1
|
McGraw E, Laurent GM, Avila LA. Nanoparticle-mediated photoporation - an emerging versatile physical drug delivery method. NANOSCALE ADVANCES 2024:d4na00122b. [PMID: 39280791 PMCID: PMC11391416 DOI: 10.1039/d4na00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024]
Abstract
Facilitating the delivery of impermeable molecules into cells stands as a pivotal step for both basic research and therapeutic delivery. While current methods predominantly use nanoparticles or viral vectors, the exploration of physical phenomena, particularly light-based techniques, remains relatively under-explored. Photoporation, a physical method, employs either pulsed or continuous wave lasers to create transient pores in cell membranes. These openings enable the entry of exogenous, membrane-impermeable molecules into the cytosol while preserving cell viability. Poration can either be achieved directly through focusing a laser beam onto a cell membrane, or indirectly through the addition of sensitizing nanoparticles that interact with the laser pulses. Nanoparticle-mediated photoporation specifically has recently been receiving increasing attention for the high-throughput ability to transfect cells, which also has exciting potential for clinical translation. Here, we begin with a snapshot of the current state of direct and indirect photoporation and the mechanisms that contribute to cell pore formation and molecule delivery. Following this, we present an outline of the evolution of photoporation methodologies for mammalian and non-mammalian cells, accompanied by a description of variations in experimental setups among photoporation systems. Finally, we discuss the potential clinical translation of photoporation and offer our perspective on recent key findings in the field, addressing unmet needs, gaps, and inconsistencies.
Collapse
Affiliation(s)
- Erin McGraw
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| | | | - L Adriana Avila
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| |
Collapse
|
2
|
Layachi M, Treizebré A, Hay L, Gilbert D, Pesez J, D’Acremont Q, Braeckmans K, Thommen Q, Courtade E. Novel opto-fluidic drug delivery system for efficient cellular transfection. J Nanobiotechnology 2023; 21:43. [PMID: 36747263 PMCID: PMC9901003 DOI: 10.1186/s12951-023-01797-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Intracellular drug delivery is at the heart of many diagnosis procedures and a key step in gene therapy. Research has been conducted to bypass cell barriers for controlled intracellular drug release and made consistent progress. However, state-of-the-art techniques based on non-viral carriers or physical methods suffer several drawbacks, including limited delivery yield, low throughput or low viability, which are key parameters in therapeutics, diagnostics and drug delivery. Nevertheless, gold nanoparticle (AuNP) mediated photoporation has stood out as a promising approach to permeabilize cell membranes through laser induced Vapour NanoBubble (VNB) generation, allowing the influx of external cargo molecules into cells. However, its use as a transfection technology for the genetic manipulation of therapeutic cells is hindered by the presence of non-degradable gold nanoparticles. Here, we report a new optofluidic method bringing gold nanoparticles in close proximity to cells for photoporation, while avoiding direct contact with cells by taking advantage of hydrodynamic focusing in a multi-flow device. Cells were successfully photoporated with [Formula: see text] efficiency with no significant reduction in cell viability at a throughput ranging from [Formula: see text] to [Formula: see text]. This optofluidic approach provides prospects of translating photoporation from an R &D setting to clinical use for producing genetically engineered therapeutic cells.
Collapse
Affiliation(s)
- Majid Layachi
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France ,grid.464109.e0000 0004 0638 7509Institut d’Électronique, de
Microélectronique et de Nanotechnologie - UMR CNRS 8520, Université de Lille, 59655 Villeneuve d’Ascq, France ,grid.121334.60000 0001 2097 0141Present Address: Laboratoire Charles Coulomb - UMR 5221, Université de Montpellier, Montpellier, France
| | - Anthony Treizebré
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France ,grid.464109.e0000 0004 0638 7509Institut d’Électronique, de
Microélectronique et de Nanotechnologie - UMR CNRS 8520, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Laurent Hay
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - David Gilbert
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Jean Pesez
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Quentin D’Acremont
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Kevin Braeckmans
- grid.5342.00000 0001 2069 7798Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Quentin Thommen
- grid.503422.20000 0001 2242 6780CANTHER - Cancer
Heterogeneity Plasticity and Resistance to Therapies - UMR9020-UMR1277, Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France
| | - Emmanuel Courtade
- Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
3
|
Nanomaterial-mediated photoporation for intracellular delivery. Acta Biomater 2023; 157:24-48. [PMID: 36584801 DOI: 10.1016/j.actbio.2022.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Translocation of extrinsic molecules into living cells is becoming increasingly crucial in biological studies ranging from cell engineering to biomedical applications. The concerns regarding biosafety and immunogenicity for conventional vectors and physical methods yet challenge effective intracellular delivery. Here, we begin with an overview of approaches for trans-membrane delivery up to now. These methods are featured with a relatively mature application but usually encounter low cell survival. Our review then proposes an advanced application for nanomaterial-sensitized photoporation triggered with a laser. We cover the mechanisms, procedures, and outcomes of photoporation-induced intracellular delivery with a highlight on its versatility to different living cells. We hope the review discussed here encourages researchers to further improvement and applications for photoporation-induced intracellular delivery. STATEMENT OF SIGNIFICANCE.
