in small retinal vessels in order to maintain hemodynamic regulation in the retina when exposed to visual stimulation, in our case flicker. Our findings may provide insight into future investigations on the impairments of neurovascular coupling from vascular diseases such as diabetic mellitus.
Collapse
|
43
|
Miller DT, Kurokawa K. Cellular-Scale Imaging of Transparent Retinal Structures and Processes Using Adaptive Optics Optical Coherence Tomography. Annu Rev Vis Sci 2020; 6:115-148. [PMID: 32609578 PMCID: PMC7864592 DOI: 10.1146/annurev-vision-030320-041255] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-resolution retinal imaging is revolutionizing how scientists and clinicians study the retina on the cellular scale. Its exquisite sensitivity enables time-lapse optical biopsies that capture minute changes in the structure and physiological processes of cells in the living eye. This information is increasingly used to detect disease onset and monitor disease progression during early stages, raising the possibility of personalized eye care. Powerful high-resolution imaging tools have been in development for more than two decades; one that has garnered considerable interest in recent years is optical coherence tomography enhanced with adaptive optics. State-of-the-art adaptive optics optical coherence tomography (AO-OCT) makes it possible to visualize even highly transparent cells and measure some of their internal processes at all depths within the retina, permitting reconstruction of a 3D view of the living microscopic retina. In this review, we report current AO-OCT performance and its success in visualizing and quantifying these once-invisible cells in human eyes.
Collapse
Affiliation(s)
- Donald T Miller
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA; ,
| | - Kazuhiro Kurokawa
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA; ,
| |
Collapse
|
44
|
Hagan K, DuBose T, Cunefare D, Waterman G, Park J, Simmerer C, Kuo AN, McNabb RP, Izatt JA, Farsiu S. Multimodal handheld adaptive optics scanning laser ophthalmoscope. OPTICS LETTERS 2020; 45:4940-4943. [PMID: 32870897 PMCID: PMC7792463 DOI: 10.1364/ol.402392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Non-confocal adaptive optics scanning laser ophthalmoscopy (AOSLO) has enhanced the study of human retinal photoreceptors by providing complementary information to standard confocal AOSLO images. Previously we developed the first confocal handheld AOSLO (HAOSLO) capable of in vivo cone photoreceptor imaging in supine and non-cooperative patients. Here, we introduce the first multimodal (M-)HAOSLO for confocal and non-confocal split-detection (SD) imaging to allow for more comprehensive patient data collection. Aside from its unprecedented miniature size and weight, M-HAOSLO is also the first system to perform sensorless wavefront-corrected SD imaging of cone photoreceptors.
Collapse
Affiliation(s)
- Kristen Hagan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Theodore DuBose
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - David Cunefare
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Gar Waterman
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jongwan Park
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Corey Simmerer
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Anthony N. Kuo
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ryan P. McNabb
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Corresponding author:
| |
Collapse
|
45
|
Mecê P, Gofas-Salas E, Paques M, Grieve K, Meimon S. Optical Incoherence Tomography: a method to generate tomographic retinal cross-sections with non-interferometric adaptive optics ophthalmoscopes. BIOMEDICAL OPTICS EXPRESS 2020; 11:4069-4084. [PMID: 32923029 PMCID: PMC7449754 DOI: 10.1364/boe.396937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 05/05/2023]
Abstract
We present Optical Incoherence Tomography (OIT): a completely digital method to generate tomographic retinal cross-sections from en-face through-focus image stacks acquired by non-interferometric imaging systems, such as en-face adaptive optics (AO)-ophthalmoscopes. We demonstrate that OIT can be applied to different imaging modalities using back-scattered light, including systems without inherent optical sectioning and, for the first time, multiply-scattered light, revealing a distinctive cross-sectional view of the retina. The axial dimension of OIT cross-sections is given in terms of focus position rather than optical path, as in OCT. We explore this property to guide focus position in cases where the user is "blind" focusing, allowing precise plane selection for en-face imaging of retinal pigment epithelium, the vascular plexuses and translucent retinal neurons, such as photoreceptor inner segments and retinal ganglion cells, using respectively autofluorescence, motion contrast and split detection techniques.
