1
|
Li D, Humayun L, Vienneau E, Vu T, Yao J. Seeing through the Skin: Photoacoustic Tomography of Skin Vasculature and Beyond. JID INNOVATIONS 2021; 1:100039. [PMID: 34909735 PMCID: PMC8659408 DOI: 10.1016/j.xjidi.2021.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Skin diseases are the most common human diseases and manifest in distinct structural and functional changes to skin tissue components such as basal cells, vasculature, and pigmentation. Although biopsy is the standard practice for skin disease diagnosis, it is not sufficient to provide in vivo status of the skin and highly depends on the timing of diagnosis. Noninvasive imaging technologies that can provide structural and functional tissue information in real time would be invaluable for skin disease diagnosis and treatment evaluation. Among the modern medical imaging technologies, photoacoustic (PA) tomography (PAT) shows great promise as an emerging optical imaging modality with high spatial resolution, high imaging speed, deep penetration depth, rich contrast, and inherent sensitivity to functional and molecular information. Over the last decade, PAT has undergone an explosion in technical development and biomedical applications. Particularly, PAT has attracted increasing attention in skin disease diagnosis, providing structural, functional, metabolic, molecular, and histological information. In this concise review, we introduce the principles and imaging capability of various PA skin imaging technologies. We highlight the representative applications in the past decade with a focus on imaging skin vasculature and melanoma. We also envision the critical technical developments necessary to further accelerate the translation of PAT technologies to fundamental skin research and clinical impacts.
Collapse
Key Words
- ACD, allergy contact dermatitis
- AR-PAM, acoustic-resolution photoacoustic microscopy
- CSC, cryogen spray cooling
- CSVV, cutaneous small-vessel vasculitis
- CTC, circulating tumor cell
- FDA, Food and Drug Administration
- NIR, near-infrared
- OR-PAM, optical-resolution photoacoustic microscopy
- PA, photoacoustic
- PACT, photoacoustic computed tomography
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- PWS, port-wine stain
- RSOM, raster-scan optoacoustic mesoscopy
- THb, total hemoglobin concentration
- sO2, oxygen saturation of hemoglobin
Collapse
Affiliation(s)
- Daiwei Li
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Lucas Humayun
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Emelina Vienneau
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Tri Vu
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Dhengre N, Sinha S, Chinni B, Dogra V, Rao N. Computer aided detection of prostate cancer using multiwavelength photoacoustic data with convolutional neural network. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Mioc A, Mioc M, Ghiulai R, Voicu M, Racoviceanu R, Trandafirescu C, Dehelean C, Coricovac D, Soica C. Gold Nanoparticles as Targeted Delivery Systems and Theranostic Agents in Cancer Therapy. Curr Med Chem 2019; 26:6493-6513. [PMID: 31057102 DOI: 10.2174/0929867326666190506123721] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Cancer is still a leading cause of death worldwide, while most chemotherapies induce nonselective toxicity and severe systemic side effects. To address these problems, targeted nanoscience is an emerging field that promises to benefit cancer patients. Gold nanoparticles are nowadays in the spotlight due to their many well-established advantages. Gold nanoparticles are easily synthesizable in various shapes and sizes by a continuously developing set of means, including chemical, physical or eco-friendly biological methods. This review presents gold nanoparticles as versatile therapeutic agents playing many roles, such as targeted delivery systems (anticancer agents, nucleic acids, biological proteins, vaccines), theranostics and agents in photothermal therapy. They have also been outlined to bring great contributions in the bioimaging field such as radiotherapy, magnetic resonance angiography and photoacoustic imaging. Nevertheless, gold nanoparticles are therapeutic agents demonstrating its in vitro anti-angiogenic, anti-proliferative and pro-apoptotic effects on various cell lines, such as human cervix, human breast, human lung, human prostate and murine melanoma cancer cells. In vivo studies have pointed out data regarding the bioaccumulation and cytotoxicity of gold nanoparticles, but it has been emphasized that size, dose, surface charge, sex and especially administration routes are very important variables.
