1
|
Bishop KW, Hu B, Vyawhare R, Yang Z, Liang DC, Gao G, Baraznenok E, Han Q, Lan L, Chow SSL, Sanai N, Liu JTC. Miniature line-scanned dual-axis confocal microscope for versatile clinical use. BIOMEDICAL OPTICS EXPRESS 2023; 14:6048-6059. [PMID: 38021137 PMCID: PMC10659777 DOI: 10.1364/boe.503478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
A miniature optical-sectioning fluorescence microscope with high sensitivity and resolution would enable non-invasive and real-time tissue inspection, with potential use cases including early disease detection and intraoperative guidance. Previously, we developed a miniature MEMS-based dual-axis confocal (DAC) microscope that enabled video-rate optically sectioned in vivo microscopy of human tissues. However, the device's clinical utility was limited due to a small field of view, a non-adjustable working distance, and a lack of a sterilization strategy. In our latest design, we have made improvements to achieve a 2x increase in the field of view (600 × 300 µm) and an adjustable working distance range of 150 µm over a wide range of excitation/emission wavelengths (488-750 nm), all while maintaining a high frame rate of 15 frames per second (fps). Furthermore, the device is designed to image through a disposable sterile plastic drape for convenient clinical use. We rigorously characterize the performance of the device and show example images of ex vivo tissues to demonstrate the optical performance of our new design, including fixed mouse skin and human prostate, as well as fresh mouse kidney, mouse intestine, and human head and neck surgical specimens with corresponding H&E histology. These improvements will facilitate clinical testing and translation.
Collapse
Affiliation(s)
- Kevin W. Bishop
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bingwen Hu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rajat Vyawhare
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Zelin Yang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - David C. Liang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gan Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Elena Baraznenok
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Qinghua Han
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lydia Lan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Sarah S. L. Chow
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix 85013, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix 85013, AZ, USA
| | - Jonathan T. C. Liu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Bin-Alamer O, Abou-Al-Shaar H, Gersey ZC, Huq S, Kallos JA, McCarthy DJ, Head JR, Andrews E, Zhang X, Hadjipanayis CG. Intraoperative Imaging and Optical Visualization Techniques for Brain Tumor Resection: A Narrative Review. Cancers (Basel) 2023; 15:4890. [PMID: 37835584 PMCID: PMC10571802 DOI: 10.3390/cancers15194890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Advancements in intraoperative visualization and imaging techniques are increasingly central to the success and safety of brain tumor surgery, leading to transformative improvements in patient outcomes. This comprehensive review intricately describes the evolution of conventional and emerging technologies for intraoperative imaging, encompassing the surgical microscope, exoscope, Raman spectroscopy, confocal microscopy, fluorescence-guided surgery, intraoperative ultrasound, magnetic resonance imaging, and computed tomography. We detail how each of these imaging modalities contributes uniquely to the precision, safety, and efficacy of neurosurgical procedures. Despite their substantial benefits, these technologies share common challenges, including difficulties in image interpretation and steep learning curves. Looking forward, innovations in this field are poised to incorporate artificial intelligence, integrated multimodal imaging approaches, and augmented and virtual reality technologies. This rapidly evolving landscape represents fertile ground for future research and technological development, aiming to further elevate surgical precision, safety, and, most critically, patient outcomes in the management of brain tumors.
Collapse
Affiliation(s)
- Othman Bin-Alamer
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussam Abou-Al-Shaar
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Zachary C. Gersey
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sakibul Huq
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Justiss A. Kallos
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - David J. McCarthy
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeffery R. Head
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Edward Andrews
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xiaoran Zhang
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Constantinos G. Hadjipanayis
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Shirazi A, Sahraeibelverdi T, Lee M, Li H, Yu J, Jaiswal S, Oldham KR, Wang TD. Miniature side-view dual axes confocal endomicroscope for repetitive in vivo imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:4277-4295. [PMID: 37799693 PMCID: PMC10549747 DOI: 10.1364/boe.494210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 10/07/2023]
Abstract
A side-view dual axes confocal endomicroscope is demonstrated that can be inserted repetitively in hollow organs of genetically engineered mice for in vivo real-time imaging in horizontal and vertical planes. Near infrared (NIR) excitation at λex = 785 nm was used. A monolithic 3-axis parametric resonance scan mirror was fabricated using micro-electro-mechanical systems (MEMS) technology to perform post-objective scanning in the distal end of a 4.19 mm diameter instrument. Torsional and serpentine springs were designed to "switch" the mode of imaging between vertical and horizontal planes by tuning the actuation frequency. This system demonstrated real-time in-vivo images in horizontal and vertical planes with 310 µm depth and 1.75 and 7.5 µm lateral and axial resolution. Individual cells and discrete mucosal structures could be identified.
