1
|
Yao X, Kim TH. Fast intrinsic optical signal correlates with activation phase of phototransduction in retinal photoreceptors. Exp Biol Med (Maywood) 2020; 245:1087-1095. [PMID: 32558598 PMCID: PMC7400727 DOI: 10.1177/1535370220935406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT As the center of phototransduction, retinal photoreceptors are responsible for capturing and converting photon energy to bioelectric signals for following visual information processing in the retina. This article summarizes experimental observation and discusses biophysical mechanism of fast photoreceptor-intrinsic optical signal (IOS) correlated with early phase of phototransduction. Quantitative imaging of fast photoreceptor-IOS may provide objective optoretinography to advance the study and diagnosis of age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and other eye diseases that can cause photoreceptor dysfunctions.
Collapse
Affiliation(s)
- Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
2
|
Gill JS, Moosajee M, Dubis AM. Cellular imaging of inherited retinal diseases using adaptive optics. Eye (Lond) 2019; 33:1683-1698. [PMID: 31164730 PMCID: PMC7002587 DOI: 10.1038/s41433-019-0474-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Adaptive optics (AO) is an insightful tool that has been increasingly applied to existing imaging systems for viewing the retina at a cellular level. By correcting for individual optical aberrations, AO offers an improvement in transverse resolution from 10-15 μm to ~2 μm, enabling assessment of individual retinal cell types. One of the settings in which its utility has been recognised is that of the inherited retinal diseases (IRDs), the genetic and clinical heterogeneity of which warrants better cellular characterisation. In this review, we provide a summary of the basic principles of AO, its integration into multiple retinal imaging modalities and its clinical applications, focusing primarily on IRDs. Furthermore, we present a comprehensive summary of AO-based cellular findings in IRDs according to their associated disease-causing genes.
Collapse
Affiliation(s)
- Jasdeep S Gill
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Trust and UCL Institute of Ophthalmology, 162 City Road, London, EC1V 9PD, UK
- Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, UK
| | - Adam M Dubis
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Trust and UCL Institute of Ophthalmology, 162 City Road, London, EC1V 9PD, UK.
| |
Collapse
|
3
|
Litts KM, Cooper RF, Duncan JL, Carroll J. Photoreceptor-Based Biomarkers in AOSLO Retinal Imaging. Invest Ophthalmol Vis Sci 2017; 58:BIO255-BIO267. [PMID: 28873135 PMCID: PMC5584616 DOI: 10.1167/iovs.17-21868] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023] Open
Abstract
Improved understanding of the mechanisms underlying inherited retinal degenerations has created the possibility of developing much needed treatments for these relentless, blinding diseases. However, standard clinical indicators of retinal health (such as visual acuity and visual field sensitivity) are insensitive measures of photoreceptor survival. In many retinal degenerations, significant photoreceptor loss must occur before measurable differences in visual function are observed. Thus, there is a recognized need for more sensitive outcome measures to assess therapeutic efficacy as numerous clinical trials are getting underway. Adaptive optics (AO) retinal imaging techniques correct for the monochromatic aberrations of the eye and can be used to provide nearly diffraction-limited images of the retina. Many groups routinely are using AO imaging tools to obtain in vivo images of the rod and cone photoreceptor mosaic, and it now is possible to monitor photoreceptor structure over time with single cell resolution. Highlighting recent work using AO scanning light ophthalmoscopy (AOSLO) across a range of patient populations, we review the development of photoreceptor-based metrics (e.g., density/geometry, reflectivity, and size) as candidate biomarkers. Going forward, there is a need for further development of automated tools and normative databases, with the latter facilitating the comparison of data sets across research groups and devices. Ongoing and future clinical trials for inherited retinal diseases will benefit from the improved resolution and sensitivity that multimodal AO retinal imaging affords to evaluate safety and efficacy of emerging therapies.
