1
|
Liu H, Teng X, Yu S, Yang W, Kong T, Liu T. Recent Advances in Photoacoustic Imaging: Current Status and Future Perspectives. MICROMACHINES 2024; 15:1007. [PMID: 39203658 PMCID: PMC11356134 DOI: 10.3390/mi15081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that combines high-contrast optical imaging with high-spatial-resolution ultrasound imaging. PAI can provide a high spatial resolution and significant imaging depth by utilizing the distinctive spectroscopic characteristics of tissue, which gives it a wide variety of applications in biomedicine and preclinical research. In addition, it is non-ionizing and non-invasive, and photoacoustic (PA) signals are generated by a short-pulse laser under thermal expansion. In this study, we describe the basic principles of PAI, recent advances in research in human and animal tissues, and future perspectives.
Collapse
Affiliation(s)
- Huibin Liu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| | - Xiangyu Teng
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| | - Shuxuan Yu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| | - Tiantian Kong
- Shandong City Service Institute, Yantai 264005, China
| | - Tangying Liu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| |
Collapse
|
2
|
Susmelj AK, Lafci B, Ozdemir F, Davoudi N, Deán-Ben XL, Perez-Cruz F, Razansky D. Signal domain adaptation network for limited-view optoacoustic tomography. Med Image Anal 2024; 91:103012. [PMID: 37922769 DOI: 10.1016/j.media.2023.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Optoacoustic (OA) imaging is based on optical excitation of biological tissues with nanosecond-duration laser pulses and detection of ultrasound (US) waves generated by thermoelastic expansion following light absorption. The image quality and fidelity of OA images critically depend on the extent of tomographic coverage provided by the US detector arrays. However, full tomographic coverage is not always possible due to experimental constraints. One major challenge concerns an efficient integration between OA and pulse-echo US measurements using the same transducer array. A common approach toward the hybridization consists in using standard linear transducer arrays, which readily results in arc-type artifacts and distorted shapes in OA images due to the limited angular coverage. Deep learning methods have been proposed to mitigate limited-view artifacts in OA reconstructions by mapping artifactual to artifact-free (ground truth) images. However, acquisition of ground truth data with full angular coverage is not always possible, particularly when using handheld probes in a clinical setting. Deep learning methods operating in the image domain are then commonly based on networks trained on simulated data. This approach is yet incapable of transferring the learned features between two domains, which results in poor performance on experimental data. Here, we propose a signal domain adaptation network (SDAN) consisting of i) a domain adaptation network to reduce the domain gap between simulated and experimental signals and ii) a sides prediction network to complement the missing signals in limited-view OA datasets acquired from a human forearm by means of a handheld linear transducer array. The proposed method showed improved performance in reducing limited-view artifacts without the need for ground truth signals from full tomographic acquisitions.
Collapse
Affiliation(s)
| | - Berkan Lafci
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Switzerland
| | - Firat Ozdemir
- Swiss Data Science Center, ETH Zürich and EPFL, Switzerland
| | - Neda Davoudi
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Switzerland
| | - Fernando Perez-Cruz
- Swiss Data Science Center, ETH Zürich and EPFL, Switzerland; Institute for Machine Learning, Department of Computer Science, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Switzerland.
| |
Collapse
|
3
|
Riksen JJM, Nikolaev AV, van Soest G. Photoacoustic imaging on its way toward clinical utility: a tutorial review focusing on practical application in medicine. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:121205. [PMID: 37304059 PMCID: PMC10249868 DOI: 10.1117/1.jbo.28.12.121205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Significance Photoacoustic imaging (PAI) enables the visualization of optical contrast with ultrasonic imaging. It is a field of intense research, with great promise for clinical application. Understanding the principles of PAI is important for engineering research and image interpretation. Aim In this tutorial review, we lay out the imaging physics, instrumentation requirements, standardization, and some practical examples for (junior) researchers, who have an interest in developing PAI systems and applications for clinical translation or applying PAI in clinical research. Approach We discuss PAI principles and implementation in a shared context, emphasizing technical solutions that are amenable to broad clinical deployment, considering factors such as robustness, mobility, and cost in addition to image quality and quantification. Results Photoacoustics, capitalizing on endogenous contrast or administered contrast agents that are approved for human use, yields highly informative images in clinical settings, which can support diagnosis and interventions in the future. Conclusion PAI offers unique image contrast that has been demonstrated in a broad set of clinical scenarios. The transition of PAI from a "nice-to-have" to a "need-to-have" modality will require dedicated clinical studies that evaluate therapeutic decision-making based on PAI and consideration of the actual value for patients and clinicians, compared with the associated cost.
Collapse
Affiliation(s)
- Jonas J. M. Riksen
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Anton V. Nikolaev
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Gijs van Soest
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Hui X, Rajendran P, Ling T, Dai X, Xing L, Pramanik M. Ultrasound-guided needle tracking with deep learning: A novel approach with photoacoustic ground truth. PHOTOACOUSTICS 2023; 34:100575. [PMID: 38174105 PMCID: PMC10761306 DOI: 10.1016/j.pacs.2023.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Accurate needle guidance is crucial for safe and effective clinical diagnosis and treatment procedures. Conventional ultrasound (US)-guided needle insertion often encounters challenges in consistency and precisely visualizing the needle, necessitating the development of reliable methods to track the needle. As a powerful tool in image processing, deep learning has shown promise for enhancing needle visibility in US images, although its dependence on manual annotation or simulated data as ground truth can lead to potential bias or difficulties in generalizing to real US images. Photoacoustic (PA) imaging has demonstrated its capability for high-contrast needle visualization. In this study, we explore the potential of PA imaging as a reliable ground truth for deep learning network training without the need for expert annotation. Our network (UIU-Net), trained on ex vivo tissue image datasets, has shown remarkable precision in localizing needles within US images. The evaluation of needle segmentation performance extends across previously unseen ex vivo data and in vivo human data (collected from an open-source data repository). Specifically, for human data, the Modified Hausdorff Distance (MHD) value stands at approximately 3.73, and the targeting error value is around 2.03, indicating the strong similarity and small needle orientation deviation between the predicted needle and actual needle location. A key advantage of our method is its applicability beyond US images captured from specific imaging systems, extending to images from other US imaging systems.
Collapse
Affiliation(s)
- Xie Hui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Praveenbalaji Rajendran
- Stanford University, Department of Radiation Oncology, Stanford, California 94305, United States
| | - Tong Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Xianjin Dai
- Stanford University, Department of Radiation Oncology, Stanford, California 94305, United States
| | - Lei Xing
- Stanford University, Department of Radiation Oncology, Stanford, California 94305, United States
| | - Manojit Pramanik
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
5
|
Zhang S, Liang Z, Tang K, Li X, Zhang X, Mo Z, Wu J, Huang S, Liu J, Zhuang Z, Qi L, Chen W. In vivo co-registered hybrid-contrast imaging by successive photoacoustic tomography and magnetic resonance imaging. PHOTOACOUSTICS 2023; 31:100506. [PMID: 37397508 PMCID: PMC10313508 DOI: 10.1016/j.pacs.2023.100506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 07/04/2023]
Abstract
Magnetic resonance imaging (MRI) and photoacoustic tomography (PAT) offer two distinct image contrasts. To integrate these two modalities, we present a comprehensive hardware-software solution for the successive acquisition and co-registration of PAT and MRI images in in vivo animal studies. Based on commercial PAT and MRI scanners, our solution includes a 3D-printed dual-modality imaging bed, a 3-D spatial image co-registration algorithm with dual-modality markers, and a robust modality switching protocol for in vivo imaging studies. Using the proposed solution, we successfully demonstrated co-registered hybrid-contrast PAT-MRI imaging that simultaneously displays multi-scale anatomical, functional and molecular characteristics on healthy and cancerous living mice. Week-long longitudinal dual-modality imaging of tumor development reveals information on size, border, vascular pattern, blood oxygenation, and molecular probe metabolism of the tumor micro-environment at the same time. The proposed methodology holds promise for a wide range of pre-clinical research applications that benefit from the PAT-MRI dual-modality image contrast.
