1
|
Gong Z, Shi Y, Liu J, Sabesan R, Wang RK. Light-adapted flicker-optoretinography based on raster-scan optical coherence tomography towards clinical translation. BIOMEDICAL OPTICS EXPRESS 2024; 15:6036-6051. [PMID: 39421778 PMCID: PMC11482172 DOI: 10.1364/boe.538481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Optoretinography (ORG) is a promising non-invasive and objective technique for assessing retinal function by measuring its response to light stimulation. Optical coherence tomography (OCT) has emerged as a promising tool for implementing ORG due to its three-dimensional imaging capabilities, high sensitivity to nanometer-scale changes induced by light stimulation, and clinical availability. Although ORG has proven feasible in laboratory settings, research-grade OCT systems lack satisfactory usability and cost-effectiveness to be clinically viable. Standard clinical raster-scan OCT systems, with their limited imaging speed, fall short of the requirements for measuring rapid ORG responses. To bridge this gap, we introduce a flicker-ORG modality based on a raster-scan OCT system that resembles standard clinical OCT. This system overcomes speed limitations through an innovative two-stage scanning protocol coupled with a 600 kHz swept source, enabling repeated volume imaging and precise retinal activity measurements over a finite area. Additionally, the light-adapted ORG strategy eliminates the need for dark adaptation, allowing examinations under photopic conditions and thus improving patient compliance. We tested this new ORG method by measuring flicker-induced photoreceptor responses in five healthy subjects. The results demonstrated high repeatability and revealed dependencies of the ORG response on flicker frequency and retinal eccentricity. These findings, combined with the system's utility, cost-effectiveness, and ease of integration into existing technologies, underscore its substantial potential for clinical application.
Collapse
Affiliation(s)
- Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Jian Liu
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
2
|
Zhang L, Dong R, Zawadzki RJ, Zhang P. Volumetric data analysis enabled spatially resolved optoretinogram to measure the functional signals in the living retina. JOURNAL OF BIOPHOTONICS 2022; 15:e202100252. [PMID: 34817116 PMCID: PMC8901551 DOI: 10.1002/jbio.202100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
Optoretinogram, a technique in which optical coherence tomography (OCT) is used to measure retinal functions in response to a visible light stimulus, can be a potentially useful tool to quantify retinal health alterations. Existing experimental studies on animals have focused on measuring the global retinal response by transversally averaging 3D data across the retina, which minimizes the spatial resolution of the signals, and limits the signal-to-noise ratio because only central B-scans are collected and analyzed. These problems were addressed in this study by collecting volumetric data to probe functional signals and developing an improved 3D registration approach to align such series-acquired OCT volumes. These data were then divided into small blocks and subject to a spatiotemporal analysis, whose results confirmed the spatial-dependence of functional signals. By further averaging, the overall measurement accuracies for the position and the scattering signals were estimated to be approximately 30 nm and 1.1 %, respectively. With improved accuracy, this method revealed certain novel functional signals that have not been previously reported. In conclusion, this work provides a powerful tool to monitor retinal local and global functional changes in aging, diseased, or treated rodent eyes.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China
| | - Rongyao Dong
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China
| | - Robert J. Zawadzki
- UC Davis Eye-Pod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, 95616, United States
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California, 95817, United States
| | - Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China
- UC Davis Eye-Pod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, 95616, United States
- Correspondence: Pengfei Zhang, Dalian University of Technology, 116024, China,
| |
Collapse
|
3
|
Kim TH, Wang B, Lu Y, Son T, Yao X. Functional optical coherence tomography enables in vivo optoretinography of photoreceptor dysfunction due to retinal degeneration. BIOMEDICAL OPTICS EXPRESS 2020; 11:5306-5320. [PMID: 33014616 PMCID: PMC7510876 DOI: 10.1364/boe.399334] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 05/16/2023]
Abstract
Stimulus-evoked intrinsic optical signal (IOS), which occurs almost immediately after the onset of retinal stimulus has been observed in retinal photoreceptors, promises to be a unique biomarker for objective optoretinography (ORG) of photoreceptor function. We report here the first-time in vivo ORG detection of photoreceptor dysfunction due to retinal degeneration. A custom-designed optical coherence tomography (OCT) was employed for longitudinal ORG monitoring of photoreceptor-IOS distortions in retinal degeneration mice. Depth-resolved OCT analysis confirmed the outer segment (OS) as the physical source of the photoreceptor-IOS. Comparative ERG measurement verified the phototransduction activation as the physiological correlator of the photoreceptor-IOS. Histological examination revealed disorganized OS discs, i.e. the pathological origin of the photoreceptor-IOS distortion.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Yao X, Kim TH. Fast intrinsic optical signal correlates with activation phase of phototransduction in retinal photoreceptors. Exp Biol Med (Maywood) 2020; 245:1087-1095. [PMID: 32558598 PMCID: PMC7400727 DOI: 10.1177/1535370220935406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT As the center of phototransduction, retinal photoreceptors are responsible for capturing and converting photon energy to bioelectric signals for following visual information processing in the retina. This article summarizes experimental observation and discusses biophysical mechanism of fast photoreceptor-intrinsic optical signal (IOS) correlated with early phase of phototransduction. Quantitative imaging of fast photoreceptor-IOS may provide objective optoretinography to advance the study and diagnosis of age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and other eye diseases that can cause photoreceptor dysfunctions.