Collapse
Affiliation(s)
- Katie M. Litts
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert F. Cooper
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
4
|
Thapa D, Wang B, Lu Y, Son T, Yao X. Enhancement of intrinsic optical signal recording with split spectrum optical coherence tomography. JOURNAL OF MODERN OPTICS 2017; 64:1800-1807. [PMID: 29129961 PMCID: PMC5679439 DOI: 10.1080/09500340.2017.1318966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Functional optical coherence tomography (OCT) of stimulus-evoked intrinsic optical signal (IOS) promises to be a new methodology for high-resolution mapping of retinal neural dysfunctions. However, its practical applications for non-invasive examination of retinal function have been hindered by the low signal-to-noise ratio (SNR) and small magnitude of IOSs. Split spectrum amplitude-decorrelation has been demonstrated to improve the image quality of OCT angiography. In this study, we exploited split spectrum strategy to improve the sensitivity of IOS recording. The full OCT spectrum was split into multiple spectral bands and IOSs from each sub-band were calculated separately and then combined to generate a single IOS image sequence. The algorithm was tested on in vivo images of frog retinas. It significantly improved both IOS magnitude and SNR, which are essential for practical applications of functional IOS imaging.
Collapse
Affiliation(s)
- Damber Thapa
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Noninvasive imaging of the photoreceptor mosaic response to light stimulation. Proc Natl Acad Sci U S A 2016; 113:12902-12903. [PMID: 27810954 DOI: 10.1073/pnas.1615790113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
6
|
Wang B, Lu Y, Yao X. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:96010. [PMID: 27653936 PMCID: PMC5030472 DOI: 10.1117/1.jbo.21.9.096010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 05/22/2023]
Abstract
Intrinsic optical signal (IOS) imaging promises a noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, it is essential to understand anatomic and physiological sources of retinal IOSs and to establish the relationship between IOS distortions and eye diseases. The purpose of this study was designed to demonstrate the feasibility of <italic<in vivo</italic< IOS imaging of mouse models. A high spatiotemporal resolution spectral domain optical coherence tomography (SD-OCT) was employed for depth-resolved retinal imaging. A custom-designed animal holder equipped with ear bar and bite bar was used to minimize eye movements. Dynamic OCT imaging revealed rapid IOS from the photoreceptor’s outer segment immediately after the stimulation delivery, and slow IOS changes were observed from inner retinal layers. Comparative photoreceptor IOS and electroretinography recordings suggested that the fast photoreceptor IOS may be attributed to the early stage of phototransduction before the hyperpolarization of retinal photoreceptor.
Collapse
Affiliation(s)
- Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgan Street, Chicago, Illinois 60607, United States
| | - Yiming Lu
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgan Street, Chicago, Illinois 60607, United States
| | - Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgan Street, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, 1855 West Taylor Street, Chicago, Illinois 60612, United States
- Address all correspondence to: Xincheng Yao, E-mail:
| |
Collapse
|
7
|
Zhao X, Thapa D, Wang B, Lu Y, Gai S, Yao X. Stimulus-evoked outer segment changes in rod photoreceptors. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:65006. [PMID: 27334933 PMCID: PMC4917604 DOI: 10.1117/1.jbo.21.6.065006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 05/21/2023]
Abstract
Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Hebei University, College of Physics Science and Technology, Hebei Key Lab of Optic-Electronic Information Materials, Baoding 071002, China
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Damber Thapa
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Yiming Lu
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Shaoyan Gai
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Xincheng Yao
- Hebei University, College of Physics Science and Technology, Hebei Key Lab of Optic-Electronic Information Materials, Baoding 071002, China
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois 60612, United States
- Address all correspondence to: Xincheng Yao, E-mail:
| |
Collapse
|
8
|
Wang B, Yao X. In vivo intrinsic optical signal imaging of mouse retinas. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9693:96930H. [PMID: 28163346 PMCID: PMC5289717 DOI: 10.1117/12.2212810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Intrinsic optical signal (IOS) imaging is a promising noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, more IOS studies employing animal models are necessary to establish the relationship between IOS distortions and eye diseases. Ample mouse models are available for investigating the relationship between IOS distortions and eye diseases. However, in vivo IOS imaging of mouse retinas is challenging due to the small ocular lens (compared to frog eyes) and inevitable eye movements. We report here in vivo IOS imaging of mouse retinas using a custom-designed functional OCT. The OCT system provided high resolution (3 μm) and high speed (up to 500 frames/s) imaging of mouse retinas. An animal holder equipped with a custom designed ear bar and bite bar was used to minimize eye movement due to breathing and heartbeats. Residual eye movement in OCT images was further compensated by accurate image registration. Dynamic OCT imaging revealed rapid IOSs from photoreceptor outer segments immediately (<10 ms) after the stimulation delivery, and unambiguous IOS changes were also observed from inner retinal layers with delayed time courses compared to that of photoreceptor IOSs.