Collapse
|
4
|
Bahari M, Mokhtari H, Yeganeh F. Stem Cell Therapy, the Market, the Opportunities and the Threat. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:310-319. [PMID: 38751658 PMCID: PMC11092897 DOI: 10.22088/ijmcm.bums.12.3.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 05/18/2024]
Abstract
Stem cell therapy is going to become the most widely used type of therapy in regenerative medicine. The stem cell therapy market has grown at an exponential rate in recent years. The purpose of the present paper is to review the stem cell market and the factors affecting it. The methods used included a literature review across reputable databases, and identifying articles and trusted financial reports related to the stem cell therapy market. Results show that the stem cell market growth rate is increasing, so that, the global stem cell market size was valued at US$297 million in 2022 and is anticipated to grow at a compound annual growth rate of 16.8% from 2022 to 2027, driven by factors such as clinical trials with promising results, increasing funding for stem cell research, growing number of technologies and facilities for cell therapy, and rising demand for regenerative medicine. However, the market also faces some challenges such as ethical concerns, regulatory hurdles, and the high cost of stem cell therapies and products. To enhance the development of the market further, policymakers and regulatory bodies must simplify the complicated process of obtaining regulatory approvals for clinical use. However, there are growing concerns about the increasing number of unapproved treatments using stem cells.
Collapse
Affiliation(s)
| | | | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Transient nuclear lamin A/C accretion aids in recovery from vapor nanobubble-induced permeabilisation of the plasma membrane. Cell Mol Life Sci 2022; 79:23. [PMID: 34984553 PMCID: PMC8727414 DOI: 10.1007/s00018-021-04099-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023]
Abstract
Vapor nanobubble (VNB) photoporation is a physical method for intracellular delivery that has gained significant interest in the past decade. It has successfully been used to introduce molecular cargo of diverse nature into different cell types with high throughput and minimal cytotoxicity. For translational purposes, it is important to understand whether and how photoporation affects cell homeostasis. To obtain a comprehensive view on the transcriptional rewiring that takes place after VNB photoporation, we performed a longitudinal shotgun RNA-sequencing experiment. Six hours after photoporation, we found a marked upregulation of LMNA transcripts as well as their protein products, the A-type lamins. At the same time point, we observed a significant increase in several heterochromatin marks, suggesting a global stiffening of the nucleus. These molecular features vanished 24 h after photoporation. Since VNB-induced chromatin condensation was prolonged in LMNA knockout cells, A-type lamins may be required for restoring the nucleus to its original state. Selective depletion of A-type lamins reduced cell viability after VNB photoporation, while pharmacological stimulation of LMNA transcription increased the percentage of successfully transfected cells that survived after photoporation. Therefore, our results suggest that cells respond to VNB photoporation by temporary upregulation of A-type lamins to facilitate their recovery.
Collapse
|
7
|
Shen W, Kalies S, Madrid M, Heisterkamp A, Mazur E. Intracellular Cargo Delivery Induced by Irradiating Polymer Substrates with Nanosecond-Pulsed Lasers. ACS Biomater Sci Eng 2021; 7:5129-5134. [PMID: 34606721 DOI: 10.1021/acsbiomaterials.1c00656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a great need in the biomedical field to efficiently, and cost-effectively, deliver membrane-impermeable molecules into the cellular cytoplasm. However, the cell membrane is a selectively permeable barrier, and large molecules often cannot pass through the phospholipid bilayer. We show that nanosecond laser-activated polymer surfaces of commercial polyvinyl tape and black polystyrene Petri dishes can transiently permeabilize cells for high-throughput, diverse cargo delivery of sizes of up to 150 kDa. The polymer surfaces are biocompatible and support normal cell growth of adherent cells. We determine the optimal irradiation conditions for poration, influx of fluorescent molecules into the cell, and post-treatment viability of the cells. The simple and low-cost substrates we use have no thin-metal structures, do not require cleanroom fabrication, and provide spatial selectivity and scalability for biomedical applications.
Collapse
Affiliation(s)
- Weilu Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Stefan Kalies
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Marinna Madrid
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alexander Heisterkamp
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Eric Mazur
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Ramon J, Xiong R, De Smedt SC, Raemdonck K, Braeckmans K. Vapor nanobubble-mediated photoporation constitutes a versatile intracellular delivery technology. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Wang S, Wang J, Ju T, Yang F, Qu K, Liu W, Wang Z. Study of NSCLC cell migration promoted by NSCLC-derived extracellular vesicle using atomic force microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1455-1462. [PMID: 33666600 DOI: 10.1039/d0ay02074e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs) secreted by cancer cells play a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes using chemical and biological methods. However, whether the mechanical properties of cancer cells change due to EVs remains poorly understood. This work studies the effects of mechanical changes in non-small cell lung cancer (NSCLC) cells after treatment with EVs on migration by atomic force microscopy (AFM). Different concentrations of EVs were added into the experimental groups based on co-culture experiments, while the control group was cultured without EVs for 48 h. Cellular migration was evaluated by wound healing experiments. The cellular morphology, cell stiffness and surface adhesion were investigated by AFM. Cytoskeleton changes were detected by fluorescence staining assay. By comparison to the control group, the cell migration was enhanced. After treatment with EVs, the cell length and height show an upward trend, and the adhesion force and Young's modulus show a downward trend, and filopodia were also detected in the cells. Overall, the EVs promoted the migration of NSCLC cells by regulating cells' physical properties and skeletal rearrangement.