Collapse
Affiliation(s)
- Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhichao Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaiyi Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xipan Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoming Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zongxin Mo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shixian Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaming Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhijian Zhuang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Ozbek A, Dean-Ben XL, Razansky D. Universal Real-Time Adaptive Signal Compression for High-Frame-Rate Optoacoustic Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2903-2911. [PMID: 35588420 DOI: 10.1109/tmi.2022.3175471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optoacoustic tomography (OAT) has recently been advanced toward ultrafast volumetric imaging frame rates in the kilohertz range. As a result, excessive data processing and storage capacity requirements are increasingly being imposed on the imaging systems. OAT data commonly exhibit significant sparsity across the spatial, temporal or spectral domains, which facilitated the development of compressed sensing algorithms exploiting various sparse acquisition and under-sampling schemes to reduce data rates. However, performance of compressed sensing critically depends on a priori knowledge on the type of acquired data and/or imaged object, commonly resulting in lack of general applicability and unpredictable image quality. In this work, we report on a fast adaptive OAT data compression framework operating on fully sampled tomographic data. It is based on a wavelet packet transform that maximizes the data compression ratio according to the desired signal energy loss. A dedicated reconstruction method was further developed that efficiently renders images directly from the compressed data. Up to 1000x compression ratios were achieved while providing efficient control over the resulting image quality from arbitrary datasets exhibiting diverse spatial, temporal and spectral characteristics. Our approach enables faster and longer acquisitions and facilitates long-term storage of large OAT datasets.
Collapse
|
7
|
Fu L, Jin Z, Qi B, Yim W, Wu Z, He T, Jokerst JV. Synchronization of RF Data in Ultrasound Open Platforms (UOPs) for High-Accuracy and High-Resolution Photoacoustic Tomography Using the "Scissors" Programming Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1994-2000. [PMID: 35377843 PMCID: PMC9149135 DOI: 10.1109/tuffc.2022.3164371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synchronization is important for photoacoustic (PA) tomography, but some fixed delays between the data acquisition (DAQ) and the light pulse are a common problem degrading imaging quality. Here, we present a simple yet versatile method named "Scissors" to help synchronize ultrasound open platforms (UOPs) for PA imaging. Scissors is a programed function that can cut or add a fixed delay to radio frequency (RF) data and, thus, synchronize it before reconstruction. Scissors applies the programmable metric of UOPs and has several advantages. It is compatible with many setups regardless of the synchronization methods, light sources, transducers, and delays. The synchronization is adjustable in steps reciprocal to the UOPs' sampling rate (20-ns step with a 50-MHz sampling rate). Scissors works in real-time PA imaging, and no extra hardware is needed. We programed Scissors in Vantage UOP (Verasonics, Inc., Kirkland, WA, USA) and then imaged two 30- [Formula: see text] nichrome wires with a 20.2-MHz central frequency transducer. The PA image was severely distorted by an 828-ns delay; over 90% delay was caused by our Q -switch laser. The axial and lateral resolutions are 112 and [Formula: see text], respectively, after using Scissors. We imaged a human finger in vivo, and the imaging quality is tremendously improved after solving the 828-ns delay by using Scissors.
Collapse
|
8
|
Practical review on photoacoustic computed tomography using curved ultrasound array transducer. Biomed Eng Lett 2021; 12:19-35. [DOI: 10.1007/s13534-021-00214-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
|
9
|
van Hees R, Muller JW, van de Vosse F, Rutten M, van Sambeek M, Wu M, Lopata R. SVD-based filtering to detect intraplaque hemorrhage using single wavelength photoacoustic imaging. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210198RR. [PMID: 34743446 PMCID: PMC8571807 DOI: 10.1117/1.jbo.26.11.116003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Intraplaque hemorrhage (IPH) is an important indicator of plaque vulnerability. Early detection could aid the prevention of stroke. AIM We aim to detect IPH with single wavelength PA imaging in vivo and to improve image quality. APPROACH We developed a singular value decomposition (SVD)-based filter to detect the nonstationary and stationary components in ultrasound data. A PA mask was created to detect stationary (IPH) sources. The method was tested ex vivo using phantoms and in vivo in patients. RESULTS The flow and IPH channels were successfully separated in the phantom data. We can also detect the PA signals from IPH and reject signals from the carotid lumen in vivo. Generalized contrast-to-noise ratio improved in both ex vivo and in vivo in US imaging. CONCLUSIONS SVD-based filtering can successfully detect IPH using a single laser wavelength, opening up opportunities for more economical and cost-effective laser sources.
Collapse
Affiliation(s)
- Roy van Hees
- Eindhoven University of Technology, Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Jan-Willem Muller
- Eindhoven University of Technology, Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Frans van de Vosse
- Eindhoven University of Technology, Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Marcel Rutten
- Eindhoven University of Technology, Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Marc van Sambeek
- Eindhoven University of Technology, Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| | - Min Wu
- Eindhoven University of Technology, Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Richard Lopata
- Eindhoven University of Technology, Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Das D, Sivasubramanian K, Rajendran P, Pramanik M. Label-free high frame rate imaging of circulating blood clots using a dual modal ultrasound and photoacoustic system. JOURNAL OF BIOPHOTONICS 2021; 14:e202000371. [PMID: 33231356 DOI: 10.1002/jbio.202000371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 05/06/2023]
Abstract
Deep vein thrombosis (DVT) is a disorder when a blood clot (thrombus) is formed in one of the deep veins. These clots detach from the original sites and circulate in the blood stream at high velocities. Diagnosing these blood clots at an early stage is necessary to decide the treatment strategy. For label-free, in vivo, and real-time detection, high framerate photoacoustic imaging can be used. In this work, a dual modal clinical ultrasound and photoacoustic (PA) system is used for the high framerate PA imaging of circulating blood clots in blood at linear velocities up to 107 cm/sec. Blood clot had 1.4 times higher signal-to-noise ratio (SNR) in the static mode and 1.3 times higher SNR compared to blood PA signal in the flow experiments. This work demonstrates that fast-moving circulating blood clots are easy to recognize against the background PA signal and may aid in early diagnosis.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Jeng GS, Li ML, Kim M, Yoon SJ, Pitre JJ, Li DS, Pelivanov I, O’Donnell M. Real-time interleaved spectroscopic photoacoustic and ultrasound (PAUS) scanning with simultaneous fluence compensation and motion correction. Nat Commun 2021; 12:716. [PMID: 33514737 PMCID: PMC7846772 DOI: 10.1038/s41467-021-20947-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For over two decades photoacoustic imaging has been tested clinically, but successful human trials have been limited. To enable quantitative clinical spectroscopy, the fundamental issues of wavelength-dependent fluence variations and inter-wavelength motion must be overcome. Here we propose a real-time, spectroscopic photoacoustic/ultrasound (PAUS) imaging approach using a compact, 1-kHz rate wavelength-tunable laser. Instead of illuminating tissue over a large area, the fiber-optic delivery system surrounding an US array sequentially scans a narrow laser beam, with partial PA image reconstruction for each laser pulse. The final image is then formed by coherently summing partial images. This scheme enables (i) automatic compensation for wavelength-dependent fluence variations in spectroscopic PA imaging and (ii) motion correction of spectroscopic PA frames using US speckle tracking in real-time systems. The 50-Hz video rate PAUS system is demonstrated in vivo using a murine model of labelled drug delivery.
Collapse
Affiliation(s)
- Geng-Shi Jeng
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA ,grid.260539.b0000 0001 2059 7017Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan
| | - Meng-Lin Li
- grid.38348.340000 0004 0532 0580Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - MinWoo Kim
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Soon Joon Yoon
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - John J. Pitre
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - David S. Li
- grid.34477.330000000122986657Department of Chemical Engineering, University of Washington, Seattle, WA USA
| | - Ivan Pelivanov
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Matthew O’Donnell
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| |
Collapse
|
12
|
Qi W, Liang X, Ji Y, Liu C, Xi L. Optical resolution photoacoustic computed microscopy. OPTICS LETTERS 2021; 46:372-375. [PMID: 33449032 DOI: 10.1364/ol.411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Optical resolution photoacoustic microscopy (ORPAM) has demonstrated both high resolution and rich contrast imaging of optical chromophores in biologic tissues. To date, sensitivity remains a major challenge for ORPAM, which limits the capability of resolving biologic microvascular networks. In this study, we propose and evaluate a new ORPAM modality termed as optical resolution photoacoustic computed microscopy (ORPACM), through the combination of a two-dimensional laser-scanning system with a medical ultrasonographic platform. Apart from conventional ORPAMs, we record multiple photoacoustic (PA) signals using a 128-element ultrasonic transducer array for each pulse excitation. Then, we apply a reconstruction algorithm to recover one depth-resolved PA signal referred to as an A-line, which reveals more detailed information compared with conventional single-element transducer-based ORPAMs. In addition, we carried out both in vitro and in vivo experiments as well as quantitative analyses to show the advanced features of ORPACM.