Collapse
Affiliation(s)
- Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Yao X, Son T, Kim TH, Lu Y. Functional optical coherence tomography of retinal photoreceptors. Exp Biol Med (Maywood) 2018; 243:1256-1264. [PMID: 30482040 DOI: 10.1177/1535370218816517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Retinal photoreceptors are the primary target of age-related macular degeneration (AMD) which is the leading cause of severe vision loss and legal blindness. An objective method for functional assessment of photoreceptor physiology can benefit early detection and better treatment evaluation of AMD and other eye diseases that are known to cause photoreceptor dysfunctions. This article summarizes in vitro study of IOS mechanisms and in vivo demonstration of IOS imaging of intact animals. Further development of the functional IOS imaging may provide a revolutionary solution to achieve objective assessment of human photoreceptors.
Collapse
Affiliation(s)
- Xincheng Yao
- 1 Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.,2 Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Taeyoon Son
- 1 Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tae-Hoon Kim
- 1 Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yiming Lu
- 1 Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
6
|
Lu Y, Liu C, Yao X. In vivo super-resolution imaging of transient retinal phototropism evoked by oblique light stimulation. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-4. [PMID: 29752801 PMCID: PMC5946809 DOI: 10.1117/1.jbo.23.5.050502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/19/2018] [Indexed: 05/28/2023]
Abstract
Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for objective assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its subcellular signal magnitude and fast time course. We report here a virtually structured detection-based super-resolution ophthalmoscope to achieve subcellular spatial resolution and millisecond temporal resolution for in vivo imaging of TRP. Spatiotemporal properties of in vivo TRP were characterized corresponding to variable light intensity stimuli, confirming that TRP is tightly correlated with early stages of phototransduction.
Collapse
Affiliation(s)
- Yiming Lu
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Changgeng Liu
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States
| |
Collapse
|
7
|
Lu Y, Wang B, Pepperberg DR, Yao X. Stimulus-evoked outer segment changes occur before the hyperpolarization of retinal photoreceptors. BIOMEDICAL OPTICS EXPRESS 2017; 8:38-47. [PMID: 28101399 PMCID: PMC5231306 DOI: 10.1364/boe.8.000038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 05/22/2023]
Abstract
Transient retinal phototropism (TRP) has been predominantly observed in rod photoreceptors activated by oblique visible light stimulation. Dynamic confocal microscopy and optical coherence tomography (OCT) have revealed rod outer segment (ROS) movement as the physical source of TRP. However, the physiological source of ROS movement is still not well understood. In this study, concurrent near-infrared imaging of TRP and electroretinogram (ERG) measurement of retinal electrophysiology revealed that ROS movement occurs before the onset of the ERG a-wave, which is known to reflect the hyperpolarization of retinal photoreceptors. Moreover, substitution of normal superfusing medium with low-sodium medium reversibly blocked the photoreceptor ERG a-wave, but largely preserved the stimulus-evoked ROS movements. Our experimental results and theoretical analysis indicate that early, disc-based stages of the phototransduction cascade, which occur before the hyperpolarization of retinal photoreceptors, contribute to the TRP associated ROS movement.
Collapse
Affiliation(s)
- Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David R. Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Wang B, Lu Y, Yao X. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:96010. [PMID: 27653936 PMCID: PMC5030472 DOI: 10.1117/1.jbo.21.9.096010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 05/22/2023]
Abstract
Intrinsic optical signal (IOS) imaging promises a noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, it is essential to understand anatomic and physiological sources of retinal IOSs and to establish the relationship between IOS distortions and eye diseases. The purpose of this study was designed to demonstrate the feasibility of <italic<in vivo</italic< IOS imaging of mouse models. A high spatiotemporal resolution spectral domain optical coherence tomography (SD-OCT) was employed for depth-resolved retinal imaging. A custom-designed animal holder equipped with ear bar and bite bar was used to minimize eye movements. Dynamic OCT imaging revealed rapid IOS from the photoreceptor’s outer segment immediately after the stimulation delivery, and slow IOS changes were observed from inner retinal layers. Comparative photoreceptor IOS and electroretinography recordings suggested that the fast photoreceptor IOS may be attributed to the early stage of phototransduction before the hyperpolarization of retinal photoreceptor.