Collapse
Affiliation(s)
- Alexandra Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Marius Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Cristina Trandafirescu
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| |
Collapse
|
4
|
Reconstruction of Photoacoustic Tomography Inside a Scattering Layer Using a Matrix Filtering Method. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoacoustic (PA) tomography (PAT) has potential for use in brain imaging due to its rich optical contrast, high acoustic resolution in deep tissue, and good biosafety. However, the skull often poses challenges for transcranial brain imaging. The skull can cause severe distortion and attenuation of the phase and amplitude of PA waves, which leads to poor resolution, low contrast, and strong noise in the images. In this study, we propose an image reconstruction method to recover the PA image insider a skull-like scattering layer. This method reduces the scattering artifacts by combining a correlation matrix filter and a time reversal operator. Both numerical simulations and PA imaging experiments demonstrate that the proposed approach effectively improves the image quality with less speckle noise and better signal-to-noise ratio. The proposed method may improve the quality of PAT in a complex acoustic scattering environment, such as transcranial brain imaging.
Collapse
|
5
|
Han SH. Review of Photoacoustic Imaging for Imaging-Guided Spinal Surgery. Neurospine 2018; 15:306-322. [PMID: 30531652 PMCID: PMC6347351 DOI: 10.14245/ns.1836206.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/10/2018] [Indexed: 12/23/2022] Open
Abstract
This review introduces the current technique of photoacoustic imaging as it is applied in imaging-guided surgery (IGS), which provides the surgeon with image visualization and analysis capabilities during surgery. Numerous imaging techniques have been developed to help surgeons perform complex operations more safely and quickly. Although surgeons typically use these kinds of images to visualize targets hidden by bone and other tissues, it is nonetheless more difficult to perform surgery with static reference images (e.g., computed tomography scans and magnetic resonance images) of internal structures. Photoacoustic imaging could enable real-time visualization of regions of interest during surgery. Several researchers have shown that photoacoustic imaging has potential for the noninvasive diagnosis of various types of tissues, including bone. Previous studies of the surgical application of photoacoustic imaging have focused on cancer surgery, but photoacoustic imaging has also recently attracted interest for spinal surgery, because it could be useful for avoiding pedicle breaches and for choosing an appropriate starting point before drilling or pedicle probe insertion. This review describes the current instruments and clinical applications of photoacoustic imaging. Its primary objective is to provide a comprehensive overview of photoacoustic IGS in spinal surgery.
Collapse
Affiliation(s)
- Seung Hee Han
- Division of Biophotonics, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
7
|
Valluru KS, Wilson KE, Willmann JK. Photoacoustic Imaging in Oncology: Translational Preclinical and Early Clinical Experience. Radiology 2016; 280:332-49. [PMID: 27429141 PMCID: PMC4976462 DOI: 10.1148/radiol.16151414] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoacoustic imaging has evolved into a clinically translatable platform with the potential to complement existing imaging techniques for the management of cancer, including detection, characterization, prognosis, and treatment monitoring. In photoacoustic imaging, tissue is optically excited to produce ultrasonographic images that represent a spatial map of optical absorption of endogenous constituents such as hemoglobin, fat, melanin, and water or exogenous contrast agents such as dyes and nanoparticles. It can therefore provide functional and molecular information that allows noninvasive soft-tissue characterization. Photoacoustic imaging has matured over the years and is currently being translated into the clinic with various clinical studies underway. In this review, the current state of photoacoustic imaging is presented, including techniques and instrumentation, followed by a discussion of potential clinical applications of this technique for the detection and management of cancer. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Keerthi S. Valluru
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Katheryne E. Wilson
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jürgen K. Willmann
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| |
Collapse
|
8
|
Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. J Funct Biomater 2016. [PMID: 27455336 PMCID: PMC5040992 DOI: 10.3390/jfb7030019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Li Tian
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Saisree Ravi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Ferandre Salatan
