1
|
Zupin L, Psilodimitrakopoulos S, Celsi F, Papadimitriou L, Ranella A, Crovella S, Ricci G, Stratakis E, Pascolo L. Upside-Down Preference in the Forskolin-Induced In Vitro Differentiation of 50B11 Sensory Neurons: A Morphological Investigation by Label-Free Non-Linear Microscopy. Int J Mol Sci 2023; 24:ijms24098354. [PMID: 37176061 PMCID: PMC10179713 DOI: 10.3390/ijms24098354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we revealed a peculiar morphological feature of 50B11 nociceptive sensory neurons in in vitro culture related to the forskolin-induced differentiation of these cells growing upside-down on cover glass supports. Multi-photon non-linear microscopy was applied to monitor increased neurite arborization and elongation. Under live and unstained conditions, second harmonic generation (SHG) microscopy could monitor microtubule organization inside the cells while also correlating with the detection of cellular multi-photon autofluorescence, probably derived from mitochondria metabolites. Although the differentiated cells of each compartment did not differ significantly in tubulin or multi-photon autofluorescence contents, the upturned neurons were more elongated, presenting a higher length/width cellular ratio and longer neurites, indicative of differentiated cells. SHG originating from the axons' microtubules represented a proper tool to study neurons' inverted culture in live conditions without exogenous staining. This work represents the first instance of examining neuronal cell lines growing and differentiated in an upside-down orientation, allowing a possible improvement of 50B11 as a model in physiology studies of sensory neurons in peripheric nervous system disease (e.g., Fabry disease, Friedreich ataxia, Charcot-Marie-Tooth, porphyria, type 1 diabetes, Guillain-Barré syndrome in children) and analgesic drug screening.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Sotiris Psilodimitrakopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Fulvio Celsi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Lina Papadimitriou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar
| | - Giuseppe Ricci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
- Department of Physics, School of Sciences and Engineering, University of Crete, 71003 Heraklion, Crete, Greece
| | - Lorella Pascolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
2
|
Aghigh A, Bancelin S, Rivard M, Pinsard M, Ibrahim H, Légaré F. Second harmonic generation microscopy: a powerful tool for bio-imaging. Biophys Rev 2023; 15:43-70. [PMID: 36909955 PMCID: PMC9995455 DOI: 10.1007/s12551-022-01041-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Second harmonic generation (SHG) microscopy is an important optical imaging technique in a variety of applications. This article describes the history and physical principles of SHG microscopy and its more advanced variants, as well as their strengths and weaknesses in biomedical applications. It also provides an overview of SHG and advanced SHG imaging in neuroscience and microtubule imaging and how these methods can aid in understanding microtubule formation, structuration, and involvement in neuronal function. Finally, we offer a perspective on the future of these methods and how technological advancements can help make SHG microscopy a more widely adopted imaging technique.
Collapse
Affiliation(s)
- Arash Aghigh
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| | | | - Maxime Rivard
- National Research Council Canada, Boucherville, QC Canada
| | - Maxime Pinsard
- Institut National de Recherche en Sciences Et Technologies Pour L’environnement Et L’agriculture, Paris, France
| | - Heide Ibrahim
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| | - François Légaré
- Centre Énergie Matériaux Télécommunications, Institut National de La Recherche Scientifique, Varennes, QC Canada
| |
Collapse
|
3
|
H-ABC tubulinopathy revealed by label-free second harmonic generation microscopy. Sci Rep 2022; 12:14417. [PMID: 36002546 PMCID: PMC9402540 DOI: 10.1038/s41598-022-18370-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum is a recently described tubulinopathy caused by a mutation in the tubulin beta 4a isoform, expressed in oligodendrocytes. The taiep rat is the only spontaneous tubulin beta 4a mutant available for the study of this pathology. We aimed to identify the effects of the tubulin mutation on freshly collected, unstained samples of the central white matter of taiep rats using second harmonic generation microscopy. Cytoskeletal differences between the central white matter of taiep rats and control animals were found. Nonlinear emissions from the processes and somata of oligodendrocytes in tubulin beta 4a mutant rats were consistently detected, in the shape of elongated structures and cell-like bodies, which were never detected in the controls. This signal represents the second harmonic trademark of the disease. The tissue was also fluorescently labeled and analyzed to corroborate the origin of the nonlinear signal. Besides enabling the description of structural and molecular aspects of H-ABC, our data open the door to the diagnostic use of nonlinear optics in the study of neurodegenerative diseases, with the additional advantage of a label-free approach that preserves tissue morphology and vitality.