Collapse
Affiliation(s)
- Pedro Mecê
- Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France
| | - Elena Gofas-Salas
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012, France
| | - Michel Paques
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
| | - Kate Grieve
- Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
| | - Serge Meimon
- DOTA, ONERA, Université Paris Saclay F-91123 Palaiseau, France
| |
Collapse
|
46
|
Zhang Y, Wang X, Clark ME, Curcio CA, Owsley C. Imaging of Age-Related Macular Degeneration by Adaptive Optics Scanning Laser Ophthalmoscopy in Eyes With Aged Lenses or Intraocular Lenses. Transl Vis Sci Technol 2020; 9:41. [PMID: 32855887 PMCID: PMC7422803 DOI: 10.1167/tvst.9.8.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose To assess the performance of adaptive optics scanning laser ophthalmoscopy (AOSLO) in a large sample of eyes with or without age-related macular degeneration (AMD) and with cataracts or intraocular lenses (IOLs). Methods Patients with various degrees of AMD and age-similar normal subjects underwent fundus photography. Cataract severity and IOL clarity were assessed by fundus reflex photographs. In phakic eyes, lenticular opacity was graded as nuclear, cortical, or posterior subcapsular cataract. In eyes with IOLs, lens clarity was assessed by posterior capsule opacification (PCO). Quality of AOSLO images of the macular photoreceptor mosaic was classified as good, adequate or inadequate by human graders in a subjective assessment of cone visibility. Results A total of 159 eyes in 80 subjects (41 males, 39 females, aged 72.5 ± 11.5 years, 16 normals) were examined. Seventy-nine eyes had IOLs, and 80 eyes were phakic. AOSLO produced good images in 91 eyes (57%), adequate images in eight eyes (5%), and inadequate images in 27 eyes (17%). AOSLO did not acquire images in 33 eyes (21%), because of dense lenticular opacity, widespread PCO, or problems specific to individual subjects. Conclusions AOSLO images considered at least Adequate or better for visualizing cone photoreceptors were acquired from 62% of study eyes. Translational Relevance AOSLO can be used as an additional imaging modality to investigate the structure of cone photoreceptors in research on visual function in AMD and in clinical trials involving older patients.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Ophthalmology, University of California-Los Angeles, Los Angeles, CA, USA.,Doheny Eye Institute, Los Angeles, CA, USA
| | | | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
47
|
Musial G, Queener HM, Adhikari S, Mirhajianmoghadam H, Schill AW, Patel NB, Porter J. Automatic Segmentation of Retinal Capillaries in Adaptive Optics Scanning Laser Ophthalmoscope Perfusion Images Using a Convolutional Neural Network. Transl Vis Sci Technol 2020; 9:43. [PMID: 32855847 PMCID: PMC7424955 DOI: 10.1167/tvst.9.2.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Adaptive optics scanning laser ophthalmoscope (AOSLO) capillary perfusion images can possess large variations in contrast, intensity, and background signal, thereby limiting the use of global or adaptive thresholding techniques for automatic segmentation. We sought to develop an automated approach to segment perfused capillaries in AOSLO images. Methods 12,979 image patches were extracted from manually segmented AOSLO montages from 14 eyes and used to train a convolutional neural network (CNN) that classified pixels as capillaries, large vessels, background, or image canvas. 1764 patches were extracted from AOSLO montages of four separate subjects, and were segmented manually by two raters (ground truth) and automatically by the CNN, an Otsu's approach, and a Frangi approach. A modified Dice coefficient was created to account for slight spatial differences between the same manually and CNN-segmented capillaries. Results CNN capillary segmentation had an accuracy (0.94), a Dice coefficient (0.67), and a modified Dice coefficient (0.90) that were significantly higher than other automated approaches (P < 0.05). There were no significant differences in capillary density and mean segment length between manual ground-truth and CNN segmentations (P > 0.05). Conclusions Close agreement between the CNN and manual segmentations enables robust and objective quantification of perfused capillary metrics. The developed CNN is time and computationally efficient, and distinguishes capillaries from areas containing diffuse background signal and larger underlying vessels. Translational Relevance This automatic segmentation algorithm greatly increases the efficiency of quantifying AOSLO capillary perfusion images.