Collapse
Affiliation(s)
- Ahmad Shirazi
- Division of Integrative Systems and Design,
University of Michigan, Ann Arbor, MI
48109, USA
| | | | - Miki Lee
- Department of Internal Medicine, Division
of Gastroenterology, University of
Michigan, Ann Arbor, MI 48109, USA
| | - Haijun Li
- Department of Internal Medicine, Division
of Gastroenterology, University of
Michigan, Ann Arbor, MI 48109, USA
| | - Joonyoung Yu
- Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI
48109, USA
| | - Sangeeta Jaiswal
- Department of Internal Medicine, Division
of Gastroenterology, University of
Michigan, Ann Arbor, MI 48109, USA
| | - Kenn R Oldham
- Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI
48109, USA
| | - Thomas D Wang
- Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI
48109, USA
- Department of Internal Medicine, Division
of Gastroenterology, University of
Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering,
University of Michigan, Ann Arbor, MI
48109, USA
| |
Collapse
|
4
|
Liu JTC, Glaser AK, Poudel C, Vaughan JC. Nondestructive 3D Pathology with Light-Sheet Fluorescence Microscopy for Translational Research and Clinical Assays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:231-252. [PMID: 36854208 DOI: 10.1146/annurev-anchem-091222-092734] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, there has been a revived appreciation for the importance of spatial context and morphological phenotypes for both understanding disease progression and guiding treatment decisions. Compared with conventional 2D histopathology, which is the current gold standard of medical diagnostics, nondestructive 3D pathology offers researchers and clinicians the ability to visualize orders of magnitude more tissue within their natural volumetric context. This has been enabled by rapid advances in tissue-preparation methods, high-throughput 3D microscopy instrumentation, and computational tools for processing these massive feature-rich data sets. Here, we provide a brief overview of many of these technical advances along with remaining challenges to be overcome. We also speculate on the future of 3D pathology as applied in translational investigations, preclinical drug development, and clinical decision-support assays.
Collapse
Affiliation(s)
- Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA;
- Allen Institute for Neural Dynamics, Seattle, Washington, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Patel KB, Liang W, Casper MJ, Voleti V, Li W, Yagielski AJ, Zhao HT, Perez Campos C, Lee GS, Liu JM, Philipone E, Yoon AJ, Olive KP, Coley SM, Hillman EMC. High-speed light-sheet microscopy for the in-situ acquisition of volumetric histological images of living tissue. Nat Biomed Eng 2022; 6:569-583. [PMID: 35347275 PMCID: PMC10353946 DOI: 10.1038/s41551-022-00849-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Histological examinations typically require the excision of tissue, followed by its fixation, slicing, staining, mounting and imaging, with timeframes ranging from minutes to days. This process may remove functional tissue, may miss abnormalities through under-sampling, prevents rapid decision-making, and increases costs. Here, we report the feasibility of microscopes based on swept confocally aligned planar excitation technology for the volumetric histological imaging of intact living tissue in real time. The systems' single-objective, light-sheet geometry and 3D imaging speeds enable roving image acquisition, which combined with 3D stitching permits the contiguous analysis of large tissue areas, as well as the dynamic assessment of tissue perfusion and function. Implemented in benchtop and miniaturized form factors, the microscopes also have high sensitivity, even for weak intrinsic fluorescence, allowing for the label-free imaging of diagnostically relevant histoarchitectural structures, as we show for pancreatic disease in living mice, for chronic kidney disease in fresh human kidney tissues, and for oral mucosa in a healthy volunteer. Miniaturized high-speed light-sheet microscopes for in-situ volumetric histological imaging may facilitate the point-of-care detection of diverse cellular-level biomarkers.