Collapse
|
4
|
Didier MEP, Macias-Romero C, Teulon C, Jourdain P, Roke S. Mapping of real-time morphological changes in the neuronal cytoskeleton with label-free wide-field second-harmonic imaging: a case study of nocodazole. NEUROPHOTONICS 2019; 6:045006. [PMID: 31720311 PMCID: PMC6835049 DOI: 10.1117/1.nph.6.4.045006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate the use of wide-field high-throughput second-harmonic (SH) microscopy for investigating cytoskeletal morphological changes on the single-cell level. The method allows for real-time, in vitro, label-free measurements of cytoskeletal changes that can, under certain conditions, be quantified in terms of orientational distribution or in terms of changes in the number of microtubules. As SH generation is intrinsically sensitive to noncentrosymmetrically structured microtubules, but not to isotropic or centrosymmetric materials, we use it to probe the microtubule structure in the cytoskeleton when it undergoes dynamic changes induced by the application of nocodazole, a well-known microtubule-destabilizing drug that reversibly depolymerizes microtubules. In addition, the orientational directionality of microtubules in neurites and cell bodies is determined label-free using SH polarimetry measurements. Finally, we use spatiotemporal SH imaging to show label-free, real-time nocodazole-induced morphological changes in neurons of different age and in a single axon.
Collapse
Affiliation(s)
- Marie E. P. Didier
- Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, Laboratory for fundamental BioPhotonics, CH 1015 Lausanne, Switzerland
| | - Carlos Macias-Romero
- Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, Laboratory for fundamental BioPhotonics, CH 1015 Lausanne, Switzerland
| | - Claire Teulon
- Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, Laboratory for fundamental BioPhotonics, CH 1015 Lausanne, Switzerland
| | - Pascal Jourdain
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Laboratory of Neuroenergetics and Cellular Dynamics, CH 1015, Lausanne, Switzerland
| | - Sylvie Roke
- Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, Laboratory for fundamental BioPhotonics, CH 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Molecular understanding of label-free second harmonic imaging of microtubules. Nat Commun 2019; 10:3530. [PMID: 31387998 PMCID: PMC6684603 DOI: 10.1038/s41467-019-11463-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/03/2019] [Indexed: 11/30/2022] Open
Abstract
Microtubules are a vital component of the cell’s cytoskeleton and their organization is crucial for healthy cell functioning. The use of label-free SH imaging of microtubules remains limited, as sensitive detection is required and the true molecular origin and main determinants required to generate SH from microtubules are not fully understood. Using advanced correlative imaging techniques, we identified the determinants of the microtubule-dependent SH signal. Microtubule polarity, number and organization determine SH signal intensity in biological samples. At the molecular level, we show that the GTP-bound tubulin dimer conformation is fundamental for microtubules to generate detectable SH signals. We show that SH imaging can be used to study the effects of microtubule-targeting drugs and proteins and to detect changes in tubulin conformations during neuronal maturation. Our data provide a means to interpret and use SH imaging to monitor changes in the microtubule network in a label-free manner. Microtubules (MTs) are well-studied cytoskeleton components, but have primarily been investigated using fixation or invasive techniques. Here, the authors use label-free second harmonic (SH) fluorescence and correlative light electron microscopy to pinpoint determinants required for SH from MTs.
Collapse
|
6
|
Alizadeh M, Merino D, Lombardo G, Lombardo M, Mencucci R, Ghotbi M, Loza-Alvarez P. Identifying crossing collagen fibers in human corneal tissues using pSHG images. BIOMEDICAL OPTICS EXPRESS 2019; 10:3875-3888. [PMID: 31452981 PMCID: PMC6701537 DOI: 10.1364/boe.10.003875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Polarization sensitive second harmonic generation (pSHG) microscopy has been used previously to characterize the structure of collagen fibers in corneal samples. Due to the typical organization of the corneal stroma, the information that pSHG provides may be misleading in points where two different collagen fiber bundles orient along different direction crossings. Here, a simulation that illustrates the problem is presented, along with a novel method that is capable of identifying these crossing points. These results can be used to improve the evaluation of corneal collagen structure, and it has been applied to analyze pSHG data acquired from healthy and keratoconic human corneal samples.