Collapse
|
13
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
14
|
Li M, Nyayapathi N, Kilian HI, Xia J, Lovell JF, Yao J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol Imaging 2020; 19:1536012120981518. [PMID: 33336621 PMCID: PMC7750763 DOI: 10.1177/1536012120981518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers. At the same time, novel optical fluence mapping algorithms and image reconstruction methods have been developed to improve the quantitative accuracy of PAT, which is crucial to recover weak molecular signals at larger depths. The development of highly-absorbing near-infrared PA molecular probes has also flourished to provide high sensitivity and specificity in studying cellular processes. This review aims to introduce the recent developments in deep PA molecular imaging, including novel imaging systems, image processing methods and molecular probes, as well as their representative biomedical applications. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| | - Nikhila Nyayapathi
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Hailey I Kilian
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Junjie Yao
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| |
Collapse
|
15
|
Kuniyil Ajith Singh M, Xia W. Portable and Affordable Light Source-Based Photoacoustic Tomography. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6173. [PMID: 33138296 PMCID: PMC7663770 DOI: 10.3390/s20216173] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Photoacoustic imaging is a hybrid imaging modality that offers the advantages of optical (spectroscopic contrast) and ultrasound imaging (scalable spatial resolution and imaging depth). This promising modality has shown excellent potential in a wide range of preclinical and clinical imaging and sensing applications. Even though photoacoustic imaging technology has matured in research settings, its clinical translation is not happening at the expected pace. One of the main reasons for this is the requirement of bulky and expensive pulsed lasers for excitation. To accelerate the clinical translation of photoacoustic imaging and explore its potential in resource-limited settings, it is of paramount importance to develop portable and affordable light sources that can be used as the excitation light source. In this review, we focus on the following aspects: (1) the basic theory of photoacoustic imaging; (2) inexpensive light sources and different implementations; and (3) important preclinical and clinical applications, demonstrated using affordable light source-based photoacoustics. The main focus will be on laser diodes and light-emitting diodes as they have demonstrated promise in photoacoustic tomography-the key technological developments in these areas will be thoroughly reviewed. We believe that this review will be a useful opus for both the beginners and experts in the field of biomedical photoacoustic imaging.
Collapse
Affiliation(s)
- Mithun Kuniyil Ajith Singh
- Research and Business Development Division, CYBERDYNE INC., Stationsplein 45, A4.004, 3013 AK Rotterdam, The Netherlands;
| | - Wenfeng Xia
- School of Biomedical Engineering& Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
16
|
Yang H, Jüstel D, Prakash J, Karlas A, Helfen A, Masthoff M, Wildgruber M, Ntziachristos V. Soft ultrasound priors in optoacoustic reconstruction: Improving clinical vascular imaging. PHOTOACOUSTICS 2020; 19:100172. [PMID: 32280585 PMCID: PMC7139114 DOI: 10.1016/j.pacs.2020.100172] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Using the same ultrasound detector, hybrid optoacoustic-ultrasound (OPUS) imaging provides concurrent scans of tissue slices or volumes and visualizes complementary sound- and light-based contrast at similar resolutions. In addition to the benefit of hybrid contrast, spatial co-registration enables images from one modality to be employed as prior information for improving an aspect of the performance of the other modality. We consider herein a handheld OPUS system and utilize structural information from ultrasound images to guide regional Laplacian regularization-based reconstruction of optoacoustic images. Using phantoms and data from OPUS scans of human radial and carotid arteries, we show that ultrasound-driven optoacoustic inversion reduces limited-view artefacts and improves image contrast. In phantoms, prior-integrated reconstruction leads to a 50 % higher contrast-to-noise ratio (CNR) of the image than standard reconstruction, and a 17 % higher structural similarity (SSIM) index. In clinical data, prior-integrated reconstruction detects deep-seated radial arteries with higher CNR than the standard method at three different depths. In this way, the prior-integrated method offers unique insights into atherosclerotic carotid plaques in humans (with p<0.01 between patients and healthy volunteers), potentially paving the way for new abilities in vascular imaging and more generally in optoacoustic imaging.
Collapse
Affiliation(s)
- Hong Yang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Ismaninger Str. 22, 81675, München, Germany
| | - Dominik Jüstel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Ismaninger Str. 22, 81675, München, Germany
| | - Jaya Prakash
- Dept. of Instrumentation and Applied Physics, Indian Institute of Science, C. V. Raman Road, 560012, Bangalore, India
| | - Angelos Karlas
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Ismaninger Str. 22, 81675, München, Germany
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, D-81675, München, Germany
| | - Anne Helfen
- Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, A16, 49149, Muenster, Germany
| | - Max Masthoff
- Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, A16, 49149, Muenster, Germany
| | - Moritz Wildgruber
- Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, A16, 49149, Muenster, Germany
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Ismaninger Str. 22, 81675, München, Germany
- Corresponding author at: Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
| |
Collapse
|
17
|
Kuriakose M, Nguyen CD, Kuniyil Ajith Singh M, Mallidi S. Optimizing Irradiation Geometry in LED-Based Photoacoustic Imaging with 3D Printed Flexible and Modular Light Delivery System. SENSORS 2020; 20:s20133789. [PMID: 32640683 PMCID: PMC7374354 DOI: 10.3390/s20133789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Photoacoustic (PA) imaging–a technique combining the ability of optical imaging to probe functional properties of the tissue and deep structural imaging ability of ultrasound–has gained significant popularity in the past two decades for its utility in several biomedical applications. More recently, light-emitting diodes (LED) are being explored as an alternative to bulky and expensive laser systems used in PA imaging for their portability and low-cost. Due to the large beam divergence of LEDs compared to traditional laser beams, it is imperative to quantify the angular dependence of LED-based illumination and optimize its performance for imaging superficial or deep-seated lesions. A custom-built modular 3-D printed hinge system and tissue-mimicking phantoms with various absorption and scattering properties were used in this study to quantify the angular dependence of LED-based illumination. We also experimentally calculated the source divergence of the pulsed-LED arrays to be 58° ± 8°. Our results from point sources (pencil lead phantom) in non-scattering medium obey the cotangential relationship between the angle of irradiation and maximum PA intensity obtained at various imaging depths, as expected. Strong dependence on the angle of illumination at superficial depths (−5°/mm at 10 mm) was observed that becomes weaker at intermediate depths (−2.5°/mm at 20 mm) and negligible at deeper locations (−1.1°/mm at 30 mm). The results from the tissue-mimicking phantom in scattering media indicate that angles between 30–75° could be used for imaging lesions at various depths (12 mm–28 mm) where lower LED illumination angles (closer to being parallel to the imaging plane) are preferable for deep tissue imaging and superficial lesion imaging is possible with higher LED illumination angles (closer to being perpendicular to the imaging plane). Our results can serve as a priori knowledge for the future LED-based PA system designs employed for both preclinical and clinical applications.
Collapse
Affiliation(s)
- Maju Kuriakose
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | - Christopher D. Nguyen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
- Correspondence:
| |
Collapse
|
18
|
Rajendran P, Sahu S, Dienzo RA, Pramanik M. In vivo detection of venous sinus distension due to intracranial hypotension in small animal using pulsed-laser-diode photoacoustic tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960162. [PMID: 32030895 DOI: 10.1002/jbio.201960162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/18/2019] [Accepted: 02/01/2020] [Indexed: 05/24/2023]
Abstract
Intracranial hypotension (IH) is a pathophysiological condition of reduced intracranial pressure caused by low cerebrospinal fluid (CSF) volume due to dural injuries from lumbar puncture, surgery, or trauma. Understanding the prognosis of IH in small animal models is important to gain insights on the complications associated with it such as orthostatic headache, cerebral venous thrombosis, coma, and so forth. Photoacoustic tomography (PAT) offers a novel and cost-effective way to perceive and detect IH in small animal models. In this study, a pulsed laser diode (PLD)-based PAT imaging system was used to examine the changes in the venous sinuses of the rat brain due to IH, induced through CSF extraction. After the CSF extraction, an increase in the sagittal sinus area by ~30% and width by 40% ± 5% was observed. These results provide supportive evidence that the PLD-PAT can be employed for detecting changes in sagittal sinus due to IH in rat model.