Collapse
Affiliation(s)
- Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Yao X, Wang B. Intrinsic optical signal imaging of retinal physiology: a review. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:090901. [PMID: 26405819 PMCID: PMC4689108 DOI: 10.1117/1.jbo.20.9.090901] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 05/09/2023]
Abstract
Intrinsic optical signal (IOS) imaging promises to be a noninvasive method for high-resolution examination of retinal physiology, which can advance the study and diagnosis of eye diseases. While specialized optical instruments are desirable for functional IOS imaging of retinal physiology, in depth understanding of multiple IOS sources in the complex retinal neural network is essential for optimizing instrument designs. We provide a brief overview of IOS studies and relationships in rod outer segment suspensions, isolated retinas, and intact eyes. Recent developments of line-scan confocal and functional optical coherence tomography (OCT) instruments have allowed in vivo IOS mapping of photoreceptor physiology. Further improvements of the line-scan confocal and functional OCT systems may provide a feasible solution to pursue functional IOS mapping of human photoreceptors. Some interesting IOSs have already been detected in inner retinal layers, but better development of the IOS instruments and software algorithms is required to achieve optimal physiological assessment of inner retinal neurons.
Collapse
Affiliation(s)
- Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois 60612, United States
| | - Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| |
Collapse
|
10
|
Zhang QX, Lu RW, Curcio CA, Yao XC. In vivo confocal intrinsic optical signal identification of localized retinal dysfunction. Invest Ophthalmol Vis Sci 2012; 53:8139-45. [PMID: 23150616 PMCID: PMC3522438 DOI: 10.1167/iovs.12-10732] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 11/04/2012] [Indexed: 01/20/2023] Open
Abstract
PURPOSE The purposes of this study were to investigate the physiological mechanism of stimulus-evoked fast intrinsic optical signals (IOSs) recorded in dynamic confocal imaging of the retina, and to demonstrate the feasibility of in vivo confocal IOS mapping of localized retinal dysfunctions. METHODS A rapid line-scan confocal ophthalmoscope was constructed to achieve in vivo confocal IOS imaging of frog (Rana pipiens) retinas at cellular resolution. In order to investigate the physiological mechanism of confocal IOS, comparative IOS and electroretinography (ERG) measurements were made using normal frog eyes activated by variable-intensity stimuli. A dynamic spatiotemporal filtering algorithm was developed to reject the contamination of hemodynamic changes on fast IOS recording. Laser-injured frog eyes were employed to test the potential of confocal IOS mapping of localized retinal dysfunctions. RESULTS Comparative IOS and ERG experiments revealed a close correlation between the confocal IOS and retinal ERG, particularly the ERG a-wave, which has been widely used to evaluate photoreceptor function. IOS imaging of laser-injured frog eyes indicated that the confocal IOS could unambiguously detect localized (30 μm) functional lesions in the retina before a morphological abnormality is detectable. CONCLUSIONS The confocal IOS predominantly results from retinal photoreceptors, and can be used to map localized photoreceptor lesion in laser-injured frog eyes. We anticipate that confocal IOS imaging can provide applications in early detection of age-related macular degeneration, retinitis pigmentosa, and other retinal diseases that can cause pathological changes in the photoreceptors.