Collapse
Affiliation(s)
- M. Alizadeh
- Department of Physics, University of Kurdistan, Pasdaran St., 66177-15177, Sanandaj, Iran
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Barcelona, Spain
- Authors contributed equally to this paper
| | - D. Merino
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Barcelona, Spain
- UOC, Universitat Oberta de Catalunya, Barcelona, 08018, Barcelona, Spain
- Authors contributed equally to this paper
| | - G. Lombardo
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158, Messina, (Italy)
- Vision Engineering Italy srl, Via Livenza 3, 00198 Rome, Italy
| | - M. Lombardo
- Vision Engineering Italy srl, Via Livenza 3, 00198 Rome, Italy
| | - R. Mencucci
- Eye Clinic, Department of Surgery and Translational Medicine, University of Florence, 50121, Florence, Italy
| | - M. Ghotbi
- Department of Physics, University of Kurdistan, Pasdaran St., 66177-15177, Sanandaj, Iran
| | - P. Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Barcelona, Spain
| |
Collapse
|
7
|
Alizadeh M, Ghotbi M, Loza-Alvarez P, Merino D. Comparison of Different Polarization Sensitive Second Harmonic Generation Imaging Techniques. Methods Protoc 2019; 2:E49. [PMID: 31181703 PMCID: PMC6632172 DOI: 10.3390/mps2020049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 11/16/2022] Open
Abstract
Polarization sensitive second harmonic generation (pSHG) microscopy is an imaging technique able to provide, in a non-invasive manner, information related to the molecular structure of second harmonic generation (SHG) active structures, many of which are commonly found in biological tissue. The process of acquiring this information by means of pSHG microscopy requires a scan of the sample using different polarizations of the excitation beam. This process can take considerable time in comparison with the dynamics of in vivo processes. Fortunately, single scan polarization sensitive second harmonic generation (SS-pSHG) microscopy has also been reported, and is able to generate the same information at a faster speed compared to pSHG. In this paper, the orientation of second harmonic active supramolecular assemblies in starch granules is obtained on by means of pSHG and SS-pSHG. These results are compared in the forward and backward directions, showing a good agreement in both techniques. This paper shows for the first time, to the best of the authors' knowledge, data acquired using both techniques over the exact same sample and image plane, so that they can be compared pixel-to-pixel.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Physics, University of Kurdistan, Sanandaj 66177-15175, Iran.
| | - Masood Ghotbi
- Department of Physics, University of Kurdistan, Sanandaj 66177-15175, Iran.
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| | - David Merino
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
- UOC, Universitat Oberta de Catalunya, 08018 Barcelona, Spain.
| |
Collapse
|
8
|
Mercatelli R, Ratto F, Rossi F, Tatini F, Menabuoni L, Malandrini A, Nicoletti R, Pini R, Pavone FS, Cicchi R. Three-dimensional mapping of the orientation of collagen corneal lamellae in healthy and keratoconic human corneas using SHG microscopy. JOURNAL OF BIOPHOTONICS 2017; 10:75-83. [PMID: 27472438 DOI: 10.1002/jbio.201600122] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 05/02/2023]
Abstract
Keratoconus is an eye disorder that causes the cornea to take an abnormal conical shape, thus impairing its refractive functions and causing blindness. The late diagnosis of keratoconus is among the principal reasons for corneal surgical transplantation. This pathology is characterized by a reduced corneal stiffness in the region immediately below Bowman's membrane, probably due to a different lamellar organization, as suggested by previous studies. Here, the lamellar organization in this corneal region is characterized in three dimensions by means of second-harmonic generation (SHG) microscopy. In particular, a method based on a three-dimensional correlation analysis allows to probe the orientation of sutural lamellae close to the Bowman's membrane, finding statistical differences between healthy and keratoconic samples. This method is demonstrated also in combination with an epi-detection scheme, paving the way for a potential clinical ophthalmic application of SHG microscopy for the early diagnosis of keratoconus. SHG image acquired with sagittal optical sectioning (A) of a healthy cornea and (B) of a keratoconic cornea. Scale bars: 30 μm.
Collapse
Affiliation(s)
- Raffaella Mercatelli
- National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Fulvio Ratto
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Francesca Rossi
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Francesca Tatini
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Luca Menabuoni
- U.O. Oculistica Nuovo Ospedale S. Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Alex Malandrini
- U.O. Oculistica Nuovo Ospedale S. Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | | | - Roberto Pini
- Institute of Applied Physics "N. Carrara" (IFAC-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Le VH, Lee S, Kim B, Yoon Y, Yoon CJ, Chung WK, Kim KH. Correlation between polarization sensitive optical coherence tomography and second harmonic generation microscopy in skin. BIOMEDICAL OPTICS EXPRESS 2015. [PMID: 26203380 PMCID: PMC4505708 DOI: 10.1364/boe.6.002542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Both polarization sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are 3D optical imaging methods providing information related to collagen in the skin. PS-OCT provides birefringence information which is due to the collagen composition of the skin. SHG microscopy visualizes collagen fibers in the skin based on their SHG property. These two modalities have been applied to the same skin pathologies associated with collagen changes, but their relationship has not been examined. In this study, we tried to find the relationship by imaging the same skin samples with both modalities. Various parts of the normal rat skin and burn damaged skin were imaged ex vivo, and their images were analyzed both qualitatively and quantitatively. PS-OCT images were analyzed to obtain tissue birefringence. SHG images were analyzed to obtain collagen orientation indices by applying 2D Fourier transform. The skin samples having higher birefringence values had higher collagen orientation indices, and a linear correlation was found between them. Burn damaged skin showed decreases in both parameters compared to the control skins. This relationship between the bulk and microscopic properties of skin may be useful for further skin studies.