Collapse
Affiliation(s)
- Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang drive, Singapore, Singapore
| | - Samiran Sahu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang drive, Singapore, Singapore
| | - Rhonnie Austria Dienzo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang drive, Singapore, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang drive, Singapore, Singapore
| |
Collapse
|
19
|
Yan Y, Jing W, Mehrmohammadi M. Photoacoustic Imaging to Track Magnetic-manipulated Micro-Robots in Deep Tissue. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2816. [PMID: 32429159 PMCID: PMC7287980 DOI: 10.3390/s20102816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
The next generation of intelligent robotic systems has been envisioned as micro-scale mobile and externally controllable robots. Visualization of such small size microrobots to track their motion in nontransparent medium such as human tissue remains a major challenge, limiting translation into clinical applications. Herein, we present a novel, non-invasive, real-time imaging method by integrating ultrasound (US) and photoacoustic (PA) imaging modalities for tracking and detecting the motion of a single microrobot in deep biological tissue. We developed and evaluated a prototyped PA-guided magnetic microrobot tracking system. The microrobots are fabricated using photoresist mixed with nickel (Ni) particles. The microrobot motion was controlled using an externally applied magnetic field. Our experimental results evaluated the capabilities of PA imaging in visualizing and tracking microrobots in opaque tissue and tissue-mimicking phantoms. The results also demonstrate the ability of PA imaging in detecting a microrobot with the sizes less than the minimum detectable size by US imaging (down to 50 µm). The spectroscopic PA imaging studies determined an optimal wavelength (700 nm) for imaging microrobots with embedded Ni particles in oxygenated (fresh) human blood. In addition, we examined the ability of PA imaging to detect the microrobots through a nontransparent tissue mimic and at a depth of 25 mm, where conventional optical methods are unable to be used in tracking the objects. These initial results demonstrate the feasibility of an integrated US and PA imaging method to push the boundaries of microrobot applications into translational applications.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Wuming Jing
- A. Linton Department of Mechanical Engineering, Lawrence Technological University, Southfield, MI 48075, USA;
| | | |
Collapse
|
20
|
Zlitni A, Gowrishankar G, Steinberg I, Haywood T, Sam Gambhir S. Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections. Nat Commun 2020; 11:1250. [PMID: 32144257 PMCID: PMC7060353 DOI: 10.1038/s41467-020-14985-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/13/2020] [Indexed: 11/09/2022] Open
Abstract
Currently, there are no non-invasive tools to accurately diagnose wound and surgical site infections before they become systemic or cause significant anatomical damage. Fluorescence and photoacoustic imaging are cost-effective imaging modalities that can be used to noninvasively diagnose bacterial infections when paired with a molecularly targeted infection imaging agent. Here, we develop a fluorescent derivative of maltotriose (Cy7-1-maltotriose), which is shown to be taken up in a variety of gram-positive and gram-negative bacterial strains in vitro. In vivo fluorescence and photoacoustic imaging studies highlight the ability of this probe to detect infection, assess infection burden, and visualize the effectiveness of antibiotic treatment in E. coli-induced myositis and a clinically relevant S. aureus wound infection murine model. In addition, we show that maltotriose is an ideal scaffold for infection imaging agents encompassing better pharmacokinetic properties and in vivo stability than other maltodextrins (e.g. maltohexose).
Collapse
Affiliation(s)
- Aimen Zlitni
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Gayatri Gowrishankar
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Idan Steinberg
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Tom Haywood
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA.
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
- Department of Bioengineering, Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
21
|
Deán-Ben XL, Razansky D. Optoacoustic image formation approaches-a clinical perspective. Phys Med Biol 2019; 64:18TR01. [PMID: 31342913 DOI: 10.1088/1361-6560/ab3522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinical translation of optoacoustic imaging is fostered by the rapid technical advances in imaging performance as well as the growing number of clinicians recognizing the immense diagnostic potential of this technology. Clinical optoacoustic systems are available in multiple configurations, including hand-held and endoscopic probes as well as raster-scan approaches. The hardware design must be adapted to the accessible portion of the imaged region and other application-specific requirements pertaining the achievable depth, field of view or spatio-temporal resolution. Equally important is the adequate choice of the signal and image processing approach, which is largely responsible for the resulting imaging performance. Thus, new image reconstruction algorithms are constantly evolving in parallel to the newly-developed set-ups. This review focuses on recent progress on optoacoustic image formation algorithms and processing methods in the clinical setting. Major reconstruction challenges include real-time image rendering in two and three dimensions, efficient hybridization with other imaging modalitites as well as accurate interpretation and quantification of bio-markers, herein discussed in the context of ongoing progress in clinical translation.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. Department of Information Technology and Electrical Engineering and Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
22
|
Fatima A, Kratkiewicz K, Manwar R, Zafar M, Zhang R, Huang B, Dadashzadeh N, Xia J, Avanaki K(M. Review of cost reduction methods in photoacoustic computed tomography. PHOTOACOUSTICS 2019; 15:100137. [PMID: 31428558 PMCID: PMC6693691 DOI: 10.1016/j.pacs.2019.100137] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/11/2019] [Accepted: 06/13/2019] [Indexed: 05/18/2023]
Abstract
Photoacoustic Computed Tomography (PACT) is a major configuration of photoacoustic imaging, a hybrid noninvasive modality for both functional and molecular imaging. PACT has rapidly gained importance in the field of biomedical imaging due to superior performance as compared to conventional optical imaging counterparts. However, the overall cost of developing a PACT system is one of the challenges towards clinical translation of this novel technique. The cost of a typical commercial PACT system originates from optical source, ultrasound detector, and data acquisition unit. With growing applications of photoacoustic imaging, there is a tremendous demand towards reducing its cost. In this review article, we have discussed various approaches to reduce the overall cost of a PACT system, and provided a cost estimation to build a low-cost PACT system.
Collapse
Affiliation(s)
- Afreen Fatima
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Electrical & Computer Engineering, Wayne State University, Detroit, MI, USA
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Rayyan Manwar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Mohsin Zafar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | | | - Bin Huang
- 3339 Northwest Ave, Bellingham, WA, USA
| | | | - Jun Xia
- Department of Biomedical Engineering, The State University of New York, Buffalo, NY, USA
| | - Kamran (Mohammad) Avanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
23
|
Jeon S, Park EY, Choi W, Managuli R, Lee KJ, Kim C. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans. PHOTOACOUSTICS 2019; 15:100136. [PMID: 31467842 PMCID: PMC6710719 DOI: 10.1016/j.pacs.2019.100136] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/10/2019] [Accepted: 06/13/2019] [Indexed: 05/06/2023]
Abstract
In the clinical photoacoustic (PA) imaging, ultrasound (US) array transducers are typically used to provide B-mode images in real-time. To form a B-mode image, delay-and-sum (DAS) beamforming algorithm is the most commonly used algorithm because of its ease of implementation. However, this algorithm suffers from low image resolution and low contrast drawbacks. To address this issue, delay-multiply-and-sum (DMAS) beamforming algorithm has been developed to provide enhanced image quality with higher contrast, and narrower main lobe compared but has limitations on the imaging speed for clinical applications. In this paper, we present an enhanced real-time DMAS algorithm with modified coherence factor (CF) for clinical PA imaging of humans in vivo. Our algorithm improves the lateral resolution and signal-to-noise ratio (SNR) of original DMAS beamformer by suppressing the background noise and side lobes using the coherence of received signals. We optimized the computations of the proposed DMAS with CF (DMAS-CF) to achieve real-time frame rate imaging on a graphics processing unit (GPU). To evaluate the proposed algorithm, we implemented DAS and DMAS with/without CF on a clinical US/PA imaging system and quantitatively assessed their processing speed and image quality. The processing time to reconstruct one B-mode image using DAS, DAS with CF (DAS-CF), DMAS, and DMAS-CF algorithms was 7.5, 7.6, 11.1, and 11.3 ms, respectively, all achieving the real-time imaging frame rate. In terms of the image quality, the proposed DMAS-CF algorithm improved the lateral resolution and SNR by 55.4% and 93.6 dB, respectively, compared to the DAS algorithm in the phantom imaging experiments. We believe the proposed DMAS-CF algorithm and its real-time implementation contributes significantly to the improvement of imaging quality of clinical US/PA imaging system.
