1
|
Bauer AQ, Gibson EA, Wang H, Srinivasan VJ. Introduction to the Optics and the Brain 2023 feature issue. BIOMEDICAL OPTICS EXPRESS 2024; 15:2110-2113. [PMID: 38633102 PMCID: PMC11019680 DOI: 10.1364/boe.517678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 04/19/2024]
Abstract
A feature issue is being presented by a team of guest editors containing papers based on contributed submissions including studies presented at Optics and the Brain, held April 24-27, 2023 as part of Optica Biophotonics Congress: Optics in the Life Sciences, in Vancouver, Canada.
Collapse
Affiliation(s)
- Adam Q. Bauer
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Vivek J. Srinivasan
- Tech4Health Institute, NYU Langone Health, New York, New York 10010, USA
- Department of Ophthalmology, NYU Langone Health, New York, New York 10017, USA
| |
Collapse
|
2
|
Cong M, Li W, Liu Y, Bi J, Wang X, Yang X, Zhang Z, Zhang X, Zhao YN, Zhao R, Qiu J. Biomedical application of terahertz imaging technology: a narrative review. Quant Imaging Med Surg 2023; 13:8768-8786. [PMID: 38106329 PMCID: PMC10722018 DOI: 10.21037/qims-23-526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
Background and Objective Terahertz (THz) imaging has wide applications in biomedical research due to its properties, such as non-ionizing, non-invasive and distinctive spectral fingerprints. Over the past 6 years, the application of THz imaging in tumor tissue has made encouraging progress. However, due to the strong absorption of THz by water, the large size, high cost, and low sensitivity of THz devices, it is still difficult to be widely used in clinical practice. This paper provides ideas for researchers and promotes the development of THz imaging in clinical research. Methods The literature search was conducted in the Web of Science and PubMed databases using the keywords "Terahertz imaging", "Breast", "Brain", "Skin" and "Cancer". A total of 94 English language articles from 1 January, 2017 to 30 December, 2022 were reviewed. Key Content and Findings In this review, we briefly introduced the recent advances in THz near-field imaging, single-pixel imaging and real-time imaging, the applications of THz imaging for detecting breast, brain and skin tissues in the last 6 years were reviewed, and the advantages and existing challenges were identified. It is necessary to combine machine learning and metamaterials to develop real-time THz devices with small size, low cost and high sensitivity that can be widely used in clinical practice. More powerful THz detectors can be developed by combining graphene, designing structures and other methods to improve the sensitivity of the devices and obtain more accurate information. Establishing a THz database is one of the important methods to improve the repeatability and accuracy of imaging results. Conclusions THz technology is an effective method for tumor imaging. We believe that with the joint efforts of researchers and clinicians, accurate, real-time, and safe THz imaging will be widely applied in clinical practice in the future.
Collapse
Affiliation(s)
- Mengyang Cong
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai’an, China
| | - Wen Li
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Yang Liu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Jing Bi
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiaokun Wang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xueqiao Yang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zihan Zhang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiaoxin Zhang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Ya-Nan Zhao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Rui Zhao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- Center for Medical Engineer Technology Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| |
Collapse
|
3
|
Wu X, Tao R, Zhang T, Liu X, Wang J, Zhang Z, Zhao X, Yang P. Biomedical applications of terahertz spectra in clinical and molecular pathology of human glioma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121933. [PMID: 36208578 DOI: 10.1016/j.saa.2022.121933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Gliomas are the most common type of primary tumor originating in the central nervous system of adults. Tumor histological type, pathological grade, and molecular pathology are significant prognosis and predictive factors. In this study, we were aiming to predict histological type and molecular pathological features based on terahertz time-domain spectroscopy technology. Nine gliomas with different grades, one meningioma, and one lymphoma were enrolled. There were significant differences in terahertz absorption coefficient between normal brain tissue, tumoral-periphery, and tumoral-center tissue in specific frequency bands (0.2-1.4 THz). Histological type, pathological grade, and glioma-specific biomarkers were closely related to the terahertz absorption coefficient in both tumoral-periphery and tumoral-center tissues. Interestingly, tumoral-periphery showed more obvious differences than tumoral-center tissues in almost all aspects. All the results show that the terahertz technology has potential application value in the intraoperative real-time glioma recognition and diagnosis of glioma histological and molecular pathological features.
Collapse
Affiliation(s)
- Xianhao Wu
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tianyao Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyan Zhao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Shi H, Li T, Liu Z, Zhao J, Qi F. Early detection of gastric cancer via high-resolution terahertz imaging system. Front Bioeng Biotechnol 2022; 10:1052069. [PMID: 36588946 PMCID: PMC9794757 DOI: 10.3389/fbioe.2022.1052069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Terahertz (THz) wave has demonstrated a good prospect in recent years, but the resolution is still one of the problems that restrict the application of THz technology in medical imaging. Paraffin-embedded samples are mostly used in THz medical imaging studies, which are thicker and significantly different from the current gold standard slice pathological examination in sample preparation. In addition, THz absorption in different layers of normal and cancerous tissues also remains to be further explored. In this study, we constructed a high-resolution THz imaging system to scan non-tumorous adjacent tissue slices and gastric cancer (GC) tissue slices. In this system, a THz quantum cascade laser emitted a pulsed 3 THz signal and the transmitted THz wave was received by a THz detector implemented in a 65 nm CMOS process. The slice thickness was only 20 μm, which was close to that of the medical pathology examination. We successfully found THz transmittance differences between different layers of normal gastric tissues based on THz images, and the resolution could reach 60 μm for the first time. The results indicated that submucosa had a lower THz transmittance than that of mucosa and muscular layer in non-tumorous adjacent tissue. However, in GC tissue, THz transmittance of mucosa and submucosa was similar, caused by the decreased transmittance of mucosa, where the cancer occurs. Therefore, we suppose that the similar terahertz transmittance between gastric mucosa and submucosa may indicate the appearance of cancerization. The images obtained from our THz imaging system were clearer than those observed with naked eyes, and can be directly compared with microscopic images. This is the first application of THz imaging technology to identify non-tumorous adjacent tissue and GC tissue based on the difference in THz wave absorption between different layers in the tissue. Our present work not only demonstrated the potential of THz imaging to promote early diagnosis of GC, but also suggested a new direction for the identification of normal and cancerous tissues by analyzing differences in THz transmittance between different layers of tissue.
Collapse
Affiliation(s)
- Han Shi
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Department of Surgical Oncology and General Surgery, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, China
| | - Zhaoyang Liu
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Terahertz Imaging and Sensing, Liaoning Province, Shenyang, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, China
| | - Feng Qi
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Terahertz Imaging and Sensing, Liaoning Province, Shenyang, China
| |
Collapse
|