Collapse
Affiliation(s)
| | - Rong-Wen Lu
- From the Departments of Biomedical Engineering
| | | | - Xin-Cheng Yao
- From the Departments of Biomedical Engineering
- Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Li YC, Luo JM, Lu RW, Liu KM, Levy AM, Yao XC. Dynamic intrinsic optical signal monitoring of electrically stimulated inner retinal neural response. JOURNAL OF MODERN OPTICS 2012; 59:10.1080/09500340.2012.687464. [PMID: 24403725 PMCID: PMC3882170 DOI: 10.1080/09500340.2012.687464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dynamic monitoring of stimulus-evoked inner neural response is important for functional validation of stimulation protocols of retinal prosthetic devices. In this paper, we demonstrate label-free intrinsic optical signal (IOS) imaging of electrically stimulated inner neural response in freshly isolated mouse retinas. While single-pulse stimulation evoked rapid IOS within 20 ms, pulse-train stimulation indicated that the fast IOS response can follow frequency stimulation up to at least 8 Hz. Fast IOS imaging promises a noninvasive method for high resolution examination of electrically evoked retinal response, without artifact contamination of electrical stimulus.
Collapse
Affiliation(s)
- Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jian-Min Luo
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68138, USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kai-Mao Liu
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander Miles Levy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Yao XC, Cui WX, Li YC, Zhang W, Lu RW, Thompson A, Amthor F, Wang XJ. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals. JOURNAL OF MODERN OPTICS 2012; 59:10.1080/09500340.2012.674564. [PMID: 24363496 PMCID: PMC3867949 DOI: 10.1080/09500340.2012.674564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75mM) and high-dose (5.5mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.
Collapse
Affiliation(s)
- Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Corresponding author.
| | - Wan-Xing Cui
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Zhang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anthony Thompson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Franklin Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xu-Jing Wang
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Schallek JB, McLellan GJ, Viswanathan S, Ts'o DY. Retinal intrinsic optical signals in a cat model of primary congenital glaucoma. Invest Ophthalmol Vis Sci 2012; 53:1971-81. [PMID: 22395886 DOI: 10.1167/iovs.11-8299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine the impact of reduced inner retinal function and breed on intrinsic optical signals in cats. METHODS Retinal intrinsic optical signals were recorded from anesthetized cats with a modified fundus camera. Near infrared light (NIR, 700-900 nm) was used to illuminate the retina while a charge-coupled device (CCD) camera captured the NIR reflectance of the retina. Visible stimuli (540 nm) evoked patterned changes in NIR retinal reflectance. NIR intrinsic signals were compared across three subject groups: two Siamese cats with primary congenital glaucoma (PCG), a control Siamese cat without glaucoma, and a control group of seven normally pigmented cats. Intraocular pressure (IOP), pattern electroretinogram, and optical coherence tomography measurements were evaluated to confirm the inner retinal deficit in PCG cats. RESULTS Stimulus-evoked, NIR retinal reflectance signals were observed in PCG cats despite severe degeneration of the nerve fiber layer and inner retinal function. The time course, spectral dependence, and spatial profile of signals imaged in PCG cats were similar to signals measured from normal and Siamese control cats. CONCLUSIONS Despite increased IOP, reduced nerve fiber layer thickness and ganglion cell function, intrinsic optical signals persist in cats affected with PCG. The mechanisms giving rise to intrinsic signals remain despite inner retinal damage. Signal strength was reduced in all Siamese cats compared to controls, suggesting that reduced intrinsic signals in PCG cats represent a difference between breeds rather than loss of ganglion cells. These results corroborated previous findings that retinal ganglion cells are not the dominant source of intrinsic optical signals of the retina.