Collapse
Affiliation(s)
- Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgan Street, Chicago, Illinois 60607, United States
| | - Yiming Lu
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgan Street, Chicago, Illinois 60607, United States
| | - Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgan Street, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, 1855 West Taylor Street, Chicago, Illinois 60612, United States
- Address all correspondence to: Xincheng Yao, E-mail:
| |
Collapse
|
9
|
Zhao X, Thapa D, Wang B, Lu Y, Gai S, Yao X. Stimulus-evoked outer segment changes in rod photoreceptors. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:65006. [PMID: 27334933 PMCID: PMC4917604 DOI: 10.1117/1.jbo.21.6.065006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 05/21/2023]
Abstract
Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Hebei University, College of Physics Science and Technology, Hebei Key Lab of Optic-Electronic Information Materials, Baoding 071002, China
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Damber Thapa
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Yiming Lu
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Shaoyan Gai
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Xincheng Yao
- Hebei University, College of Physics Science and Technology, Hebei Key Lab of Optic-Electronic Information Materials, Baoding 071002, China
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois 60612, United States
- Address all correspondence to: Xincheng Yao, E-mail:
| |
Collapse
|
10
|
Zhang QX, He XJ, Wong HC, Kindt KS. Functional calcium imaging in zebrafish lateral-line hair cells. Methods Cell Biol 2016; 133:229-52. [PMID: 27263415 DOI: 10.1016/bs.mcb.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sensory hair-cell development, function, and regeneration are fundamental processes that are challenging to study in mammalian systems. Zebrafish are an excellent alternative model to study hair cells because they have an external auxiliary organ called the lateral line. The hair cells of the lateral line are easily accessible, which makes them suitable for live, function-based fluorescence imaging. In this chapter, we describe methods to perform functional calcium imaging in zebrafish lateral-line hair cells. We compare genetically encoded calcium indicators that have been used previously to measure calcium in lateral-line hair cells. We also outline equipment required for calcium imaging and compare different imaging systems. Lastly, we discuss how to set up optimal imaging parameters and how to process and visualize calcium signals. Overall, using these methods, in vivo calcium imaging is a powerful tool to examine sensory hair-cell function in an intact organism.
Collapse
Affiliation(s)
- Q X Zhang
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - X J He
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - H C Wong
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - K S Kindt
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| |
Collapse
|
11
|
Zhao X, Thapa D, Wang B, Gai S, Yao X. Biophysical mechanism of transient retinal phototropism in rod photoreceptors. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9706:97061O. [PMID: 28163347 PMCID: PMC5289741 DOI: 10.1117/12.2209144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Physics Science and Technology, Hebei University, Baoding, China 071002
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
| | - Damber Thapa
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
| | - Shaoyan Gai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL USA 60612
| |
Collapse
|
12
|
Yao X, Wang B. Intrinsic optical signal imaging of retinal physiology: a review. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:090901. [PMID: 26405819 PMCID: PMC4689108 DOI: 10.1117/1.jbo.20.9.090901] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 05/09/2023]
Abstract
Intrinsic optical signal (IOS) imaging promises to be a noninvasive method for high-resolution examination of retinal physiology, which can advance the study and diagnosis of eye diseases. While specialized optical instruments are desirable for functional IOS imaging of retinal physiology, in depth understanding of multiple IOS sources in the complex retinal neural network is essential for optimizing instrument designs. We provide a brief overview of IOS studies and relationships in rod outer segment suspensions, isolated retinas, and intact eyes. Recent developments of line-scan confocal and functional optical coherence tomography (OCT) instruments have allowed in vivo IOS mapping of photoreceptor physiology. Further improvements of the line-scan confocal and functional OCT systems may provide a feasible solution to pursue functional IOS mapping of human photoreceptors. Some interesting IOSs have already been detected in inner retinal layers, but better development of the IOS instruments and software algorithms is required to achieve optimal physiological assessment of inner retinal neurons.
Collapse
Affiliation(s)
- Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois 60612, United States
| | - Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| |
Collapse
|
13
|
Zhang Q, Lu R, Wang B, Messinger JD, Curcio CA, Yao X. Functional optical coherence tomography enables in vivo physiological assessment of retinal rod and cone photoreceptors. Sci Rep 2015; 5:9595. [PMID: 25901915 PMCID: PMC4894434 DOI: 10.1038/srep09595] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/05/2015] [Indexed: 11/09/2022] Open
Abstract
Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Rongwen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Benquan Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeffrey D. Messinger
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
14
|
Abstract
Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches-including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy-have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact-free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina.
Collapse
Affiliation(s)
- Yanan Zhi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
15
|
Wang B, Zhang Q, Lu R, Zhi Y, Yao X. Functional optical coherence tomography reveals transient phototropic change of photoreceptor outer segments. OPTICS LETTERS 2014; 39:6923-6. [PMID: 25503031 PMCID: PMC4428573 DOI: 10.1364/ol.39.006923] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Dynamic near infrared microscopy has revealed transient retinal phototropism (TRP) correlated with oblique light stimulation. Here, by developing a hybrid confocal microscopy and optical coherence tomography (OCT), we tested sub-cellular source of the TRP in living frog retina. Dynamic confocal microscopy and OCT consistently revealed photoreceptor outer segments as the anatomic source of the TRP. Further investigation of the TRP can provide insights in better understanding of Stiles-Crawford effect (SCE) on rod and cone systems, and may also promise an intrinsic biomarker for early detection of eye diseases that can produce photoreceptor dysfunction.