Collapse
Affiliation(s)
- Kripa B Patel
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Wenxuan Liang
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Malte J Casper
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Venkatakaushik Voleti
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Wenze Li
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Alexis J Yagielski
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Citlali Perez Campos
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Grace Sooyeon Lee
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Joyce M Liu
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Elizabeth Philipone
- Department of Oral and Maxillofacial Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela J Yoon
- Department of Oral and Maxillofacial Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth P Olive
- Division of Digestive and Liver Disease, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Shana M Coley
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology and the Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Jeon J, Kim H, Jang H, Hwang K, Kim K, Park YG, Jeong KH. Handheld laser scanning microscope catheter for real-time and in vivo confocal microscopy using a high definition high frame rate Lissajous MEMS mirror. BIOMEDICAL OPTICS EXPRESS 2022; 13:1497-1505. [PMID: 35414975 PMCID: PMC8973198 DOI: 10.1364/boe.447558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
A handheld confocal microscope using a rapid MEMS scanning mirror facilitates real-time optical biopsy for simple cancer diagnosis. Here we report a handheld confocal microscope catheter using high definition and high frame rate (HDHF) Lissajous scanning MEMS mirror. The broad resonant frequency region of the fast axis on the MEMS mirror with a low Q-factor facilitates the flexible selection of scanning frequencies. HDHF Lissajous scanning was achieved by selecting the scanning frequencies with high greatest common divisor (GCD) and high total lobe number. The MEMS mirror was fully packaged into a handheld configuration, which was coupled to a home-built confocal imaging system. The confocal microscope catheter allows fluorescence imaging of in vivo and ex vivo mouse tissues with 30 Hz frame rate and 95.4% fill factor at 256 × 256 pixels image, where the lateral resolution is 4.35 μm and the field-of-view (FOV) is 330 μm × 330 μm. This compact confocal microscope can provide diverse handheld microscopic applications for real-time, on-demand, and in vivo optical biopsy.
Collapse
Affiliation(s)
- Jaehun Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Hyunwoo Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Hyunwoo Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - Kyuyoung Kim
- VPIX Medical, Inc, Deajeon, 34873, Republic of Korea
| | - Young-Gyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
7
|
Abstract
This contribution presents an overview of advances in scanning micromirrors based on MEMS (Micro-electro-mechanical systems) technologies to achieve beam scanning for OCT (Optical Coherence Tomography). The use of MEMS scanners for miniaturized OCT probes requires appropriate optical architectures. Their design involves a suitable actuation mechanism and an adapted imaging scheme in terms of achievable scan range, scan speed, low power consumption, and acceptable size of the OCT probe. The electrostatic, electromagnetic, and electrothermal actuation techniques are discussed here as well as the requirements that drive the design and fabrication of functional OCT probes. Each actuation mechanism is illustrated by examples of miniature OCT probes demonstrating the effectiveness of in vivo bioimaging. Finally, the design issues are discussed to permit users to select an OCT scanner that is adapted to their specific imaging needs.
Collapse
|
8
|
Fujita Y, Wei L, Cimino PJ, Liu JTC, Sanai N. Video-Mosaicked Handheld Dual-Axis Confocal Microscopy of Gliomas: An ex vivo Feasibility Study in Humans. Front Oncol 2020; 10:1674. [PMID: 32974207 PMCID: PMC7482651 DOI: 10.3389/fonc.2020.01674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023] Open
Abstract
Background Intraoperative confocal microscopy can enable high-resolution cross-sectional imaging of intact tissues as a non-invasive real-time alternative to gold-standard histology. However, all current means of intraoperative confocal microscopy are hindered by a limited field of view (FOV), presenting a challenge for evaluating gliomas, which are highly heterogeneous. Objective This study explored the use of image mosaicking with handheld dual-axis confocal (DAC) microscopy of fresh human glioma specimens. Methods In this preliminary technical feasibility study, fresh human glioma specimens from 6 patients were labeled with a fast-acting topical stain (acridine orange) and imaged using a newly developed DAC microscope prototype. Results In comparison to individual image frames with small fields of view, mosaicked images from a DAC microscope correlate better with gold-standard H&E-stained histology images, including the ability to visualize gradual transitions from areas of dense cellularity to sparse cellularity within the tumor. Conclusion LS-DAC microscopy provides high-resolution, high-contrast images of glioma tissues that agree with corresponding H&E histology. Compared with individual image frames, mosaicked images provide more accurate representations of the overall cytoarchitecture of heterogeneous glioma tissues. Further investigation is needed to evaluate the ability of high-resolution mosaicked microscopy to improve the extent of glioma resection and patient outcomes.