Collapse
Affiliation(s)
- Viet-Hoan Le
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Seunghun Lee
- Department of mechanical engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Bumju Kim
- Department of mechanical engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Yeoreum Yoon
- Department of mechanical engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Calvin J. Yoon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Wan Kyun Chung
- Department of mechanical engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
- Department of mechanical engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| |
Collapse
|
10
|
Rouède D, Bellanger JJ, Bomo J, Baffet G, Tiaho F. Linear least square (LLS) method for pixel-resolution analysis of polarization dependent SHG images of collagen fibrils. OPTICS EXPRESS 2015; 23:13309-19. [PMID: 26074581 DOI: 10.1364/oe.23.013309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A linear least square (LLS) method is proposed to process polarization dependent SHG intensity analysis at pixel-resolution level in order to provide an analytic solution of nonlinear susceptibility χ(2) coefficients and of fibril orientation. This model is applicable to fibrils with identical orientation in the excitation volume. It has been validated on type I collagen fibrils from cell-free gel, tendon and extracellular matrix of F1 biliary epithelial cells. LLS is fast (a few hundred milliseconds for a 512 × 512 pixel image) and very easy to perform for non-expert in numerical signal processing. Theoretical simulation highlights the importance of signal to noise ratio for accurate determination of nonlinear susceptibility χ(2) coefficients. The results also suggest that, in addition to the peptide group, a second molecular nonlinear optical hyperpolarizability β contributes to the SHG signal. Finally from fibril orientation analysis, results show that F1 cells remodel extracellular matrix collagen fibrils by changing fibril orientation, which might have important physiological function in cell migration and communication.
Collapse
|
11
|
Measuring microtubule polarity in spindles with second-harmonic generation. Biophys J 2014; 106:1578-87. [PMID: 24739157 DOI: 10.1016/j.bpj.2014.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/23/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022] Open
Abstract
The spatial organization of microtubule polarity, and the interplay between microtubule polarity and protein localization, is thought to be crucial for spindle assembly, anaphase, and cytokinesis, but these phenomena remain poorly understood, in part due to the difficulty of measuring microtubule polarity in spindles. We develop and implement a method to nonperturbatively and quantitatively measure microtubule polarity throughout spindles using a combination of second-harmonic generation and two-photon fluorescence. We validate this method using computer simulations and by comparison to structural data on spindles obtained from electron tomography and laser ablation. This method should provide a powerful tool for studying spindle organization and function, and may be applicable for investigating microtubule polarity in other systems.
Collapse
|
12
|
Tserevelakis GJ, Soliman D, Omar M, Ntziachristos V. Hybrid multiphoton and optoacoustic microscope. OPTICS LETTERS 2014; 39:1819-22. [PMID: 24686613 DOI: 10.1364/ol.39.001819] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a hybrid microscope combining multiphoton microscopy incorporating second-harmonic generation contrast and optical-resolution optoacoustic (photoacoustic) microscopy. We study the relative performance of the two systems and investigate the complementarity of contrast by demonstrating the label-free imaging capabilities of the hybrid microscope on zebrafish larvae ex vivo, concurrently visualizing the fish musculature and melanocytes. This implementation can prove useful in multiparametric microscopy studies, enabling broader information to be collected from biological specimens.
Collapse
|
13
|
Rouède D, Coumailleau P, Schaub E, Bellanger JJ, Blanchard-Desce M, Tiaho F. Myofibrillar misalignment correlated to triad disappearance of mdx mouse gastrocnemius muscle probed by SHG microscopy. BIOMEDICAL OPTICS EXPRESS 2014; 5:858-875. [PMID: 24688819 PMCID: PMC3959848 DOI: 10.1364/boe.5.000858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
We show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of control muscles is converted to double frequency sarcomeric SHG-IP in preserved mdx mouse gastrocnemius muscles in the vicinity of necrotic fibers. These double frequency sarcomeric SHG-IPs are often spatially correlated to double frequency sarcomeric two-photon excitation fluorescence (TPEF) emitted from Z-line and I-bands and to one centered spot SHG angular intensity pattern (SHG-AIP) suggesting that these patterns are signature of myofibrillar misalignement. This latter is confirmed with transmission electron microscopy (TEM). Moreover, a good spatial correlation between SHG signature of myofibrillar misalignment and triad reduction is established. Theoretical simulation of sarcomeric SHG-IP is used to demonstrate the correlation between change of SHG-IP and -AIP and myofibrillar misalignment. The extreme sensitivity of SHG microscopy to reveal the submicrometric organization of A-band thick filaments is highlighted. This report is a first step toward future studies aimed at establishing live SHG signature of myofibrillar misalignment involving excitation contraction defects due to muscle damage and disease.