Collapse
Affiliation(s)
- Benquan Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AAlabama 35294, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Qiuxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AAlabama 35294, USA
| | - Rongwen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AAlabama 35294, USA
| | - Yanan Zhi
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AAlabama 35294, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AAlabama 35294, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
16
|
Lu R, Levy AM, Zhang Q, Pittler SJ, Yao X. Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:106013. [PMID: 24165739 PMCID: PMC3809571 DOI: 10.1117/1.jbo.18.10.106013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/03/2013] [Indexed: 05/05/2023]
Abstract
Stiles-Crawford effect (SCE) is exclusively observed in cone photoreceptors, but why the SCE is absent in rod photoreceptors is still a mystery. In this study, we employed dynamic near infrared light imaging to monitor photoreceptor kinetics in freshly isolated frog and mouse retinas stimulated by oblique visible light flashes. It was observed that retinal rods could rapidly (onset: ∼10 ms for frog and 5 ms for mouse; time-to-peak: ∼200 ms for frog and 30 ms for mouse) shift toward the direction of the visible light, which might quickly compensate for the loss of luminous efficiency due to oblique illumination. In contrast, such directional movement was negligible in retinal cones. Moreover, transient rod phototropism could contribute to characteristic intrinsic optical signal (IOS). We anticipate that further study of the transient rod phototropism may not only provide insight into better understanding of the nature of vision but also promise an IOS biomarker for functional mapping of rod physiology at high resolution.
Collapse
Affiliation(s)
- Rongwen Lu
- University of Alabama at Birmingham, Department of Biomedical Engineering, Birmingham, Alabama 35294
| | - Alexander M. Levy
- University of Alabama at Birmingham, Department of Biomedical Engineering, Birmingham, Alabama 35294
| | - Qiuxiang Zhang
- University of Alabama at Birmingham, Department of Biomedical Engineering, Birmingham, Alabama 35294
| | - Steven J. Pittler
- University of Alabama at Birmingham, Department of Vision Sciences, Birmingham, Alabama 35294
| | - Xincheng Yao
- University of Alabama at Birmingham, Department of Biomedical Engineering, Birmingham, Alabama 35294
- University of Alabama at Birmingham, Department of Vision Sciences, Birmingham, Alabama 35294
- Address all correspondence to: Xincheng Yao, University of Alabama at Birmingham, Department of Biomedical Engineering, Birmingham, Alabama 35294. Tel: (205) 996-7459; Fax: (205) 934-3425; E-mail:
| |
Collapse
|
17
|
Lu RW, Wang BQ, Zhang QX, Yao XC. Super-resolution scanning laser microscopy through virtually structured detection. BIOMEDICAL OPTICS EXPRESS 2013; 4:1673-82. [PMID: 24049688 PMCID: PMC3771838 DOI: 10.1364/boe.4.001673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 05/07/2023]
Abstract
High resolution microscopy is essential for advanced study of biological structures and accurate diagnosis of medical diseases. The spatial resolution of conventional microscopes is light diffraction limited. Structured illumination has been extensively explored to break the diffraction limit in wide field light microscopy. However, deployable application of the structured illumination in scanning laser microscopy is challenging due to the complexity of the illumination system and possible phase errors in sequential illumination patterns required for super-resolution reconstruction. We report here a super-resolution scanning laser imaging system which employs virtually structured detection (VSD) to break the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost and phase-artifact free strategy to achieve super-resolution in scanning laser microscopy.
Collapse
Affiliation(s)
- Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- These authors contributed equally to this work
| | - Ben-Quan Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- These authors contributed equally to this work
| | - Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
18
|
Zhang QX, Lu RW, Curcio CA, Yao XC. In vivo confocal intrinsic optical signal identification of localized retinal dysfunction. Invest Ophthalmol Vis Sci 2012; 53:8139-45. [PMID: 23150616 PMCID: PMC3522438 DOI: 10.1167/iovs.12-10732] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 11/04/2012] [Indexed: 01/20/2023] Open
Abstract
PURPOSE The purposes of this study were to investigate the physiological mechanism of stimulus-evoked fast intrinsic optical signals (IOSs) recorded in dynamic confocal imaging of the retina, and to demonstrate the feasibility of in vivo confocal IOS mapping of localized retinal dysfunctions. METHODS A rapid line-scan confocal ophthalmoscope was constructed to achieve in vivo confocal IOS imaging of frog (Rana pipiens) retinas at cellular resolution. In order to investigate the physiological mechanism of confocal IOS, comparative IOS and electroretinography (ERG) measurements were made using normal frog eyes activated by variable-intensity stimuli. A dynamic spatiotemporal filtering algorithm was developed to reject the contamination of hemodynamic changes on fast IOS recording. Laser-injured frog eyes were employed to test the potential of confocal IOS mapping of localized retinal dysfunctions. RESULTS Comparative IOS and ERG experiments revealed a close correlation between the confocal IOS and retinal ERG, particularly the ERG a-wave, which has been widely used to evaluate photoreceptor function. IOS imaging of laser-injured frog eyes indicated that the confocal IOS could unambiguously detect localized (30 μm) functional lesions in the retina before a morphological abnormality is detectable. CONCLUSIONS The confocal IOS predominantly results from retinal photoreceptors, and can be used to map localized photoreceptor lesion in laser-injured frog eyes. We anticipate that confocal IOS imaging can provide applications in early detection of age-related macular degeneration, retinitis pigmentosa, and other retinal diseases that can cause pathological changes in the photoreceptors.