Collapse
Affiliation(s)
- Gwen Musial
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Hope M Queener
- College of Optometry, University of Houston, Houston, TX, USA
| | - Suman Adhikari
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Alexander W Schill
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.,College of Optometry, University of Houston, Houston, TX, USA
| | - Nimesh B Patel
- College of Optometry, University of Houston, Houston, TX, USA
| | - Jason Porter
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.,College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
48
|
Laforest T, Künzi M, Kowalczuk L, Carpentras D, Behar-Cohen F, Moser C. Transscleral Optical Phase Imaging of the Human Retina. NATURE PHOTONICS 2020; 14:439-445. [PMID: 32607125 PMCID: PMC7326609 DOI: 10.1038/s41566-020-0608-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In-vivo observation of the human retina at the cellular level is crucial to detect the first signs of retinal diseases and properly treat them. Despite the phenomenal advances in adaptive optics (AO) systems, clinical imaging of many retinal cells is still elusive due to the low signal-to-noise ratio induced by transpupillary illumination. We present a transscleral optical phase imaging (TOPI) method, which relies on high-angle oblique illumination of the retina, combined with AO, to enhance cell contrast. Examination of eleven healthy volunteer eyes, without pupil dilation, shows the ability of this method to produce in-vivo images of retinal cells, from the retinal pigment epithelium to the nerve fibre layer. This method also allows the generation of high-resolution label-free ex-vivo phase images of flat-mounted retinas. The 4.4°x 4.4° field-of-view in-vivo images are recorded in less than 10 seconds, opening new avenues in the exploration of healthy and diseased retinas.
Collapse
Affiliation(s)
- T. Laforest
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- EarlySight SA, EPFL Innovation Park, Lausanne, Switzerland
| | - M. Künzi
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- EarlySight SA, EPFL Innovation Park, Lausanne, Switzerland
| | - L. Kowalczuk
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - D. Carpentras
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F. Behar-Cohen
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Centre de Recherche des Cordeliers, Inserm, USPC, Université de Paris, Sorbonne Université, From physiopathology of ocular diseases to clinical developments, F-75006 Paris, France
- Ophtalmopole, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Université de Paris, Paris, France
| | - C. Moser
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Materials and Correspondence: Correspondence and requests for materials should be addressed to
| |
Collapse
|
49
|
Weber TD, Mertz J. In vivo corneal and lenticular microscopy with asymmetric fundus retroillumination. BIOMEDICAL OPTICS EXPRESS 2020; 11:3263-3273. [PMID: 32637253 PMCID: PMC7316012 DOI: 10.1364/boe.391815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 05/07/2023]
Abstract
We describe a new technique for non-contact in vivo corneal and lenticular microscopy. It is based on fundus retro-reflection and back-illumination of the crystalline lens and cornea. To enhance phase-gradient contrast, we apply asymmetric illumination by illuminating one side of the fundus. The technique produces micron-scale lateral resolution images across a 1 mm diagonal field of view in the central cornea. We show representative images of the epithelium, the subbasal nerve plexus, large stromal nerves, dendritic immune cells, endothelial nuclei, and the anterior crystalline lens, demonstrating the potential of this instrument for clinical applications.
Collapse
Affiliation(s)
- Timothy D. Weber
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| |
Collapse
|
50
|
Shao W, Song W, Yi J. Is oblique scanning laser ophthalmoscope applicable to human ocular optics? A feasibility study using an eye model for volumetric imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201960174. [PMID: 32101361 PMCID: PMC7278210 DOI: 10.1002/jbio.201960174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/02/2020] [Accepted: 02/22/2020] [Indexed: 05/11/2023]
Abstract
Oblique scanning laser ophthalmoscopy (oSLO) is a novel imaging modality to provide volumetric retinal imaging without depth sectioning over a large field of view (FOV). It has been successfully demonstrated in vivo in rodent eyes for volumetric fluorescein angiography (vFA). However, engineering oSLO for human retinal imaging is challenging because of the low numerical aperture (NA) of human ocular optics. To overcome this challenge, we implement optical designs to (a) increase the angle of the intermediate image under Scheimpflug condition, and (b) expand the magnification in the depth dimension with cylindrical lens to enable sufficient sampling density. In addition, we adopt a scanning-and-descaning strategy, resulting in a compact oSLO system. We experimentally show that the current setup can achieve a FOV of ~3 × 6 × 0.8 mm3 , and the transverse and axial resolutions of 7 and 41 μm, respectively. This feasibility study serves an important step for future in vivo human retinal imaging.
Collapse
Affiliation(s)
- Wenjun Shao
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Weiye Song
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Electric and Computer Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|