Collapse
Affiliation(s)
- Yoko Fujita
- Ivy Brain Tumor Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Linpeng Wei
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Patrick J Cimino
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States.,Department of Pathology, University of Washington, Seattle, WA, United States.,Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.,Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
9
|
Bishop KW, Glaser AK, Liu JTC. Performance tradeoffs for single- and dual-objective open-top light-sheet microscope designs: a simulation-based analysis. BIOMEDICAL OPTICS EXPRESS 2020; 11:4627-4650. [PMID: 32923068 PMCID: PMC7449713 DOI: 10.1364/boe.397052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 05/16/2023]
Abstract
Light-sheet microscopy (LSM) has emerged as a powerful tool for high-speed volumetric imaging of live model organisms and large optically cleared specimens. When designing cleared-tissue LSM systems with certain desired imaging specifications (e.g. resolution, contrast, and working distance), various design parameters must be taken into consideration. In order to elucidate some of the key design tradeoffs for LSM systems, we present a diffraction-based analysis of single- and dual-objective LSM configurations using simulations of LSM point spread functions. We assume Gaussian illumination is utilized. Specifically, we analyze the effects of the illumination and collection numerical aperture (NA), as well as their crossing angle, on spatial resolution and contrast. Assuming an open-top light-sheet (OTLS) architecture, we constrain these parameters based on fundamental geometric considerations as well as those imposed by currently available microscope objectives. In addition to revealing the performance tradeoffs of various single- and dual-objective LSM configurations, our analysis showcases the potential advantages of a novel, non-orthogonal dual-objective (NODO) architecture, especially for moderate-resolution imaging applications (collection NA of 0.5 to 0.8).
Collapse
Affiliation(s)
- Kevin W Bishop
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Jonathan T C Liu
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
10
|
Yin C, Wei L, Kose K, Glaser AK, Peterson G, Rajadhyaksha M, Liu JT. Real-time video mosaicking to guide handheld in vivo microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000048. [PMID: 32246558 PMCID: PMC7969124 DOI: 10.1002/jbio.202000048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 05/05/2023]
Abstract
Handheld and endoscopic optical-sectioning microscopes are being developed for noninvasive screening and intraoperative consultation. Imaging a large extent of tissue is often desired, but miniature in vivo microscopes tend to suffer from limited fields of view. To extend the imaging field during clinical use, we have developed a real-time video mosaicking method, which allows users to efficiently survey larger areas of tissue. Here, we modified a previous post-processing mosaicking method so that real-time mosaicking is possible at >30 frames/second when using a device that outputs images that are 400 × 400 pixels in size. Unlike other real-time mosaicking methods, our strategy can accommodate image rotations and deformations that often occur during clinical use of a handheld microscope. We perform a feasibility study to demonstrate that the use of real-time mosaicking is necessary to enable efficient sampling of a desired imaging field when using a handheld dual-axis confocal microscope.
Collapse
Affiliation(s)
- Chengbo Yin
- University of Washington, Department of Mechanical Engineering, Seattle, WA, 98195, USA
| | - Linpeng Wei
- University of Washington, Department of Mechanical Engineering, Seattle, WA, 98195, USA
| | - Kivanc Kose
- Memorial Sloan-Kettering Cancer Center, Dermatology Service, New York, NY, 10021, USA
| | - Adam K. Glaser
- University of Washington, Department of Mechanical Engineering, Seattle, WA, 98195, USA
| | - Gary Peterson
- Memorial Sloan-Kettering Cancer Center, Dermatology Service, New York, NY, 10021, USA
| | - Milind Rajadhyaksha
- Memorial Sloan-Kettering Cancer Center, Dermatology Service, New York, NY, 10021, USA
| | - Jonathan T.C. Liu
- University of Washington, Department of Mechanical Engineering, Seattle, WA, 98195, USA
- University of Washington School of Medicine, Department of Pathology, Seattle, WA 98195, USA
- University of Washington, Department of Bioengineering, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Park JS, Zhang S, She A, Chen WT, Lin P, Yousef KMA, Cheng JX, Capasso F. All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography. NANO LETTERS 2019; 19:8673-8682. [PMID: 31726010 DOI: 10.1021/acs.nanolett.9b03333] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metalenses, planar lenses realized by placing subwavelength nanostructures that locally impart lenslike phase shifts to the incident light, are promising as a replacement for refractive optics for their ultrathin, lightweight, and tailorable characteristics, especially for applications where payload is of significant importance. However, the requirement of fabricating up to billions of subwavelength structures for centimeter-scale metalenses can constrain size-scalability and mass-production for large lenses. In this Letter, we demonstrate a centimeter-scale, all-glass metalens capable of focusing and imaging at visible wavelength, using deep-ultraviolet (DUV) projection stepper lithography. Here, we show size-scalability and potential for mass-production by fabricating 45 metalenses of 1 cm diameter on a 4 in. fused-silica wafer. The lenses show diffraction-limited focusing behavior for any homogeneously polarized incidence at visible wavelengths. The metalens' performance is quantified by the Strehl ratio and the modulation transfer function (MTF), which are then compared with commercial refractive spherical and aspherical singlet lenses of similar size and focal length. We further explore the imaging capabilities of our metalens using a color-pixel sCMOS camera and scanning-imaging techniques, demonstrating potential applications for virtual reality (VR) devices or biological imaging techniques.