Collapse
Affiliation(s)
| | - Rong-Wen Lu
- From the Departments of Biomedical Engineering
| | | | - Xin-Cheng Yao
- From the Departments of Biomedical Engineering
- Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Li YC, Luo JM, Lu RW, Liu KM, Levy AM, Yao XC. Dynamic intrinsic optical signal monitoring of electrically stimulated inner retinal neural response. JOURNAL OF MODERN OPTICS 2012; 59:10.1080/09500340.2012.687464. [PMID: 24403725 PMCID: PMC3882170 DOI: 10.1080/09500340.2012.687464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dynamic monitoring of stimulus-evoked inner neural response is important for functional validation of stimulation protocols of retinal prosthetic devices. In this paper, we demonstrate label-free intrinsic optical signal (IOS) imaging of electrically stimulated inner neural response in freshly isolated mouse retinas. While single-pulse stimulation evoked rapid IOS within 20 ms, pulse-train stimulation indicated that the fast IOS response can follow frequency stimulation up to at least 8 Hz. Fast IOS imaging promises a noninvasive method for high resolution examination of electrically evoked retinal response, without artifact contamination of electrical stimulus.
Collapse
Affiliation(s)
- Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jian-Min Luo
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68138, USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kai-Mao Liu
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander Miles Levy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
20
|
Yao XC, Cui WX, Li YC, Zhang W, Lu RW, Thompson A, Amthor F, Wang XJ. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals. JOURNAL OF MODERN OPTICS 2012; 59:10.1080/09500340.2012.674564. [PMID: 24363496 PMCID: PMC3867949 DOI: 10.1080/09500340.2012.674564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75mM) and high-dose (5.5mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.
Collapse
Affiliation(s)
- Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Corresponding author.
| | - Wan-Xing Cui
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Zhang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anthony Thompson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Franklin Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xu-Jing Wang
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Schallek JB, McLellan GJ, Viswanathan S, Ts'o DY. Retinal intrinsic optical signals in a cat model of primary congenital glaucoma. Invest Ophthalmol Vis Sci 2012; 53:1971-81. [PMID: 22395886 DOI: 10.1167/iovs.11-8299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine the impact of reduced inner retinal function and breed on intrinsic optical signals in cats. METHODS Retinal intrinsic optical signals were recorded from anesthetized cats with a modified fundus camera. Near infrared light (NIR, 700-900 nm) was used to illuminate the retina while a charge-coupled device (CCD) camera captured the NIR reflectance of the retina. Visible stimuli (540 nm) evoked patterned changes in NIR retinal reflectance. NIR intrinsic signals were compared across three subject groups: two Siamese cats with primary congenital glaucoma (PCG), a control Siamese cat without glaucoma, and a control group of seven normally pigmented cats. Intraocular pressure (IOP), pattern electroretinogram, and optical coherence tomography measurements were evaluated to confirm the inner retinal deficit in PCG cats. RESULTS Stimulus-evoked, NIR retinal reflectance signals were observed in PCG cats despite severe degeneration of the nerve fiber layer and inner retinal function. The time course, spectral dependence, and spatial profile of signals imaged in PCG cats were similar to signals measured from normal and Siamese control cats. CONCLUSIONS Despite increased IOP, reduced nerve fiber layer thickness and ganglion cell function, intrinsic optical signals persist in cats affected with PCG. The mechanisms giving rise to intrinsic signals remain despite inner retinal damage. Signal strength was reduced in all Siamese cats compared to controls, suggesting that reduced intrinsic signals in PCG cats represent a difference between breeds rather than loss of ganglion cells. These results corroborated previous findings that retinal ganglion cells are not the dominant source of intrinsic optical signals of the retina.
Collapse
Affiliation(s)
- Jesse B Schallek
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.
| | | | | | | |
Collapse
|
22
|
Zhang QX, Zhang Y, Lu RW, Li YC, Pittler SJ, Kraft TW, Yao XC. Comparative intrinsic optical signal imaging of wild-type and mutant mouse retinas. OPTICS EXPRESS 2012; 20:7646-54. [PMID: 22453443 PMCID: PMC3387536 DOI: 10.1364/oe.20.007646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional measurement is important for retinal study and disease diagnosis. Transient intrinsic optical signal (IOS) response, tightly correlated with functional stimulation, has been previously detected in normal retinas. In this paper, comparative IOS imaging of wild-type (WT) and rod-degenerated mutant mouse retinas is reported. Both 2-month and 1-year-old mice were measured. In 2-month-old mutant mice, time course and peak value of the stimulus-evoked IOS were significantly delayed (relative to stimulus onset) and reduced, respectively, compared to age matched WT mice. In 1-year-old mutant mice, stimulus-evoked IOS was totally absent. However, enhanced spontaneous IOS responses, which might reflect inner neural remodeling in diseased retina, were observed in both 2-month and 1-year-old mutant retinas. Our experiments demonstrate the potential of using IOS imaging for noninvasive and high resolution identification of disease-associated retinal dysfunctions. Moreover, high spatiotemporal resolution IOS imaging may also lead to advanced understanding of disease-associated neural remodeling in the retina.