Collapse
Affiliation(s)
- Jesse B Schallek
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.
| | | | | | | |
Collapse
|
14
|
Zhang QX, Zhang Y, Lu RW, Li YC, Pittler SJ, Kraft TW, Yao XC. Comparative intrinsic optical signal imaging of wild-type and mutant mouse retinas. OPTICS EXPRESS 2012; 20:7646-54. [PMID: 22453443 PMCID: PMC3387536 DOI: 10.1364/oe.20.007646] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional measurement is important for retinal study and disease diagnosis. Transient intrinsic optical signal (IOS) response, tightly correlated with functional stimulation, has been previously detected in normal retinas. In this paper, comparative IOS imaging of wild-type (WT) and rod-degenerated mutant mouse retinas is reported. Both 2-month and 1-year-old mice were measured. In 2-month-old mutant mice, time course and peak value of the stimulus-evoked IOS were significantly delayed (relative to stimulus onset) and reduced, respectively, compared to age matched WT mice. In 1-year-old mutant mice, stimulus-evoked IOS was totally absent. However, enhanced spontaneous IOS responses, which might reflect inner neural remodeling in diseased retina, were observed in both 2-month and 1-year-old mutant retinas. Our experiments demonstrate the potential of using IOS imaging for noninvasive and high resolution identification of disease-associated retinal dysfunctions. Moreover, high spatiotemporal resolution IOS imaging may also lead to advanced understanding of disease-associated neural remodeling in the retina.
Collapse
Affiliation(s)
- Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Youwen Zhang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Steven J. Pittler
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Timothy W. Kraft
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| |
Collapse
|
15
|
Yao XC, Li YC. Functional imaging of retinal photoreceptors and inner neurons using stimulus-evoked intrinsic optical signals. Methods Mol Biol 2012; 884:277-85. [PMID: 22688714 PMCID: PMC3644518 DOI: 10.1007/978-1-61779-848-1_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Retinal development is a dynamic process both anatomically and functionally. High-resolution imaging and dynamic monitoring of photoreceptors and inner neurons can provide important information regarding the structure and function of the developing retina. In this chapter, we describe intrinsic optical signal (IOS) imaging as a high spatiotemporal resolution method for functional study of living retinal tissues. IOS imaging is based on near infrared (NIR) light detection of stimulus-evoked transient change of inherent optical characteristics of the cells. With no requirement for exogenous biomarkers, IOS imaging is totally noninvasive for functional mapping of stimulus-evoked spatiotemporal dynamics of the photoreceptors and inner retinal neurons.
Collapse
Affiliation(s)
- Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | |
Collapse
|
16
|
Zhang QX, Lu RW, Li YG, Yao XC. In vivo confocal imaging of fast intrinsic optical signals correlated with frog retinal activation. OPTICS LETTERS 2011; 36:4692-4. [PMID: 22139286 PMCID: PMC3258673 DOI: 10.1364/ol.36.004692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Using freshly isolated animal retinas, we have conducted a series of experiments to test fast intrinsic optical signals (IOSs) that have time courses comparable to electrophysiological kinetics. In this Letter, we demonstrate the feasibility of in vivo imaging of fast IOSs in intact frogs. A rapid line-scan confocal ophthalmoscope was constructed to achieve high-speed IOS recording. By rejecting out-of-focus background light, the line-scan confocal imager provided the resolution to differentiate individual photoreceptors in vivo. Rapid confocal imaging disclosed robust IOSs with time courses comparable to retinal electroretinogram kinetics. High-resolution IOS images revealed both positive (increasing) and negative (decreasing) light responses, with subcellular complexity.