Collapse
Affiliation(s)
- Seungwan Jeon
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eun-Yeong Park
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Wonseok Choi
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ravi Managuli
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Hitachi Medical Systems of America, Twinsburg, OH, 44087, USA
| | - Ki jong Lee
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Departments of Creative IT Engineering, Mechanical Engineering, and Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Corresponding author.
| |
Collapse
|
24
|
Das D, Pramanik M. Combined ultrasound and photoacoustic imaging of blood clot during microbubble-assisted sonothrombolysis. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31342692 PMCID: PMC7005573 DOI: 10.1117/1.jbo.24.12.121902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/12/2019] [Indexed: 05/06/2023]
Abstract
Blockage of healthy blood vessels by blood clots can lead to serious or even life-threatening complications. The use of a combined ultrasound (US) and photoacoustic (PA) imaging was explored for blood clot monitoring during microbubble-assisted sonothrombolysis. PA imaging is an emerging hybrid imaging modality that has garnered the attention of the biomedical imaging community in recent years. It enables the study of the composition of a blood clot due to its sensitivity toward optical absorption. Here, in vitro imaging of the side of a blood clot facing the microbubbles was done over time. The US and PA signal-to-noise (SNR) ratio value changes during microbubble-assisted sonothrombolysis were studied for two different local environments: blood clot in deionized water and blood clot in blood. In the first case, US and PA SNR values increased by 4.6% and reduced by 20.8%, respectively after 30 min of sonothrombolysis treatment. After 10 min of sonothrombolysis treatment of the blood clot in blood, the US and PA SNR values increased by 7.7% and 38.3%, respectively. The US and PA SNR value changes were recorded in response to its local environment. This technique can be used to determine the final composition of the blood clot which may, in turn, help in the administration of clot-dissolving drugs.
Collapse
Affiliation(s)
- Dhiman Das
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
- Address all correspondence to Manojit Pramanik, E-mail:
| |
Collapse
|
25
|
Kalva SK, Upputuri PK, Pramanik M. High-speed, low-cost, pulsed-laser-diode-based second-generation desktop photoacoustic tomography system. OPTICS LETTERS 2019; 44:81-84. [PMID: 30645563 DOI: 10.1364/ol.44.000081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/24/2018] [Indexed: 05/18/2023]
Abstract
Bulky, expensive Nd:YAG lasers are used in conventional photoacoustic tomography (PAT) systems, making them difficult to translate into clinics. Moreover, real-time imaging is not feasible when a single-element ultrasound transducer is used with these low-pulse-repetition-rate lasers (10-100 Hz). Low-cost pulsed laser diodes (PLDs) can be used instead for photoacoustic imaging due to their high-pulse-repetition rates and compact size. Together with acoustic-reflector-based multiple single-element ultrasound transducers, a portable desktop PAT system was developed. This second-generation PLD-based PAT achieved 0.5 s cross-sectional imaging time with high spatial resolution of ∼165 μm and an imaging depth of 3 cm. The performance of this system was characterized using phantom and in vivo studies. Dynamic in vivo imaging was also demonstrated by monitoring the fast uptake and clearance of indocyanine green in small animal (rat) brain vasculature.
Collapse
|
26
|
Mozaffarzadeh M, Periyasamy V, Pramanik M, Makkiabadi B. Efficient nonlinear beamformer based on P'th root of detected signals for linear-array photoacoustic tomography: application to sentinel lymph node imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-12. [PMID: 30054995 PMCID: PMC8357197 DOI: 10.1117/1.jbo.23.12.121604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/13/2018] [Indexed: 05/18/2023]
Abstract
In linear-array transducer-based photoacoustic (PA) imaging, B-scan PA images are formed using the raw channel PA signals. Delay-and-sum (DAS) is the most prevalent algorithm due to its simple implementation, but it leads to low-quality images. Delay-multiply-and-sum (DMAS) provides a higher image quality in comparison with DAS while it imposes a computational burden of O ( M2 ) . We introduce a nonlinear (NL) beamformer for linear-array PA imaging, which uses the p'th root of the detected signals and imposes the complexity of DAS [O ( M ) ]. The proposed algorithm is evaluated numerically and experimentally [wire-target and in-vivo sentinel lymph node (SLN) imaging], and the effects of the parameter p are investigated. The results show that the NL algorithm, using a root of p (NL_p), leads to lower sidelobes and higher signal-to-noise ratio compared with DAS and DMAS, for (p > 2). The sidelobes level (for the wire-target phantom), at the depth of 11.4 mm, are about -31, -52, -52, -67, -88, and -109 dB, for DAS, DMAS, NL_2, NL_3, NL_4, and NL_5, respectively, indicating the superiority of the NL_p algorithm. In addition, the best value of p for SLN imaging is reported to be 12.
Collapse
Affiliation(s)
- Moein Mozaffarzadeh
- Institute for Advanced Medical Technologies (IAMT), Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
- Tarbiat Modares University, Department of Biomedical Engineering, Tehran, Iran
| | - Vijitha Periyasamy
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
- Address all correspondence to: Manojit Pramanik, E-mail: ; Bahador Makkiabadi, E-mail:
| | - Bahador Makkiabadi
- Institute for Advanced Medical Technologies (IAMT), Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
- Tehran University of Medical Sciences, School of Medicine, Department of Medical Physics and Biomedical Engineering, Tehran, Iran
- Address all correspondence to: Manojit Pramanik, E-mail: ; Bahador Makkiabadi, E-mail:
| |
Collapse
|
27
|
Zhu Y, Xu G, Yuan J, Jo J, Gandikota G, Demirci H, Agano T, Sato N, Shigeta Y, Wang X. Light Emitting Diodes based Photoacoustic Imaging and Potential Clinical Applications. Sci Rep 2018; 8:9885. [PMID: 29959412 PMCID: PMC6026116 DOI: 10.1038/s41598-018-28131-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023] Open
Abstract
Using low cost and small size light emitting diodes (LED) as the alternative illumination source for photoacoustic (PA) imaging has many advantages, and can largely benefit the clinical translation of the emerging PA imaging technology. Here, we present our development of LED-based PA imaging integrated with B-mode ultrasound. To overcome the challenge of achieving sufficient signal-to-noise ratio by the LED light that is orders of magnitude weaker than lasers, extensive signal averaging over hundreds of pulses is performed. Facilitated by the fast response of the LED and the high-speed driving as well as the high pulse repetition rate up to 16 kHz, B-mode PA images superimposed on gray-scale ultrasound of a biological sample can be achieved in real-time with frame rate up to 500 Hz. The LED-based PA imaging could be a promising tool for several clinical applications, such as assessment of peripheral microvascular function and dynamic changes, diagnosis of inflammatory arthritis, and detection of head and neck cancer.
Collapse
Affiliation(s)
- Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.,Department of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 21000, China
| | - Guan Xu
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jie Yuan
- Department of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 21000, China.
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Girish Gandikota
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Hakan Demirci
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Naoto Sato
- PreXion Corporation, Tokyo, 1010041, Japan
| | | | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
28
|
Upputuri PK, Pramanik M. Fast photoacoustic imaging systems using pulsed laser diodes: a review. Biomed Eng Lett 2018; 8:167-181. [PMID: 30603201 PMCID: PMC6208528 DOI: 10.1007/s13534-018-0060-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/15/2022] Open
Abstract
Photoacoustic imaging (PAI) is a newly emerging imaging modality for preclinical and clinical applications. The conventional PAI systems use Q-switched Nd:YAG/OPO (Optical Parametric Oscillator) nanosecond lasers as excitation sources. Such lasers are expensive, bulky, and imaging speed is limited because of low pulse repetition rate. In recent years, the semiconductor laser technology has advanced to generate high-repetitions rate near-infrared pulsed lasers diodes (PLDs) which are reliable, less-expensive, hand-held, and light-weight, about 200 g. In this article, we review the development and demonstration of PLD based PAI systems for preclinical and clinical applications reported in recent years.