Collapse
Affiliation(s)
- Shuwei Wang
- The First Hospital, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Dipalo M, Caprettini V, Bruno G, Caliendo F, Garma LD, Melle G, Dukhinova M, Siciliano V, Santoro F, De Angelis F. Membrane Poration Mechanisms at the Cell-Nanostructure Interface. ACTA ACUST UNITED AC 2019; 3:e1900148. [PMID: 32648684 DOI: 10.1002/adbi.201900148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/21/2019] [Indexed: 01/27/2023]
Abstract
3D vertical nanostructures have become one of the most significant methods for interfacing cells and the nanoscale and for accessing significant intracellular functionalities such as membrane potential. As this intracellular access can be induced by means of diverse cellular membrane poration mechanisms, it is important to investigate in detail the cell condition after membrane rupture for assessing the real effects of the poration techniques on the biological environment. Indeed, differences of the membrane dynamics and reshaping have not been observed yet when the membrane-nanostructure system is locally perturbed by, for instance, diverse membrane breakage events. In this work, new insights are provided into the membrane dynamics in case of two different poration approaches, optoacoustic- and electro-poration, both mediated by the same 3D nanostructures. The experimental results offer a detailed overview on the different poration processes in terms of electrical recordings and membrane conformation.
Collapse
Affiliation(s)
| | | | - Giulia Bruno
- Istituto Italiano di Tecnologia, Genoa, 16163, Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi. DIBRIS, Università degli Studi di Genova, Genova, 16126, Italy
| | - Fabio Caliendo
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Leonardo D Garma
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Giovanni Melle
- Istituto Italiano di Tecnologia, Genoa, 16163, Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi. DIBRIS, Università degli Studi di Genova, Genova, 16126, Italy
| | - Marina Dukhinova
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Velia Siciliano
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Francesca Santoro
- Center for Advacend Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | | |
Collapse
|
11
|
Abstract
Nanostructured devices are able to foster the technology for cell membrane poration. With the size smaller than a cell, nanostructures allow efficient poration on the cell membrane. Emerging nanostructures with various physical transduction have been demonstrated to accommodate effective intracellular delivery. Aside from improving poration and intracellular delivery performance, nanostructured devices also allow for the discovery of novel physiochemical phenomena and the biological response of the cell. This article provides a brief introduction to the principles of nanostructured devices for cell poration and outlines the intracellular delivery capability of the technology. In the future, we envision more exploration on new nanostructure designs and creative applications in biomedical fields.
Collapse
Affiliation(s)
- Apresio K Fajrial
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309 United States of America
| | | |
Collapse
|
12
|
Raun A, Saklayen N, Zgrabik C, Shen W, Madrid M, Huber M, Hu E, Mazur E. A comparison of inverted and upright laser-activated titanium nitride micropyramids for intracellular delivery. Sci Rep 2018; 8:15595. [PMID: 30349063 PMCID: PMC6197185 DOI: 10.1038/s41598-018-33885-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
The delivery of biomolecules into cells relies on porating the plasma membrane to allow exterior molecules to enter the cell via diffusion. Various established delivery methods, including electroporation and viral techniques, come with drawbacks such as low viability or immunotoxicity, respectively. An optics-based delivery method that uses laser pulses to excite plasmonic titanium nitride (TiN) micropyramids presents an opportunity to overcome these shortcomings. This laser excitation generates localized nano-scale heating effects and bubbles, which produce transient pores in the cell membrane for payload entry. TiN is a promising plasmonic material due to its high hardness and thermal stability. In this study, two designs of TiN micropyramid arrays are constructed and tested. These designs include inverted and upright pyramid structures, each coated with a 50-nm layer of TiN. Simulation software shows that the inverted and upright designs reach temperatures of 875 °C and 307 °C, respectively, upon laser irradiation. Collectively, experimental results show that these reusable designs achieve maximum cell poration efficiency greater than 80% and viability greater than 90% when delivering calcein dye to target cells. Overall, we demonstrate that TiN microstructures are strong candidates for future use in biomedical devices for intracellular delivery and regenerative medicine.
Collapse
Affiliation(s)
- Alexander Raun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Nabiha Saklayen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Christine Zgrabik
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Weilu Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Marinna Madrid
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Marinus Huber
- Department of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Evelyn Hu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Eric Mazur
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
13
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|