Collapse
Affiliation(s)
- Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Youwen Zhang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Steven J. Pittler
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Timothy W. Kraft
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| |
Collapse
|
23
|
Yao XC, Li YC. Functional imaging of retinal photoreceptors and inner neurons using stimulus-evoked intrinsic optical signals. Methods Mol Biol 2012; 884:277-85. [PMID: 22688714 PMCID: PMC3644518 DOI: 10.1007/978-1-61779-848-1_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Retinal development is a dynamic process both anatomically and functionally. High-resolution imaging and dynamic monitoring of photoreceptors and inner neurons can provide important information regarding the structure and function of the developing retina. In this chapter, we describe intrinsic optical signal (IOS) imaging as a high spatiotemporal resolution method for functional study of living retinal tissues. IOS imaging is based on near infrared (NIR) light detection of stimulus-evoked transient change of inherent optical characteristics of the cells. With no requirement for exogenous biomarkers, IOS imaging is totally noninvasive for functional mapping of stimulus-evoked spatiotemporal dynamics of the photoreceptors and inner retinal neurons.
Collapse
Affiliation(s)
- Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | |
Collapse
|
24
|
Akhlagh Moayed A, Hariri S, Choh V, Bizheva K. Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:016011. [PMID: 22352661 DOI: 10.1117/1.jbo.17.1.016011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Visually evoked fast intrinsic optical signals (IOSs) were recorded for the first time in vivo from all layers of healthy chicken retina by using a combined functional optical coherence tomography (fOCT) and electroretinography (ERG) system. The fast IOSs were observed to develop within ∼5 ms from the on-set of the visual stimulus, whereas slow IOSs were measured up to 1 s later. The visually evoked IOSs and ERG traces were recorded simultaneously, and a clear correlation was observed between them. The ability to measure visually evoked fast IOSs non-invasively and in vivo from individual retinal layers could significantly improve the understanding of the complex communication between different retinal cell types in healthy and diseased retinas.
Collapse
Affiliation(s)
- Alireza Akhlagh Moayed
- University of Waterloo, Department of Physics and Astronomy, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | | | | | | |
Collapse
|
25
|
Zhang QX, Lu RW, Li YG, Yao XC. In vivo confocal imaging of fast intrinsic optical signals correlated with frog retinal activation. OPTICS LETTERS 2011; 36:4692-4. [PMID: 22139286 PMCID: PMC3258673 DOI: 10.1364/ol.36.004692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Using freshly isolated animal retinas, we have conducted a series of experiments to test fast intrinsic optical signals (IOSs) that have time courses comparable to electrophysiological kinetics. In this Letter, we demonstrate the feasibility of in vivo imaging of fast IOSs in intact frogs. A rapid line-scan confocal ophthalmoscope was constructed to achieve high-speed IOS recording. By rejecting out-of-focus background light, the line-scan confocal imager provided the resolution to differentiate individual photoreceptors in vivo. Rapid confocal imaging disclosed robust IOSs with time courses comparable to retinal electroretinogram kinetics. High-resolution IOS images revealed both positive (increasing) and negative (decreasing) light responses, with subcellular complexity.
Collapse
Affiliation(s)
- Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Yang-Guo Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Vision Science Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
26
|
Lu RW, Li YC, Ye T, Strang C, Keyser K, Curcio CA, Yao XC. Two-photon excited autofluorescence imaging of freshly isolated frog retinas. BIOMEDICAL OPTICS EXPRESS 2011; 2:1494-503. [PMID: 21698013 PMCID: PMC3114218 DOI: 10.1364/boe.2.001494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/07/2011] [Accepted: 05/07/2011] [Indexed: 05/07/2023]
Abstract
The purpose of this study was to investigate cellular sources of autofluorescence signals in freshly isolated frog (Rana pipiens) retinas. Equipped with an ultrafast laser, a laser scanning two-photon excitation fluorescence microscope was employed for sub-cellular resolution examination of both sliced and flat-mounted retinas. Two-photon imaging of retinal slices revealed autofluorescence signals over multiple functional layers, including the photoreceptor layer (PRL), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Using flat-mounted retinas, depth-resolved imaging of individual retinal layers further confirmed multiple sources of autofluorescence signals. Cellular structures were clearly observed at the PRL, ONL, INL, and GCL. At the PRL, the autofluorescence was dominantly recorded from the intracellular compartment of the photoreceptors; while mixed intracellular and extracellular autofluorescence signals were observed at the ONL, INL, and GCL. High resolution autofluorescence imaging clearly revealed mosaic organization of rod and cone photoreceptors; and sub-cellular bright autofluorescence spots, which might relate to connecting cilium, was observed in the cone photoreceptors only. Moreover, single-cone and double-cone outer segments could be directly differentiated.