Collapse
Affiliation(s)
- Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
29
|
Xia W, Kuniyil Ajith Singh M, Maneas E, Sato N, Shigeta Y, Agano T, Ourselin S, J West S, E Desjardins A. Handheld Real-Time LED-Based Photoacoustic and Ultrasound Imaging System for Accurate Visualization of Clinical Metal Needles and Superficial Vasculature to Guide Minimally Invasive Procedures. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1394. [PMID: 29724014 PMCID: PMC5982119 DOI: 10.3390/s18051394] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023]
Abstract
Ultrasound imaging is widely used to guide minimally invasive procedures, but the visualization of the invasive medical device and the procedure’s target is often challenging. Photoacoustic imaging has shown great promise for guiding minimally invasive procedures, but clinical translation of this technology has often been limited by bulky and expensive excitation sources. In this work, we demonstrate the feasibility of guiding minimally invasive procedures using a dual-mode photoacoustic and ultrasound imaging system with excitation from compact arrays of light-emitting diodes (LEDs) at 850 nm. Three validation experiments were performed. First, clinical metal needles inserted into biological tissue were imaged. Second, the imaging depth of the system was characterized using a blood-vessel-mimicking phantom. Third, the superficial vasculature in human volunteers was imaged. It was found that photoacoustic imaging enabled needle visualization with signal-to-noise ratios that were 1.2 to 2.2 times higher than those obtained with ultrasound imaging, over insertion angles of 26 to 51 degrees. With the blood vessel mimicking phantom, the maximum imaging depth was 38 mm. The superficial vasculature of a human middle finger and a human wrist were clearly visualized in real-time. We conclude that the LED-based system is promising for guiding minimally invasive procedures with peripheral tissue targets.
Collapse
Affiliation(s)
- Wenfeng Xia
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK.
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Mithun Kuniyil Ajith Singh
- Research and Business Development Division, PreXion Corporation, Stationsplein 45 A4.004, 3013AK Rotterdam, The Netherlands.
| | - Efthymios Maneas
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK.
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Naoto Sato
- Research and Development Division, 1-14-1, Kandasudacho, Chiyoda-ku, Tokyo 101-0041, Japan.
| | - Yusuke Shigeta
- Research and Development Division, 1-14-1, Kandasudacho, Chiyoda-ku, Tokyo 101-0041, Japan.
| | - Toshitaka Agano
- Research and Development Division, 1-14-1, Kandasudacho, Chiyoda-ku, Tokyo 101-0041, Japan.
| | - Sebastian Ourselin
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK.
- Centre for Medical Imaging Computing, University College London, Gower Street, London WC1E 6BT, UK.
| | - Simeon J West
- Department of Anaesthesia, University College Hospital, Main Theatres, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU, UK.
| | - Adrien E Desjardins
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK.
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
30
|
Kalva SK, Hui ZZ, Pramanik M. Calibrating reconstruction radius in a multi single-element ultrasound-transducer-based photoacoustic computed tomography system. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:764-771. [PMID: 29726481 DOI: 10.1364/josaa.35.000764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/22/2018] [Indexed: 05/21/2023]
Abstract
In a circular scanning photoacoustic computed tomography (PAT/PACT) system, a single-element ultrasound transducer (SUT) (rotates in full 360° around the sample) or a full-ring array transducer is used to acquire the photoacoustic (PA) data from the target object. SUT takes several minutes to acquire the PA data, whereas the full-ring array transducer takes only few seconds. Hence, for real-time imaging, full-ring circular array transducers are preferred. However, these are custom built, very expensive, and not available readily on the market, whereas SUTs are cheap and easily available. Thus, PACT systems can be made cost effective by using SUTs. To improve the data acquisition speed, multiple SUTs can be employed at the same time. This will reduce the acquisition time by N-fold if N numbers of SUTs are used, each rotating 360/N degrees. Experimentally, all SUTs cannot be placed exactly at the same distance from the scanning center. Hence, the acquired PA data from each transducer need to be reconstructed with their corresponding radii in a delay-and-sum reconstruction algorithm. This requires the exact location of each SUT from the scanning center. Here, we propose a calibration method to find out the distance from the scanning center at which each SUT acquires the PA data. Three numerical phantoms were used to show the efficacy of the proposed method, and later it was validated with experimental data (point source phantom).
Collapse
|
31
|
Das D, Sivasubramanian K, Yang C, Pramanik M. On-chip generation of microbubbles in photoacoustic contrast agents for dual modal ultrasound/photoacoustic in vivo animal imaging. Sci Rep 2018; 8:6401. [PMID: 29686407 PMCID: PMC5913135 DOI: 10.1038/s41598-018-24713-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Dual-modal photoacoustic (PA) and ultrasound (US) contrast agents are becoming increasingly popular in recent years. Here, a flow-focusing junction based microfluidic device is used for the generation of nitrogen microbubbles (<7 μm) in two photoacoustic contrast agents: methylene blue (MB) and black ink (BI). The microbubble diameter and production rate could be precisely controlled in both MB and BI solutions. Microbubbles were collected from the outlet of the microfluidic device and optical microscope was used to study the size distributions in both solutions. Next, the microbubbles in both solutions were injected into tubes for phantom imaging experiments. Signal to noise ratio (SNR) of both US, PA imaging experiments were calculated to be 51 dB, 58 dB in MB + microbubbles and 56 dB, 61 dB in BI + microbubbles, respectively. Finally, the microbubbles were injected into the urinary bladder of rats for in vivo animal imaging. The SNR in US imaging with MB + microbubbles and BI + microbubbles were 41 dB and 48 dB, respectively. Similarly, the SNR in PA imaging with the same solutions were 32 dB and 36 dB, respectively. The effect of size and concentration of microbubbles in both MB and BI solutions, on the US and PA signals, has been examined.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Kathyayini Sivasubramanian
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
32
|
Li M, Liu C, Gong X, Zheng R, Bai Y, Xing M, Du X, Liu X, Zeng J, Lin R, Zhou H, Wang S, Lu G, Zhu W, Fang C, Song L. Linear array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld probe for noninvasive sentinel lymph node mapping. BIOMEDICAL OPTICS EXPRESS 2018; 9:1408-1422. [PMID: 29675292 PMCID: PMC5905896 DOI: 10.1364/boe.9.001408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 05/04/2023]
Abstract
We developed a linear ultrasound array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld photoacoustic imaging probe for guiding sentinel lymph node (SLN) needle biopsy. Compared with previous studies, our system and probe have the following advantages: (1) the imaging probe is quite compact and user-friendly; (2) laser illumination and ultrasonic detection are achieved coaxially, enabling high signal-to-noise ratio; and (3) GPU-based image reconstruction enables real-time imaging and displaying at a frame rate of 20 Hz. With the system and probe, clear visualization of the SLN at the depth of 2 cm (~human SLN depth) was demonstrated on a living rat. A fine needle was pushed towards the SLN based on the guidance of real-time photoacoustic imaging. The proposed photoacoustic imaging system and probe was shown to have great potential to be used in clinics for guiding SLN needle biopsy, which may reduce the high morbidity rate related to the current gold standard clinical SLN biopsy procedure.
Collapse
Affiliation(s)
- Mucong Li
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Equal Contribution
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Beijing Center for Mathematics and Information Interdisciplinary Sciences (BCMIIS), Beijing 100048, China
- Equal Contribution
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongqin Zheng
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuanyuan Bai
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Muyue Xing
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuemin Du
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyang Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zeng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huichao Zhou
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shouju Wang
- Department of Medical Imaging, Jinling Hospital, Nanjing University, Nanjing 210002, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University, Nanjing 210002, China
| | - Wen Zhu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Beijing Center for Mathematics and Information Interdisciplinary Sciences (BCMIIS), Beijing 100048, China
| |
Collapse
|
33
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
34
|
Sivasubramanian K, Periyasamy V, Pramanik M. Non-invasive sentinel lymph node mapping and needle guidance using clinical handheld photoacoustic imaging system in small animal. JOURNAL OF BIOPHOTONICS 2018; 11:e201700061. [PMID: 28700132 DOI: 10.1002/jbio.201700061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/27/2017] [Accepted: 05/25/2017] [Indexed: 05/20/2023]
Abstract
Translating photoacoustic imaging (PAI) into clinical setup is a challenge. Handheld clinical real-time PAI systems are not common. In this work, we report an integrated photoacoustic (PA) and clinical ultrasound imaging system by combining light delivery with the ultrasound probe for sentinel lymph node imaging and needle guidance in small animal. The open access clinical ultrasound platform allows seamless integration of PAI resulting in the development of handheld real-time PAI probe. Both methylene blue and indocyanine green were used for mapping the sentinel lymph node using 675 and 690 nm wavelength illuminations, respectively. Additionally, needle guidance with combined ultrasound and PAI was demonstrated using this imaging system. Up to 1.5 cm imaging depth was observed with a 10 Hz laser at an imaging frame rate of 5 frames per second, which is sufficient for future translation into human sentinel lymph node imaging and needle guidance for fine needle aspiration biopsy.