Collapse
Affiliation(s)
- Denis Rouède
- IPR, CNRS, UMR-CNRS UR1- 6251, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | - Pascal Coumailleau
- IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | - Emmanuel Schaub
- IPR, CNRS, UMR-CNRS UR1- 6251, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| | | | | | - François Tiaho
- IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes, F-35000, France
| |
Collapse
|
14
|
Psilodimitrakopoulos S, Petegnief V, de Vera N, Hernandez O, Artigas D, Planas AM, Loza-Alvarez P. Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons. Biophys J 2013; 104:968-75. [PMID: 23473479 DOI: 10.1016/j.bpj.2013.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022] Open
Abstract
Neuronal death can be preceded by progressive dysfunction of axons. Several pathological conditions such as ischemia can disrupt the neuronal cytoskeleton. Microtubules are basic structural components of the neuronal cytoskeleton that regulate axonal transport and neuronal function. Up-to-date, high-resolution observation of microtubules in living neuronal cells is usually accomplished using fluorescent-based microscopy techniques. However, this needs exogenous fluorescence markers to produce the required contrast. This is an invasive procedure that may interfere with the microtubule dynamics. In this work, we show, for the first time to our knowledge, that by using the endogenous (label-free) contrast provided by second harmonic generation (SHG) microscopy, it is possible to identify early molecular changes occurring in the microtubules of living neurons under ischemic conditions. This is done by measuring the intensity modulation of the SHG signal as a function of the angular rotation of the incident linearly polarized excitation light (technique referred to as PSHG). Our experiments were performed in microtubules from healthy control cultured cortical neurons and were compared to those upon application of several periods of oxygen and glucose deprivation (up to 120 min) causing ischemia. After 120-min oxygen and glucose deprivation, a change in the SHG response to the polarization was measured. Then, by using a three-dimensional PSHG biophysical model, we correlated this finding with the structural changes occurring in the microtubules under oxygen and glucose deprivation. To our knowledge, this is the first study performed in living neuronal cells that is based on direct imaging of axons and that provides the means of identifying the early symptoms of ischemia. Live observation of this process might bring new insights into understanding the dynamics and the mechanisms underlying neuronal degeneration or mechanisms of protection or regeneration.
Collapse
|
15
|
Santos SICO, Mathew M, Olarte OE, Psilodimitrakopoulos S, Loza-Alvarez P. Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques. PLoS One 2013; 8:e58600. [PMID: 23484040 PMCID: PMC3590135 DOI: 10.1371/journal.pone.0058600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/06/2013] [Indexed: 12/01/2022] Open
Abstract
In this work highly localized femtosecond laser ablation is used to dissect single axons within a living Caenorhabditis elegans (C. elegans). We present a multimodal imaging methodology for the assessment of the collateral damage induced by the laser. This relies on the observation of the tissues surrounding the targeted region using a combination of different high resolution microscopy modalities. We present the use of Second Harmonic Generation (SHG) and Polarization Sensitive SHG (PSHG) to determine damage in the neighbor muscle cells. All the above is done using a single instrument: multimodal microscopy setup that allows simultaneous imaging in the linear and non-linear regimes and femtosecond-laser ablation.
Collapse
Affiliation(s)
- Susana I. C. O. Santos
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels (Barcelona), Spain
| | - Manoj Mathew
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels (Barcelona), Spain
| | - Omar E. Olarte
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels (Barcelona), Spain
| | | | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels (Barcelona), Spain
| |
Collapse
|
16
|
Thermal transitions of fibrillar collagen unveiled by second-harmonic generation microscopy of corneal stroma. Biophys J 2013; 103:1179-87. [PMID: 22995490 DOI: 10.1016/j.bpj.2012.07.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/19/2012] [Accepted: 07/27/2012] [Indexed: 11/24/2022] Open
Abstract
The thermal transitions of fibrillar collagen are investigated with second-harmonic generation polarization anisotropy microscopy. Second-harmonic generation images and polarization anisotropy profiles of corneal stroma heated in the 35-80°C range are analyzed by means of a theoretical model that is suitable to probe principal intramolecular and interfibrillar parameters of immediate physiological interest. Our results depict the tissue modification with temperature as the interplay of three destructuration stages at different hierarchical levels of collagen assembly including its tertiary structure and interfibrillar alignment, thus supporting and extending previous findings. This method holds the promise of a quantitative inspection of fundamental biophysical and biochemical processes and may find future applications in real-time and postsurgical functional imaging of collagen-rich tissues subjected to thermal treatments.
Collapse
|
17
|
Caorsi V, Toepfer C, Sikkel MB, Lyon AR, MacLeod K, Ferenczi MA. Non-linear optical microscopy sheds light on cardiovascular disease. PLoS One 2013; 8:e56136. [PMID: 23409139 PMCID: PMC3567079 DOI: 10.1371/journal.pone.0056136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/05/2013] [Indexed: 11/29/2022] Open
Abstract
Many cardiac diseases have been associated with increased fibrosis and changes in the organization of fibrillar collagen. The degree of fibrosis is routinely analyzed with invasive histological and immunohistochemical methods, giving a limited and qualitative understanding of the tissue's morphological adaptation to disease. Our aim is to quantitatively evaluate the increase in fibrosis by three-dimensional imaging of the collagen network in the myocardium using the non-linear optical microscopy techniques Two-Photon Excitation microscopy (TPE) and Second Harmonic signal Generation (SHG). No sample staining is needed because numerous endogenous fluorophores are excited by a two-photon mechanism and highly non-centrosymmetric structures such as collagen generate strong second harmonic signals. We propose for the first time a 3D quantitative analysis to carefully evaluate the increased fibrosis in tissue from a rat model of heart failure post myocardial infarction. We show how to measure changes in fibrosis from the backward SHG (BSHG) alone, as only backward-propagating SHG is accessible for true in vivo applications. A 5-fold increase in collagen I fibrosis is detected in the remote surviving myocardium measured 20 weeks after infarction. The spatial distribution is also shown to change markedly, providing insight into the morphology of disease progression.