Collapse
Affiliation(s)
- Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tong Ye
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christianne Strang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kent Keyser
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
27
|
Lu RW, Zhang QX, Yao XC. Circular polarization intrinsic optical signal recording of stimulus-evoked neural activity. OPTICS LETTERS 2011; 36:1866-8. [PMID: 21593917 PMCID: PMC3197726 DOI: 10.1364/ol.36.001866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Linear polarization intrinsic optical signal (LP-IOS) measurement can provide sensitive detection of neural activities in stimulus-activated neural tissues. However, the LP-IOS magnitude and signal-to-noise ratio (SNR) are highly correlated with the nerve orientation relative to the polarization plane of the incident light. Because of the complexity of orientation dependency, LP-IOS optimization and outcome interpretation are time consuming and complicated. In this study, we demonstrate the feasibility of circular polarization intrinsic optical signal (CP-IOS) measurement. Our theoretical modeling and experimental investigation indicate that CP-IOS magnitude and SNR are independent from the nerve orientation. Therefore, CP-IOS promises a practical method for polarization IOS imaging of complex neural systems.
Collapse
|
28
|
Schallek J, Ts'o D. Blood contrast agents enhance intrinsic signals in the retina: evidence for an underlying blood volume component. Invest Ophthalmol Vis Sci 2011; 52:1325-35. [PMID: 21051719 DOI: 10.1167/iovs.10-5215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine the extent to which neurovascular coupling contributes to stimulus-evoked intrinsic signals in the retina. METHODS The retinas of five adult cats were examined in vivo. Animals were anesthetized and paralyzed for imaging stability. The retinas were imaged through a modified fundus camera capable of presenting patterned visual stimuli simultaneous with a diffuse near infrared (NIR). RESULTS Injections of nigrosin increased signal strength by as much as 36.3%, and indocyanine green (ICG) increased signal magnitudes by as much as 38.1%. In both cases, intrinsic signals maintained a colocalized pattern of activation corresponding to the visual stimulus presented. The time course of the evoked signals remained unaltered. The spectral dependency of signal enhancement mirrored the absorption spectra of the injected dyes. CONCLUSIONS The data are consistent with a neurovascular coupling effect in the retina. Patterned visual stimuli evoke colocalized NIR reflectance changes. The patterned decrease in reflectance was enhanced after nigrosin or ICG was injected into the systemic circulation. These findings suggest stimulus-evoked changes in blood volume underlie a component of the retinal intrinsic signals.
Collapse
Affiliation(s)
- Jesse Schallek
- Department of Neurosurgery, Upstate Medical University, Syracuse, New York, USA.
| | | |
Collapse
|
29
|
Li YC, Cui WX, Wang XJ, Amthor F, Lu RW, Thompson A, Yao XC. Intrinsic optical signal imaging of glucose-stimulated insulin secreting β-cells. OPTICS EXPRESS 2011; 19:99-106. [PMID: 21263546 PMCID: PMC3090649 DOI: 10.1364/oe.19.000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Simultaneous monitoring of many functioning β-cells is essential for understanding β-cell dysfunction as an early event in the progression to diabetes. Intrinsic optical signal (IOS) imaging has been shown to allow high resolution detection of stimulus-evoked physiological responses in the retina and other neural tissues. In this paper, we demonstrate the feasibility of using IOS imaging for functional examination of insulin secreting INS-1 cells, a popular model for investigating diabetes associated β-cell dysfunction. Our experiments indicate that IOS imaging permits simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid IOS image sequences revealed transient optical responses that had time courses tightly correlated with the glucose stimulation.
Collapse
Affiliation(s)
- Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
- These authors have equivalent contributions
| | - Wan-Xing Cui
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
- These authors have equivalent contributions
| | - Xu-Jing Wang
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Franklin Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Anthony Thompson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| |
Collapse
|
30
|
Zhang QX, Wang JY, Liu L, Yao XC. Microlens array recording of localized retinal responses. OPTICS LETTERS 2010; 35:3838-40. [PMID: 21082014 PMCID: PMC3001029 DOI: 10.1364/ol.35.003838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We designed a rapid functional imager for the parallel recording of localized intrinsic optical signals (IOSs). This imager used a microlens array (MLA)-based illuminator to deliver visible stimulus light and near-infrared (NIR) recording light simultaneously. The parfocal configuration of the stimulus and recording light illumination enabled confocal recording of the stimulus-evoked IOSs. Because the MLA stimulation/recording spots were widely separated on the retina, and only the photoreceptors within the MLA stimulation/recording spots were stimulated, the potential IOS cross talk effect among neighboring retinal areas was minimized. Our experiments revealed robust IOS activities tightly correlated with localized retinal responses.