Collapse
Affiliation(s)
| | - Vijitha Periyasamy
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
35
|
ÖZBEK ALI, DEÁN-BEN XOSÉLUÍS, RAZANSKY DANIEL. Optoacoustic imaging at kilohertz volumetric frame rates. OPTICA 2018; 5:857-863. [PMID: 31608306 PMCID: PMC6788779 DOI: 10.1364/optica.5.000857] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
State-of-the-art optoacoustic tomographic imaging systems have been shown to attain three-dimensional (3D) frame rates of the order of 100 Hz. While such a high volumetric imaging speed is beyond reach for other bio-imaging modalities, it may still be insufficient to accurately monitor some faster events occurring on a millisecond scale. Increasing the 3D imaging rate is usually hampered by the limited throughput capacity of the data acquisition electronics and memory used to capture vast amounts of the generated optoacoustic (OA) data in real time. Herein, we developed a sparse signal acquisition scheme and a total-variation-based reconstruction approach in a combined space-time domain in order to achieve 3D OA imaging at kilohertz rates. By continuous monitoring of freely swimming zebrafish larvae in a 3D region, we demonstrate that the new approach enables significantly increasing the volumetric imaging rate by using a fraction of the tomographic projections without compromising the reconstructed image quality. The suggested method may benefit studies looking at ultrafast biological phenomena in 3D, such as large-scale neuronal activity, cardiac motion, or freely behaving organisms.
Collapse
Affiliation(s)
- ALI ÖZBEK
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, D-85764 Neuherberg, Germany
- School of Medicine and School of Bioengineering, Technical University of Munich, D-81675 Munich, Germany
| | - XOSÉ LUÍS DEÁN-BEN
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - DANIEL RAZANSKY
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, D-85764 Neuherberg, Germany
- School of Medicine and School of Bioengineering, Technical University of Munich, D-81675 Munich, Germany
- Corresponding author:
| |
Collapse
|
36
|
Sivasubramanian K, Periyasamy V, Pramanik M. Hand-held Clinical Photoacoustic Imaging System for Real-time Non-invasive Small Animal Imaging. J Vis Exp 2017:56649. [PMID: 29155745 PMCID: PMC5752415 DOI: 10.3791/56649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Translation of photoacoustic imaging into the clinic is a major challenge. Handheld real-time clinical photoacoustic imaging systems are very rare. Here, we report a combined photoacoustic and clinical ultrasound imaging system by integrating an ultrasound probe with light delivery for small animal imaging. We demonstrate this by showing sentinel lymph node imaging in small animals along with minimally invasive real-time needle guidance. A clinical ultrasound platform with access to raw channel data allows the integration of photoacoustic imaging leading to a handheld real-time clinical photoacoustic imaging system. Methylene blue was used for sentinel lymph node imaging at 675 nm wavelength. Additionally, needle guidance with dual modal ultrasound and photoacoustic imaging was shown using the imaging system. Depth imaging of up to 1.5 cm was demonstrated with a 10 Hz laser at a photoacoustic imaging frame rate of 5 frames per second.
Collapse
Affiliation(s)
| | - Vijitha Periyasamy
- School of Chemical and Biomedical Engineering, Nanyang Technological University
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University;
| |
Collapse
|
37
|
Upputuri PK, Pramanik M. Dynamic in vivo imaging of small animal brain using pulsed laser diode-based photoacoustic tomography system. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-4. [PMID: 28952240 DOI: 10.1117/1.jbo.22.9.090501] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/05/2017] [Indexed: 05/09/2023]
Abstract
We demonstrate dynamic in vivo imaging using a low-cost portable pulsed laser diode (PLD)-based photoacoustic tomography system. The system takes advantage of an 803-nm PLD having high-repetition rate ∼7000 Hz combined with a fast-scanning single-element ultrasound transducer leading to a 5 s cross-sectional imaging. Cortical vasculature is imaged in scan time of 5 s with high signal-to-noise ratio ∼48. To examine the ability for dynamic imaging, we monitored the fast uptake and clearance process of indocyanine green in the rat brain. The system will find applications to study neurofunctional activities, characterization of pharmacokinetic, and biodistribution profiles in the development process of drugs or imaging agents.
Collapse
Affiliation(s)
- Paul Kumar Upputuri
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore, Singapore
| |
Collapse
|
38
|
Upputuri PK, Periyasamy V, Kalva SK, Pramanik M. A High-performance Compact Photoacoustic Tomography System for In Vivo Small-animal Brain Imaging. J Vis Exp 2017:55811. [PMID: 28671657 PMCID: PMC5608463 DOI: 10.3791/55811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In vivo small-animal imaging has an important role to play in preclinical studies. Photoacoustic tomography (PAT) is an emerging hybrid imaging modality that shows great potential for both preclinical and clinical applications. Conventional optical parametric oscillator-based PAT (OPO-PAT) systems are bulky and expensive and cannot provide high-speed imaging. Recently, pulsed-laser diodes (PLDs) have been successfully demonstrated as an alternative excitation source for PAT. Pulsed-laser diode PAT (PLD-PAT) has been successfully demonstrated for high-speed imaging on photoacoustic phantoms and biological tissues. This work provides a visualized experimental protocol for in vivo brain imaging using PLD-PAT. The protocol includes the compact PLD-PAT system configuration and its description, animal preparation for brain imaging, and a typical experimental procedure for 2D cross-sectional rat brain imaging. The PLD-PAT system is compact and cost-effective and can provide high-speed, high-quality imaging. Brain images collected in vivo at various scan speeds are presented.
Collapse
Affiliation(s)
- Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering, Nanyang Technological University
| | - Vijitha Periyasamy
- School of Chemical and Biomedical Engineering, Nanyang Technological University
| | - Sandeep Kumar Kalva
- School of Chemical and Biomedical Engineering, Nanyang Technological University
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University;
| |
Collapse
|
39
|
Kondapalli SH, Alazzawi Y, Malinowski M, Timek T, Chakrabartty S. Multiaccess In Vivo Biotelemetry Using Sonomicrometry and M-Scan Ultrasound Imaging. IEEE Trans Biomed Eng 2017; 65:149-158. [PMID: 28459681 DOI: 10.1109/tbme.2017.2697998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Objective: In this paper, we investigate the use of commercial off-the-shelf diagnostic ultrasound readers to achieve multiaccess wireless in vivo telemetry with millimeter-sized sonomicrometry crystal transducers. METHODS The sonomicrometry crystals generate ultrasonic pulses that supersede the echoes generated at the tissue interfaces in response to M-scan interrogation pulses. The traces of these synthetic pulses are captured on an M-scan image and the transmitted data are decoded using image deconvolution and deblurring algorithms. RESULTS Using a chicken phantom and 1.3 MHz sonomicrometry crystals of diameter 1 mm, we first demonstrate that a standard ultrasound reader can achieve biotelemetry data rates up to 1 Mb/s for implantation depths greater than 10 cm. For this experiment the maximum power dissipation at the crystals was measured to be 20 and bit-error-rate of the telemetry link was shown to be . We also demonstrate the use of this method for multiaccess biotelemetry where several sonomicrometry crystals simultaneously transmit the data using different modulation and coding techniques. Using a live ovine model, we demonstrate a sonomicrometry crystal implanted in the sheep 's tricuspid valve can maintain a continuous, reliable telemetry link at data rates up tob 800 Kb/s in the presence of respiratory and cardiac motion artifacts. CONCLUSION Compared to existing radio-frequency and ultrasound based biotelemetry devices, the reported data-rates are significantly higher considering the transducer's form-factor and its implantation depth. SIGNIFICANCE The proposed technique thus validates the feasibility of establishing reliable communication link with multiple in vivo implants using M-scan-based ultrasound imaging.