Collapse
Affiliation(s)
- Joon-Suh Park
- Harvard John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
- Nanophotonics Research Center , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Republic of Korea
| | - Shuyan Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC) , Agency for Science, Technology and Research (A*STAR) , Singapore 138667 , Singapore
| | - Alan She
- Harvard John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
- Singapore Heavy Engineering Pte. Ltd. , Singapore 536562 , Singapore
| | - Wei Ting Chen
- Harvard John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Peng Lin
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Kerolos M A Yousef
- College of Biotechnology , Misr University of Science and Technology , Giza , Egypt
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
12
|
Yin C, Wei L, Abeytunge S, Peterson G, Rajadhyaksha M, Liu JTC. Label-free in vivo pathology of human epithelia with a high-speed handheld dual-axis confocal microscope. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:30501. [PMID: 32717147 PMCID: PMC6435977 DOI: 10.1117/1.jbo.24.3.030501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There would be clinical value in a miniature optical-sectioning microscope to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology for early disease detection and surgical guidance. To address this need, a reflectance-based handheld line-scanned dual-axis confocal microscope was developed and fully packaged for label-free imaging of human skin and oral mucosa. This device can collect images at >15 frames/s with an optical-sectioning thickness and lateral resolution of 1.7 and 1.1 μm, respectively. Incorporation of a sterile lens cap design enables pressure-sensitive adjustment of the imaging depth by the user during clinical use. In vivo human images and videos are obtained to demonstrate the capabilities of this high-speed optical-sectioning microscopy device.
Collapse
Affiliation(s)
- Chengbo Yin
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Linpeng Wei
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Sanjee Abeytunge
- Memorial Sloan-Kettering Cancer Center, Dermatology Service, New York, New York, United States
| | - Gary Peterson
- Memorial Sloan-Kettering Cancer Center, Dermatology Service, New York, New York, United States
| | - Milind Rajadhyaksha
- Memorial Sloan-Kettering Cancer Center, Dermatology Service, New York, New York, United States
| | - Jonathan T. C. Liu
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- University of Washington School of Medicine, Department of Pathology, Seattle, Washington, United States
- Address all correspondence to Jonathan T. C. Liu, E-mail:
| |
Collapse
|
13
|
Wei L, Yin C, Fujita Y, Sanai N, Liu JT. Handheld line-scanned dual-axis confocal microscope with pistoned MEMS actuation for flat-field fluorescence imaging. OPTICS LETTERS 2019; 44:671-674. [PMID: 30702707 PMCID: PMC7723749 DOI: 10.1364/ol.44.000671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/08/2018] [Indexed: 05/03/2023]
Abstract
A handheld line-scanned dual-axis confocal (LS-DAC) microscope has been developed for high-speed (16 frames/s) fluorescence imaging of tissues with sub-nuclear resolution. This is the first miniature fluorescence LS-DAC system that has been fully packaged for handheld clinical use on patients. A novel micro-electro-mechanical system scanning mechanism, with synchronized tilting and pistoning, is used to achieve flat-field en face imaging. We show that this facilitates video mosaicking to generate images that sample an extended lateral field of view.