Collapse
Affiliation(s)
- Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Yang-Guo Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Vision Science Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
17
|
Lu RW, Li YC, Ye T, Strang C, Keyser K, Curcio CA, Yao XC. Two-photon excited autofluorescence imaging of freshly isolated frog retinas. BIOMEDICAL OPTICS EXPRESS 2011; 2:1494-503. [PMID: 21698013 PMCID: PMC3114218 DOI: 10.1364/boe.2.001494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/07/2011] [Accepted: 05/07/2011] [Indexed: 05/07/2023]
Abstract
The purpose of this study was to investigate cellular sources of autofluorescence signals in freshly isolated frog (Rana pipiens) retinas. Equipped with an ultrafast laser, a laser scanning two-photon excitation fluorescence microscope was employed for sub-cellular resolution examination of both sliced and flat-mounted retinas. Two-photon imaging of retinal slices revealed autofluorescence signals over multiple functional layers, including the photoreceptor layer (PRL), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Using flat-mounted retinas, depth-resolved imaging of individual retinal layers further confirmed multiple sources of autofluorescence signals. Cellular structures were clearly observed at the PRL, ONL, INL, and GCL. At the PRL, the autofluorescence was dominantly recorded from the intracellular compartment of the photoreceptors; while mixed intracellular and extracellular autofluorescence signals were observed at the ONL, INL, and GCL. High resolution autofluorescence imaging clearly revealed mosaic organization of rod and cone photoreceptors; and sub-cellular bright autofluorescence spots, which might relate to connecting cilium, was observed in the cone photoreceptors only. Moreover, single-cone and double-cone outer segments could be directly differentiated.
Collapse
Affiliation(s)
- Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tong Ye
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christianne Strang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kent Keyser
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
18
|
Li YC, Cui WX, Wang XJ, Amthor F, Lu RW, Thompson A, Yao XC. Intrinsic optical signal imaging of glucose-stimulated insulin secreting β-cells. OPTICS EXPRESS 2011; 19:99-106. [PMID: 21263546 PMCID: PMC3090649 DOI: 10.1364/oe.19.000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Simultaneous monitoring of many functioning β-cells is essential for understanding β-cell dysfunction as an early event in the progression to diabetes. Intrinsic optical signal (IOS) imaging has been shown to allow high resolution detection of stimulus-evoked physiological responses in the retina and other neural tissues. In this paper, we demonstrate the feasibility of using IOS imaging for functional examination of insulin secreting INS-1 cells, a popular model for investigating diabetes associated β-cell dysfunction. Our experiments indicate that IOS imaging permits simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid IOS image sequences revealed transient optical responses that had time courses tightly correlated with the glucose stimulation.
Collapse
Affiliation(s)
- Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
- These authors have equivalent contributions
| | - Wan-Xing Cui
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
- These authors have equivalent contributions
| | - Xu-Jing Wang
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Franklin Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Rong-Wen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Anthony Thompson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| |
Collapse
|
19
|
Li YC, Strang C, Amthor FR, Liu L, Li YG, Zhang QX, Keyser K, Yao XC. Parallel optical monitoring of visual signal propagation from the photoreceptors to the inner retina layers. OPTICS LETTERS 2010; 35:1810-2. [PMID: 20517424 PMCID: PMC2922879 DOI: 10.1364/ol.35.001810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding of visual signal processing can benefit from simultaneous measurement of different types of retinal neurons working together. In this Letter, we demonstrate that intrinsic optical signal (IOS) imaging of frog retina slices allows simultaneous observation of stimulus-evoked responses propagating from the photoreceptors to the inner neurons. High-resolution imaging revealed robust IOSs at the photoreceptor, the inner plexiform, and the ganglion cell layers. While IOSs of the photoreceptor layer were mainly confined to the area directly stimulated by the visible light, IOSs of the inner retinal layers spread from the stimulus site into relatively large areas with a characteristic near-to-far time course.
Collapse
Affiliation(s)
- Yi-Chao Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christianne Strang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Franklin R. Amthor
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lei Liu
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yang-Guo Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Qiu-Xiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kent Keyser
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xin-Cheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
- Corresponding author:
| |
Collapse
|