Collapse
Affiliation(s)
- Valentina Caorsi
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
18
|
Hovhannisyan VA, Hu PS, Tan HY, Chen SJ, Dong CY. Spatial orientation mapping of fibers using polarization-sensitive second harmonic generation microscopy. JOURNAL OF BIOPHOTONICS 2012; 5:768-76. [PMID: 22331651 DOI: 10.1002/jbio.201100123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/05/2012] [Accepted: 01/17/2012] [Indexed: 05/07/2023]
Abstract
In this work, we present a non-invasive approach to determine azimuth and elevation angles of collagen fibers capable of generating second harmonic signal. The azimuth angle was determined using the minimum of second harmonic generation (SHG) signal while rotating the plane of polarization of excitation light. The elevation angle was estimated from the ratio of the minimal SHG intensity to the intensity when laser polarization and fiber directions were parallel to each other using experimentally determined calibration curve. Pixel-resolution images of collagen fiber spatial orientation in tendon from bovine leg, chicken leg, and chicken skin were acquired using our approach of SHG polarization-resolved microscopy.
Collapse
|
19
|
Psilodimitrakopoulos S, Amat-Roldan I, Loza-Alvarez P, Artigas D. Effect of molecular organization on the image histograms of polarization SHG microscopy. BIOMEDICAL OPTICS EXPRESS 2012; 3:2681-93. [PMID: 23082306 PMCID: PMC3470008 DOI: 10.1364/boe.3.002681] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/08/2012] [Accepted: 09/22/2012] [Indexed: 05/02/2023]
Abstract
Based on its polarization dependency, second harmonic generation (PSHG) microscopy has been proven capable to structurally characterize molecular architectures in different biological samples. By exploiting this polarization dependency of the SHG signal in every pixel of the image, average quantitative structural information can be retrieved in the form of PSHG image histograms. In the present study we experimentally show how the PSHG image histograms can be affected by the organization of the SHG active molecules. Our experimental scenario grounds on two inherent properties of starch granules. Firstly, we take advantage of the radial organization of amylopectin molecules (the SHG source in starch) to attribute shifts of the image histograms to the existence of tilted off the plane molecules. Secondly, we use the property of starch to organize upon hydration to demonstrate that the degree of structural order at the molecular level affects the width of the PSHG image histograms. The shorter the width is the more organized the molecules in the sample are, resulting in a reliable method to measure order. The implication of this finding is crucial to the interpretation of PSHG images used for example in tissue diagnostics.
Collapse
Affiliation(s)
| | - Ivan Amat-Roldan
- ICFO-Institut de Ciències Fotòniques, Mediterranean
Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, Mediterranean
Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - David Artigas
- ICFO-Institut de Ciències Fotòniques, Mediterranean
Technology Park, 08860 Castelldefels (Barcelona), Spain
- Department of signal theory and communications, Universitat
Politècnica de Catalunya, 08034, Spain
| |
Collapse
|
20
|
Mega Y, Robitaille M, Zareian R, McLean J, Ruberti J, DiMarzio C. Quantification of lamellar orientation in corneal collagen using second harmonic generation images. OPTICS LETTERS 2012; 37:3312-4. [PMID: 23381241 PMCID: PMC3784649 DOI: 10.1364/ol.37.003312] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Second harmonic generation (SHG) is a well-established optical modality widely used in biomedical optics to image collagen based tissues. The coherent signal of the forward direction SHG produces a high resolution image that can resolve individual fibers (groups of fibrils). In highly ordered collagen lamellae, such as in the corneal stroma, it is important to determine the orientation of the fibers as they contribute significantly to the biomechanics of the tissue. However, due to the crimped structure of the fibers, it is challenging to robustly determine their orientation using an independent computational method, compared to the straight fibers problem. Previous work in the field used the polarization of the fundamental or other techniques involving a more manual selection of the orientation, in order to differentiate between various directions in corneal structures. Yet those lack accuracy and independency. We present a robust independent technique to determine the orientation of the fibers in the corneal structure. The experimental results presented here, taken from different lamellae, demonstrate strongly the correct orientation.