Collapse
Affiliation(s)
- Linpeng Wei
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Chengbo Yin
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yoko Fujita
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Nader Sanai
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Jonathan T.C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Wei L, Yin C, Liu JTC. Dual-axis confocal microscopy for point-of-care pathology. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:7100910. [PMID: 30872909 PMCID: PMC6411089 DOI: 10.1109/jstqe.2018.2854572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dual-axis confocal (DAC) microscopy is an optical imaging modality that utilizes simple low-numerical aperture (NA) lenses to achieve effective optical sectioning and superior image contrast in biological tissues. The unique architecture of DAC microscopy also provides some advantages for miniaturization, facilitating the development of endoscopic and handheld DAC systems for in vivo imaging. This article reviews the principles of DAC microscopy, including its differences from conventional confocal microscopy, and surveys several variations of DAC microscopy that have been developed and investigated as non-invasive real-time alternatives to conventional biopsy and histopathology.
Collapse
Affiliation(s)
- Linpeng Wei
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 USA, JTCL is also with the Department of Pathology at the University of Washington
| | - Chengbo Yin
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 USA, JTCL is also with the Department of Pathology at the University of Washington
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 USA, JTCL is also with the Department of Pathology at the University of Washington
| |
Collapse
|
15
|
Wei L, Roberts DW, Sanai N, Liu JTC. Visualization technologies for 5-ALA-based fluorescence-guided surgeries. J Neurooncol 2018; 141:495-505. [PMID: 30554344 DOI: 10.1007/s11060-018-03077-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/10/2018] [Indexed: 01/27/2023]
Abstract
INTRODUCTION 5-ALA-based fluorescence-guided surgery has been shown to be a safe and effective method to improve intraoperative visualization and resection of malignant gliomas. However, it remains ineffective in guiding the resection of lower-grade, non-enhancing, and deep-seated tumors, mainly because these tumors do not produce detectable fluorescence with conventional visualization technologies, namely, wide-field (WF) surgical microscopy. METHODS We describe some of the main factors that limit the sensitivity and accuracy of conventional WF surgical microscopy, and then provide a survey of commercial and research prototypes being developed to address these challenges, along with their principles, advantages and disadvantages, as well as the current status of clinical translation for each technology. We also provide a neurosurgical perspective on how these visualization technologies might best be implemented for guiding glioma surgeries in the future. RESULTS Detection of PpIX expression in low-grade gliomas and at the infiltrative margins of all gliomas has been achieved with high-sensitivity probe-based visualization techniques. Deep-tissue PpIX imaging of up to 5 mm has also been achieved using red-light illumination techniques. Spectroscopic approaches have enabled more accurate quantification of PpIX expression. CONCLUSION Advancements in visualization technologies have extended the sensitivity and accuracy of conventional WF surgical microscopy. These technologies will continue to be refined to further improve the extent of resection in glioma patients using 5-ALA-induced fluorescence.
Collapse
Affiliation(s)
- Linpeng Wei
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - David W Roberts
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Nader Sanai
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
16
|
Wang YW, Reder NP, Kang S, Glaser AK, Liu JTC. Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches. Nanotheranostics 2017; 1:369-388. [PMID: 29071200 PMCID: PMC5647764 DOI: 10.7150/ntno.21136] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/08/2017] [Indexed: 12/18/2022] Open
Abstract
In recent decades, various classes of nanoparticles have been developed for optical imaging of cancers. Many of these nanoparticles are designed to specifically target tumor sites, and specific cancer biomarkers, to facilitate the visualization of tumors. However, one challenge for accurate detection of tumors is that the molecular profiles of most cancers vary greatly between patients as well as spatially and temporally within a single tumor mass. To overcome this challenge, certain nanoparticles and imaging systems have been developed to enable multiplexed imaging of large panels of cancer biomarkers. Multiplexed molecular imaging can potentially enable sensitive tumor detection, precise delineation of tumors during interventional procedures, and the prediction/monitoring of therapy response. In this review, we summarize recent advances in systems that have been developed for the imaging of optical nanoparticles that can be heavily multiplexed, which include surface-enhanced Raman-scattering nanoparticles (SERS NPs) and quantum dots (QDs). In addition to surveying the optical properties of these various types of nanoparticles, and the most-popular multiplexed imaging approaches that have been employed, representative preclinical and clinical imaging studies are also highlighted.
Collapse
Affiliation(s)
- Yu Winston Wang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Nicholas P Reder
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Soyoung Kang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Wei L, Chen Y, Yin C, Borwege S, Sanai N, Liu JTC. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:46005. [PMID: 28418534 PMCID: PMC5390779 DOI: 10.1117/1.jbo.22.4.046005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/27/2017] [Indexed: 05/02/2023]
Abstract
Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.