Collapse
Affiliation(s)
- Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jin-Yu Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lei Liu
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
31
|
Li YC, Strang C, Amthor FR, Liu L, Li YG, Zhang QX, Keyser K, Yao XC. Parallel optical monitoring of visual signal propagation from the photoreceptors to the inner retina layers. OPTICS LETTERS 2010; 35:1810-2. [PMID: 20517424 PMCID: PMC2922879 DOI: 10.1364/ol.35.001810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding of visual signal processing can benefit from simultaneous measurement of different types of retinal neurons working together. In this Letter, we demonstrate that intrinsic optical signal (IOS) imaging of frog retina slices allows simultaneous observation of stimulus-evoked responses propagating from the photoreceptors to the inner neurons. High-resolution imaging revealed robust IOSs at the photoreceptor, the inner plexiform, and the ganglion cell layers. While IOSs of the photoreceptor layer were mainly confined to the area directly stimulated by the visible light, IOSs of the inner retinal layers spread from the stimulus site into relatively large areas with a characteristic near-to-far time course.
Collapse
Affiliation(s)
- Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christianne Strang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Franklin R. Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lei Liu
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yang-Guo Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kent Keyser
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
- Corresponding author:
| |
Collapse
|
32
|
Li YG, Zhang QX, Liu L, Amthor FR, Yao XC. High spatiotemporal resolution imaging of fast intrinsic optical signals activated by retinal flicker stimulation. OPTICS EXPRESS 2010; 18:7210-8. [PMID: 20389742 PMCID: PMC2927367 DOI: 10.1364/oe.18.007210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/11/2010] [Accepted: 02/23/2010] [Indexed: 05/21/2023]
Abstract
High resolution monitoring of stimulus-evoked retinal neural activities is important for understanding retinal neural mechanisms, and can be a powerful tool for retinal disease diagnosis and treatment outcome evaluation. Fast intrinsic optical signals (IOSs), which have the time courses comparable to that of electrophysiological activities in the retina, hold the promise for high resolution imaging of retinal neural activities. However, application of fast IOS imaging has been hindered by the contamination of slow, high magnitude optical responses associated with transient hemodynamic and metabolic changes. In this paper we demonstrate the feasibility of separating fast retinal IOSs from slow optical responses by combining flicker stimulation and dynamic (temporal) differential image processing. A near infrared flood-illumination microscope equipped with a high-speed (1000 Hz) digital camera was used to conduct concurrent optical imaging and ERG measurement of isolated frog retinas. High spatiotemporal resolution imaging revealed that fast IOSs could follow flicker frequency up to at least 6 Hz. Comparable time courses of fast IOSs and ERG kinetics provide evidence that fast IOSs are originated from stimulus activated retinal neurons.
Collapse
Affiliation(s)
- Yang-Guo Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Lei Liu
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Franklin R. Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| |
Collapse
|
33
|
Li YG, Liu L, Amthor F, Yao XC. High-speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina. OPTICS LETTERS 2010; 35:426-8. [PMID: 20125743 PMCID: PMC2921995 DOI: 10.1364/ol.35.000426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve subcellular and submillisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for the reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli and could track visible light flicker stimulus frequency up to at least 2 Hz.
Collapse
Affiliation(s)
- Yang-Guo Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lei Liu
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Franklin Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
- Corresponding author:
| |
Collapse
|
34
|
Intrinsic optical signal imaging of retinal activation. Jpn J Ophthalmol 2009; 53:327-33. [PMID: 19763749 DOI: 10.1007/s10384-009-0685-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 02/25/2009] [Indexed: 10/20/2022]
Abstract
Fast intrinsic optical signals (IOSs) correlated with stimulus-activated retinal responses are reviewed. Fast IOSs have a time course comparable to the stimulus-evoked electrophysiological kinetics of the retina, and thus promise a new methodology for high-resolution evaluation of the physiological health of the retina. However, practical application of fast IOSs for retinal study and diagnosis is challenging because of their low sensitivity and limited specificity. Using isolated amphibian retinas, a series of experiments to optimize and characterize fast IOSs has been conducted. Fast, high-resolution nearinfrared light imaging disclosed both positive (increasing) and negative (decreasing) optical responses in adjacent retinal areas, which satisfied spatial resolution essential to the differentiation of IOSs from opposite polarities. At the subcellular (approximately microm) level, fast IOSs often exceeded 5% DeltaI/I, where I is the dynamic optical change, and I is the background light intensity. Experiments with isolated frog retinas suggest that negative IOSs stem primarily from the photoreceptor layer, while positive IOSs come from inner retinal layers.
Collapse
|
35
|
Tsunoda K, Hanazono G, Inomata K, Kazato Y, Suzuki W, Tanifuji M. Origins of retinal intrinsic signals: A series of experiments on retinas of macaque monkeys. Jpn J Ophthalmol 2009; 53:297-314. [DOI: 10.1007/s10384-009-0686-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
|