Collapse
Affiliation(s)
- Yair Mega
- Deaprtment of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
21
|
De Meulenaere E, Chen WQ, Van Cleuvenbergen S, Zheng ML, Psilodimitrakopoulos S, Paesen R, Taymans JM, Ameloot M, Vanderleyden J, Loza-Alvarez P, Duan XM, Clays K. Molecular engineering of chromophores for combined second-harmonic and two-photon fluorescence in cellular imaging. Chem Sci 2012. [DOI: 10.1039/c2sc00771a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
22
|
Iwamoto M, Liu F, Zhong-can OY. Polarization-dependence of optical second harmonic generation for chiral cylindrical structure and explanation for nonlinear optical imaging of cholesteric liquid crystals. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Tian L, Wei H, Jin Y, Liu H, Guo Z, Deng X. Backward emission angle of microscopic second-harmonic generation from crystallized type I collagen fiber. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:075001. [PMID: 21806258 DOI: 10.1117/1.3596174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A theoretical model that deals with SHG from crystallized type I collagen fiber formed by a bundle of fibrils is established. By introducing a density distribution function of dipoles within fibrils assembly into the dipole theory and combining with structural order (m,l) parameters revealed by quasi-phase-matching (QPM) theory, our established theoretical model comprehensively characterizes both biophysical features of collagen dipoles and the crystalline characteristics of collagen fiber. This new model quantitatively reveals the 3-D distribution of second-harmonic generation (SHG) emission angle (θ,ϕ) in accordance with the emission power. Results show that fibrils diameter d(1) and structural order m, which describes the structural characteristics of collagen fiber along the incident light propagation direction has significant influence on backward∕forward SHG emission. The decrease of fibrils diameter d(1) induces an increase of the peak SHG emission angle θ(max). As d(1) decreases to a threshold value, in our case it is around d(1) = 150 nm when (m,l) = (1,0), θ(max) > 90 deg, indicating that backward SHG emission appears. The SHG may have two symmetrical emission distribution lobes or may have only one or two unsymmetrical emission lobes with unequal emission power, depending on the functional area of (m,l) on d(1).
Collapse
Affiliation(s)
- Long Tian
- South China Normal University, MOE Key Laboratory of Laser Life Science, Tianhe Shipai, Guangzhou, Guangzhou 510631 China
| | | | | | | | | | | |
Collapse
|
24
|
Aviles-Espinosa R, Filippidis G, Hamilton C, Malcolm G, Weingarten KJ, Südmeyer T, Barbarin Y, Keller U, Santos SI, Artigas D, Loza-Alvarez P. Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms. BIOMEDICAL OPTICS EXPRESS 2011; 2:739-47. [PMID: 21483599 PMCID: PMC3072117 DOI: 10.1364/boe.2.000739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/14/2011] [Accepted: 02/24/2011] [Indexed: 05/21/2023]
Abstract
We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laser-VECSELs), to be used for nonlinear microscopy. The SDL is modelocked using a quantum-dot semiconductor saturable absorber mirror (SESAM), delivering an average output power of 287 mW, with 1.5 ps pulses at 500 MHz and a central wavelength of 965 nm. Specifically, despite the fact of having long pulses and high repetition rates, we demonstrate the potential of this laser for Two-Photon Excited Fluorescence (TPEF) imaging of in vivo Caenorhabditis elegans (C. elegans) expressing Green Fluorescent Protein (GFP) in a set of neuronal processes and cell bodies. Efficient TPEF imaging is achieved due to the fact that this wavelength matches the peak of the two-photon action cross section of this widely used fluorescent marker. The SDL extended versatility is shown by presenting Second Harmonic Generation images of pharynx, uterus, body wall muscles and its potential to be used to excite other different commercial dyes. Importantly this non-expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices.
Collapse
Affiliation(s)
- Rodrigo Aviles-Espinosa
- ICFO - The Institute of Photonic Sciences, Mediterranean Technology Park, Av. Canal Olimpic s/n, 08860 Castelldefels (Barcelona), Spain
| | - George Filippidis
- Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, P.O. Box 1385, 71110 Heraklion, Crete, Greece
| | - Craig Hamilton
- M Squared Lasers Ltd, 1 Technology Terrace, Todd Campus, West of Scotland Science Park Maryhill Road Glasgow G20 0XA, Scotland, UK
- Solus Technologies Limited, 1 Technology Terrace, Todd Campus, West of Scotland Science Park, Maryhill Road, Glasgow G20 0XA, Scotland, UK
| | - Graeme Malcolm
- M Squared Lasers Ltd, 1 Technology Terrace, Todd Campus, West of Scotland Science Park Maryhill Road Glasgow G20 0XA, Scotland, UK
| | | | - Thomas Südmeyer
- Department of Physics, Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
| | - Yohan Barbarin
- Department of Physics, Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
| | - Ursula Keller
- Department of Physics, Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
| | - Susana I.C.O Santos
- ICFO - The Institute of Photonic Sciences, Mediterranean Technology Park, Av. Canal Olimpic s/n, 08860 Castelldefels (Barcelona), Spain
| | - David Artigas
- ICFO - The Institute of Photonic Sciences, Mediterranean Technology Park, Av. Canal Olimpic s/n, 08860 Castelldefels (Barcelona), Spain
- Department of signal theory and communications, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO - The Institute of Photonic Sciences, Mediterranean Technology Park, Av. Canal Olimpic s/n, 08860 Castelldefels (Barcelona), Spain
| |
Collapse
|
25
|
Guilbert T, Odin C, Le Grand Y, Gailhouste L, Turlin B, Ezan F, Désille Y, Baffet G, Guyader D. A robust collagen scoring method for human liver fibrosis by second harmonic microscopy. OPTICS EXPRESS 2010; 18:25794-25807. [PMID: 21164924 DOI: 10.1364/oe.18.025794] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Second Harmonic Generation (SHG) microscopy offers the opportunity to image collagen of type I without staining. We recently showed that a simple scoring method, based on SHG images of histological human liver biopsies, correlates well with the Metavir assessment of fibrosis level (Gailhouste et al., J. Hepatol., 2010). In this article, we present a detailed study of this new scoring method with two different objective lenses. By using measurements of the objectives point spread functions and of the photomultiplier gain, and a simple model of the SHG intensity, we show that our scoring method, applied to human liver biopsies, is robust to the objective's numerical aperture (NA) for low NA, the choice of the reference sample and laser power, and the spatial sampling rate. The simplicity and robustness of our collagen scoring method may open new opportunities in the quantification of collagen content in different organs, which is of main importance in providing diagnostic information and evaluation of therapeutic efficiency.