Collapse
Affiliation(s)
- Linpeng Wei
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Ye Chen
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Chengbo Yin
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Sabine Borwege
- Barrow Neurological Institute, St. Joseph’s Hospital, Phoenix, Arizona, United States
| | - Nader Sanai
- Barrow Neurological Institute, St. Joseph’s Hospital, Phoenix, Arizona, United States
| | - Jonathan T. C. Liu
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- Address all correspondence to: Jonathan T. C. Liu, E-mail:
| |
Collapse
|
18
|
Chen Y, Glaser A, Liu JT. Bessel-beam illumination in dual-axis confocal microscopy mitigates resolution degradation caused by refractive heterogeneities. JOURNAL OF BIOPHOTONICS 2017; 10:68-74. [PMID: 27667127 PMCID: PMC5243863 DOI: 10.1002/jbio.201600196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 05/30/2023]
Abstract
One of the main challenges for laser-scanning microscopy of biological tissues with refractive heterogeneities is the degradation in spatial resolution that occurs as a result of beam steering and distortion. This challenge is particularly significant for dual-axis confocal (DAC) microscopy, which achieves improved spatial-filtering and optical-sectioning performance over traditional confocal microscopy through off-axis illumination and collection of light with low-numerical aperture (NA) beams that must intersect precisely at their foci within tissues. DAC microscope image quality is sensitive to positional changes and distortions of these illumination- and collection-beam foci. Previous studies have shown that Bessel beams display improved positional stability and beam quality than Gaussian beams when propagating through tissues with refractive heterogeneities, which suggests that Bessel-beam illumination may enhance DAC microscopy of such tissues. Here, we utilize both Gaussian and Bessel illumination in a point-scanned DAC microscope and quantify the resultant degradation in resolution when imaging within heterogeneous optical phantoms and fresh tissues. Results indicate that DAC microscopy with Bessel illumination exhibits reduced resolution degradation from microscopic tissue heterogeneities compared to DAC microscopy with conventional Gaussian illumination.
Collapse
Affiliation(s)
- Ye Chen
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Adam Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jonathan T.C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope. Sci Rep 2016; 6:37315. [PMID: 27874037 PMCID: PMC5118792 DOI: 10.1038/srep37315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Confocal endomicroscopy is an emerging imaging technology that has recently been introduced into the clinic to instantaneously collect "optical biopsies" in vivo with histology-like quality. Here, we demonstrate a fast scanner located in the distal end of a side-viewing instrument using a compact lens assembly with numerical aperture of 0.5 to achieve a working distance of 100 μm and field-of-view of 300 × 400 μm2. The microelectromechanical systems (MEMS) mirror was designed based on the principle of parametric resonance and images at 5 frames per second. The instrument has a 4.2 mm outer diameter and 3 cm rigid length, and can pass through the biopsy channel of a medical endoscope. We achieved real time optical sections of NIR fluorescence with 0.87 μm lateral resolution, and were able to visualize in vivo binding of a Cy5.5-labeled peptide specific for EGFR to the cell surface of pre-cancerous colonocytes within the epithelium of dysplastic crypts in mouse colon. By performing targeted imaging with endomicroscopy, we can visualize molecular expression patterns in vivo that provide a biological basis for disease detection.