Collapse
|
40
|
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 2017; 46:2158-2198. [PMID: 28276544 PMCID: PMC5460636 DOI: 10.1039/c6cs00765a] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visualization of dynamic functional and molecular events in an unperturbed in vivo environment is essential for understanding the complex biology of living organisms and of disease state and progression. To this end, optoacoustic (photoacoustic) sensing and imaging have demonstrated the exclusive capacity to maintain excellent optical contrast and high resolution in deep-tissue observations, far beyond the penetration limits of modern microscopy. Yet, the time domain is paramount for the observation and study of complex biological interactions that may be invisible in single snapshots of living systems. This review focuses on the recent advances in optoacoustic imaging assisted by smart molecular labeling and dynamic contrast enhancement approaches that enable new types of multiscale dynamic observations not attainable with other bio-imaging modalities. A wealth of investigated new research topics and clinical applications is further discussed, including imaging of large-scale brain activity patterns, volumetric visualization of moving organs and contrast agent kinetics, molecular imaging using targeted and genetically expressed labels, as well as three-dimensional handheld diagnostics of human subjects.
Collapse
Affiliation(s)
- X L Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - S Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - B Mc Larney
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - S Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - D Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
41
|
Sivasubramanian K, Mathiyazhakan M, Wiraja C, Upputuri PK, Xu C, Pramanik M. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:41007. [PMID: 27918790 DOI: 10.1117/1.jbo.22.4.041007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/10/2016] [Indexed: 05/07/2023]
Abstract
Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in <italic<in vivo</italic<, noninvasive imaging of biological structures at depths but it can also be used for drug release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.
Collapse
Affiliation(s)
- Kathyayini Sivasubramanian
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| | - Malathi Mathiyazhakan
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| | - Christian Wiraja
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| | - Paul Kumar Upputuri
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| | - Chenjie Xu
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, SingaporebNanyang Technological University, NTU-Northwestern Institute for Nanomedicine, 50 Nanyang Avenue, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore
| |
Collapse
|
42
|
Liang Y, Jin L, Guan BO, Wang L. 2 MHz multi-wavelength pulsed laser for functional photoacoustic microscopy. OPTICS LETTERS 2017; 42:1452-1455. [PMID: 28362790 DOI: 10.1364/ol.42.001452] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fast functional photoacoustic microscopy requires multi-wavelength pulsed laser sources with high pulse repetition rates, short wavelength switching time, and sufficient pulse energies. Here, we report the development of a stimulated-Raman-scattering-based multi-wavelength pulsed laser source for fast functional photoacoustic imaging. The new laser source is pumped with a 532 nm 1 MHz pulsed laser. The 532 nm laser beam is split into two: one pumps a 5 m optical fiber to excite a 558 nm wavelength via stimulated Raman scattering; the other goes through a 50 m optical fiber to delay the 532 nm pulse by 220 ns. The two beams are combined and coupled into an optical fiber for photoacoustic excitation. As a result, the new laser source can generate 2 million pulses per second, switch wavelengths in 220 ns, and provide hundreds of nanojoules pulse energy for each wavelength. Using this laser source, we demonstrate optical-resolution photoacoustic imaging of microvascular structures and oxygen saturation in the mouse ear. The ultrashort wavelength switching time enables oxygen saturation imaging of flowing red blood cells, which is valuable for high-resolution functional imaging.
Collapse
|
43
|
Upputuri PK, Pramanik M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:41006. [PMID: 27893078 DOI: 10.1117/1.jbo.22.4.041006] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 05/18/2023]
Affiliation(s)
- Paul Kumar Upputuri
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
44
|
Kalva SK, Pramanik M. Use of acoustic reflector to make a compact photoacoustic tomography system. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:26009. [PMID: 28241275 DOI: 10.1117/1.jbo.22.2.026009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
A typical photoacoustic tomography (PAT) system uses a Q-switched Nd:YAG laser for irradiating the sample and a single-element ultrasound transducer (UST) for acquiring the photoacoustic data. Conventionally, in PAT systems, the UST is held in a horizontal position and moved in a circular motion around the sample in full 2 ? radians. Horizontal positioning of the UST requires a large water tank to house, and load on the motor is also high. To overcome this limitation, we used the UST in the vertical plane instead of the horizontal plane. The photoacoustic (PA) waves generated from the sample are directed to the detector surface using an acoustic reflector placed at 45 deg to the transducer body. Hence, we can reduce the scanning radius, which, in turn, will reduce the size of the water tank and load on the motor, and the overall conventional PAT system size can be minimized. In this work, we demonstrate that with this system configuration, we acquire nearly similar images for phantom and in vivo data as that of the conventional PAT system using both flat and focused USTs.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
45
|
Wang D, Wang Y, Wang W, Luo D, Chitgupi U, Geng J, Zhou Y, Wang L, Lovell JF, Xia J. Deep tissue photoacoustic computed tomography with a fast and compact laser system. BIOMEDICAL OPTICS EXPRESS 2017; 8:112-123. [PMID: 28101405 PMCID: PMC5231285 DOI: 10.1364/boe.8.000112] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 05/04/2023]
Abstract
Photoacoustic computed tomography (PACT) holds great promise for biomedical imaging, but wide-spread implementation is impeded by the bulkiness of flash-lamp-pumped laser systems, which typically weigh between 50 - 200 kg, require continuous water cooling, and operate at a low repetition rate. Here, we demonstrate that compact lasers based on emerging diode technologies are well-suited for preclinical and clinical PACT. The diode-pumped laser used in this study had a miniature footprint (13 × 14 × 7 cm3), weighed only 1.6 kg, and outputted up to 80 mJ per pulse at 1064 nm. In vitro, the laser system readily provided over 4 cm PACT depth in chicken breast tissue. In vivo, in addition to high resolution, non-invasive brain imaging in living mice, the system can operate at 50 Hz, which enabled high-speed cross-sectional imaging of murine cardiac and respiratory function. The system also provided high quality, high-frame rate, and non-invasive three-dimensional mapping of arm, palm, and breast vasculature at multi centimeter depths in living human subjects, demonstrating the clinical viability of compact lasers for PACT.
Collapse
Affiliation(s)
- Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Yuehang Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Weiran Wang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Lidai Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| |
Collapse
|
46
|
Kim J, Park S, Jung Y, Chang S, Park J, Zhang Y, Lovell JF, Kim C. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System. Sci Rep 2016; 6:35137. [PMID: 27731357 PMCID: PMC5059665 DOI: 10.1038/srep35137] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/22/2016] [Indexed: 01/28/2023] Open
Abstract
Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies.
Collapse
Affiliation(s)
- Jeesu Kim
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sara Park
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Yuhan Jung
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sunyeob Chang
- Alpinion Medical Systems, 72 Digital-Ro 26-Gil, Guro-Gu, Seoul, 08393, Republic of Korea
| | - Jinyong Park
- Alpinion Medical Systems, 72 Digital-Ro 26-Gil, Guro-Gu, Seoul, 08393, Republic of Korea
| | - Yumiao Zhang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Chulhong Kim
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
47
|
Valluru KS, Willmann JK. Clinical photoacoustic imaging of cancer. Ultrasonography 2016; 35:267-80. [PMID: 27669961 PMCID: PMC5040138 DOI: 10.14366/usg.16035] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
Photoacoustic imaging is a hybrid technique that shines laser light on tissue and measures optically induced ultrasound signal. There is growing interest in the clinical community over this new technique and its possible clinical applications. One of the most prominent features of photoacoustic imaging is its ability to characterize tissue, leveraging differences in the optical absorption of underlying tissue components such as hemoglobin, lipids, melanin, collagen and water among many others. In this review, the state-of-the-art photoacoustic imaging techniques and some of the key outcomes pertaining to different cancer applications in the clinic are presented.
Collapse
Affiliation(s)
- Keerthi S. Valluru
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Juergen K. Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|