Collapse
Affiliation(s)
- Thomas Guilbert
- Institut of Physics of Rennes IPR/UMR CNRS 6251, University of Rennes I, Campus de Beaulieu, Bat 11A, 35042 Rennes Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kundikova N, Popkov I, Popkova A. Composite quarter-wave systems with adjustable parameters. APPLIED OPTICS 2010; 49:6504-6511. [PMID: 21102677 DOI: 10.1364/ao.49.006504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new type of composite quarter-wave system with adjustable parameters has been proposed and investigated experimentally. The first system is a quarter-waveplate with adjustable optical activity and the second system is a quarter-wave plate with an adjustable axis orientation.
Collapse
Affiliation(s)
- Natalia Kundikova
- Joint Nonlinear Optics Laboratory of Institute Electrophysics Russian Academy of Science and South Ural State University, 76 Lenina Avenue, Chelyabinsk, Russia.
| | | | | |
Collapse
|
27
|
Amat-Roldan I, Psilodimitrakopoulos S, Loza-Alvarez P, Artigas D. Fast image analysis in polarization SHG microscopy. OPTICS EXPRESS 2010; 18:17209-19. [PMID: 20721110 DOI: 10.1364/oe.18.017209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pixel resolution polarization-sensitive second harmonic generation (PSHG) imaging has been recently shown as a promising imaging modality, by largely enhancing the capabilities of conventional intensity-based SHG microscopy. PSHG is able to obtain structural information from the elementary SHG active structures, which play an important role in many biological processes. Although the technique is of major interest, acquiring such information requires long offline processing, even with current computers. In this paper, we present an approach based on Fourier analysis of the anisotropy signature that allows processing the PSHG images in less than a second in standard single core computers. This represents a temporal improvement of several orders of magnitude compared to conventional fitting algorithms. This opens up the possibility for fast PSHG information with the subsequent benefit of potential use in medical applications.
Collapse
Affiliation(s)
- Ivan Amat-Roldan
- ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain
| | | | | | | |
Collapse
|
28
|
Aviles-Espinosa R, Santos SICO, Brodschelm A, Kaenders WG, Alonso-Ortega C, Artigas D, Loza-Alvarez P. Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:046020. [PMID: 20799822 DOI: 10.1117/1.3477535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Live microscopy techniques (i.e., differential interference contrast, confocal microscopy, etc.) have enabled the understanding of the mechanisms involved in cells and tissue formation. In long-term studies, special care must be taken in order to avoid sample damage, restricting the applicability of the different microscopy techniques. We demonstrate the potential of using third-harmonic generation (THG) microscopy for morphogenesis/embryogenesis studies in living Caenorhabditis elegans (C. elegans). Moreover, we show that the THG signal is obtained in all the embryo development stages, showing different tissue/structure information. For this research, we employ a 1550-nm femtosecond fiber laser and demonstrate that the expected water absorption at this wavelength does not severely compromise sample viability. Additionally, this has the important advantage that the THG signal is emitted at visible wavelengths (516 nm). Therefore, standard collection optics and detectors operating near maximum efficiency enable an optimal signal reconstruction. All this, to the best of our knowledge, demonstrates for the first time the noninvasiveness and strong potential of this particular wavelength to be used for high-resolution four-dimensional imaging of embryogenesis using unstained C. elegans in vivo samples.
Collapse
Affiliation(s)
- Rodrigo Aviles-Espinosa
- Institut de Ciencies Fotoniques, The Institute of Photonic Sciences, Mediterranean Technology Park, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|