Collapse
|
20
|
Rajadhyaksha M, Marghoob A, Rossi A, Halpern AC, Nehal KS. Reflectance confocal microscopy of skin in vivo: From bench to bedside. Lasers Surg Med 2016; 49:7-19. [PMID: 27785781 DOI: 10.1002/lsm.22600] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 12/24/2022]
Abstract
Following more than two decades of effort, reflectance confocal microscopy (RCM) imaging of skin was granted codes for reimbursement by the US Centers for Medicare and Medicaid Services. Dermatologists in the USA have started billing and receiving reimbursement for the imaging procedure and for the reading and interpretation of images. RCM imaging combined with dermoscopic examination is guiding the triage of lesions into those that appear benign, which are being spared from biopsy, against those that appear suspicious, which are then biopsied. Thus far, a few thousand patients have been spared from biopsy of benign lesions. The journey of RCM imaging from bench to bedside is certainly a success story, but still much more work lies ahead toward wider dissemination, acceptance, and adoption. We present a brief review of RCM imaging and highlight key challenges and opportunities. The success of RCM imaging paves the way for other emerging optical technologies, as well-and our bet for the future is on multimodal approaches. Lasers Surg. Med. 49:7-19, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milind Rajadhyaksha
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashfaq Marghoob
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony Rossi
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allan C Halpern
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kishwer S Nehal
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
21
|
Wang M, Tulman DB, Sholl AB, Kimbrell HZ, Mandava SH, Elfer KN, Luethy S, Maddox MM, Lai W, Lee BR, Brown JQ. Gigapixel surface imaging of radical prostatectomy specimens for comprehensive detection of cancer-positive surgical margins using structured illumination microscopy. Sci Rep 2016; 6:27419. [PMID: 27257084 PMCID: PMC4891779 DOI: 10.1038/srep27419] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/18/2016] [Indexed: 01/07/2023] Open
Abstract
Achieving cancer-free surgical margins in oncologic surgery is critical to reduce the need for additional adjuvant treatments and minimize tumor recurrence; however, there is a delicate balance between completeness of tumor removal and preservation of adjacent tissues critical for normal post-operative function. We sought to establish the feasibility of video-rate structured illumination microscopy (VR-SIM) of the intact removed tumor surface as a practical and non-destructive alternative to intra-operative frozen section pathology, using prostate cancer as an initial target. We present the first images of the intact human prostate surface obtained with pathologically-relevant contrast and subcellular detail, obtained in 24 radical prostatectomy specimens immediately after excision. We demonstrate that it is feasible to routinely image the full prostate circumference, generating gigapixel panorama images of the surface that are readily interpreted by pathologists. VR-SIM confirmed detection of positive surgical margins in 3 out of 4 prostates with pathology-confirmed adenocarcinoma at the circumferential surgical margin, and furthermore detected extensive residual cancer at the circumferential margin in a case post-operatively classified by histopathology as having negative surgical margins. Our results suggest that the increased surface coverage of VR-SIM could also provide added value for detection and characterization of positive surgical margins over traditional histopathology.
Collapse
Affiliation(s)
- Mei Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - David B Tulman
- Bioinnovation Program, Tulane University, New Orleans, LA 70118, USA
| | - Andrew B Sholl
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hillary Z Kimbrell
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sree H Mandava
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Katherine N Elfer
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Samuel Luethy
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Michael M Maddox
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Weil Lai
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Benjamin R Lee
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - J Quincy Brown
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
22
|
Glaser AK, Wang Y, Liu JT. Assessing the imaging performance of light sheet microscopies in highly scattering tissues. BIOMEDICAL OPTICS EXPRESS 2016; 7:454-66. [PMID: 26977355 PMCID: PMC4771464 DOI: 10.1364/boe.7.000454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 05/03/2023]
Abstract
Light sheet microscopy (LSM) has emerged as an optical-imaging method for high spatiotemporal volumetric imaging of relatively transparent samples. While this capability has allowed the technique to be highly impactful in fields such as developmental biology, applications involving highly scattering thick tissues have been largely unexplored. Herein, we employ Monte Carlo simulations to explore the use of LSM for imaging turbid media. In particular, due to its similarity to dual-axis confocal (DAC) microscopy, we compare LSM performance to point-scanned (PS-DAC) and line-scanned (LS-DAC) dual-axis confocal microscopy techniques that have been previously shown to produce high-quality images at round-trip optical lengths of ~9 - 10 and ~3 - 4 respectively. The results of this study indicate that LSM using widefield collection (WF-LSM) provides comparable performance to LS-DAC in thick tissues, due to the fact that they both utilize an illumination beam focused in one dimension (i.e. a line or sheet). On the other hand, LSM using confocal line detection (CL-LSM) is more analogous to PS-DAC microscopy, in which the illumination beam is focused in two dimensions to a point. The imaging depth of LSM is only slightly inferior to DAC (~2 - 3 and ~6 - 7 optical lengths for WF-LSM and CL-LSM respectively) due to the use of a lower numerical aperture (NA) illumination beam for extended imaging along the illumination axis. Therefore, we conclude that the ability to image deeply is dictated most by the confocality of the microscope technique. In addition, we find that imaging resolution is mostly dependent on the collection NA, and is relatively invariant to imaging depth in a homogeneous scattering medium. Our results indicate that superficial imaging of highly scattering tissues using light sheet microscopy is possible.
Collapse
Affiliation(s)
- A. K. Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Y. Wang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - J. T.C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|