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Graduate School for Biomedical Science, University of Texas Health Science Center at Houston, 6767 Bertner Ave., Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-794-5387
| |
Collapse
|
9
|
Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. J Funct Biomater 2016; 7:E19. [PMID: 27455336 PMCID: PMC5040992 DOI: 10.3390/jfb7020019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023] Open
Abstract
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Li Tian
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Saisree Ravi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Ferandre Salatan
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Graduate School for Biomedical Science, University of Texas Health Science Center at Houston, 6767 Bertner Ave., Houston, TX 77030, USA
| |
Collapse
|
10
|
Tang S, Chen J, Samant P, Stratton K, Xiang L. Transurethral Photoacoustic Endoscopy for Prostate Cancer: A Simulation Study. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1780-7. [PMID: 26886974 DOI: 10.1109/tmi.2016.2528123] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The purpose of this study was to optimize the configuration of a photoacoustic endoscope (PAE) for prostate cancer detection and therapy monitoring. The placement of optical fiber bundles and ultrasound detectors was chosen to maximize the photoacoustic imaging penetration depth. We performed both theoretical calculations and simulations of this optimized PAE configuration on a prostate-sized phantom containing tumor and various photosensitizer concentrations. The optimized configuration of PAE with transurethral light delivery simultaneously increases the imaging penetration depth and improves image quality. Thermal safety, investigated via COMSOL Multiphysics, shows that there is only a 4 mK temperature rise in the urethra during photoacoustic imaging, which will cause no thermal damage. One application of this PAE has been demonstrated for quasi-quantifying photosensitizer concentrations during photodynamic therapy. The sensitivity of the photoacoustic detection for TOOKAD was 0.18 ng/mg at a 763 nm laser wavelength. Results of this study will greatly enhance the potential of prostate PAE for in vivo monitoring of drug delivery and guidance of the laser-induced therapy for future clinical use.
Collapse
|
11
|
Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. ELECTROMAGNETIC WAVES (CAMBRIDGE, MASS.) 2015; 147:1-22. [PMID: 25642127 PMCID: PMC4311576 DOI: 10.2528/pier14032303] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results.
Collapse
Affiliation(s)
- Jun Xia
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
12
|
Antonio JR, Antônio CR, Cardeal ILS, Ballavenuto JMA, Oliveira JR. Nanotechnology in dermatology. An Bras Dermatol 2014; 89:126-36. [PMID: 24626657 PMCID: PMC3938363 DOI: 10.1590/abd1806-4841.20142228] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/17/2013] [Indexed: 01/22/2023] Open
Abstract
The scientific community and general public have been exposed to a series of achievements attributed to a new area of knowledge: Nanotechnology. Both abroad and in Brazil, funding agencies have launched programs aimed at encouraging this type of research. Indeed, for many who come into contact with this subject it will be clear the key role that chemical knowledge will play in the evolution of this subject. And even more, will see that it is a science in which the basic structure is formed by distilling different areas of inter-and multidisciplinary knowledge along the lines of new paradigms. In this article, we attempt to clarify the foundations of nanotechnology, and demonstrate their contribution to new advances in dermatology as well as medicine in general. Nanotechnology is clearly the future.
Collapse
Affiliation(s)
- João Roberto Antonio
- São José do Rio Preto State School of Medicine, Hospital de Base, Dermatology Service, São José do Rio PretoSP, Brazil, Emeritus Professor, State School of Medicine, São José do Rio Preto (FAMERP) - Head of Dermatology and the Dermatology Service, Hospital de Base, São José do Rio Preto State School of Medicine (FAMERP) - São José do Rio Preto (SP), Brazil
| | - Carlos Roberto Antônio
- São José do Rio Preto State School of Medicine, Hospital de Base, Dermatology Service, São José do Rio PretoSP, Brazil, Doctor Dermatologist - Professor responsible for Dermatological and Laser Surgery, Dermatology Service, Hospital de Base, São José do Rio Preto State School of Medicine (FAMERP) - São José do Rio Preto (SP), Brazil
| | - Izabela Lídia Soares Cardeal
- São José do Rio Preto State School of Medicine, Hospital de Base, São José do Rio PretoSP, Brazil, Doctor, State School of Medicine, São José do Rio Preto (FAMERP). Resident of the Dermatology Service, Hospital de Base, São José do Rio Preto State School of Medicine (FAMERP) - São José do Rio Preto (SP), Brazil
| | - Julia Maria Avelino Ballavenuto
- São José do Rio Preto State School of Medicine, São José do Rio PretoSP, Brazil, Medical Academic, São José do Rio Preto State School of Medicine (FAMERP) - São José do Rio Preto (SP), Brazil
| | - João Rodrigo Oliveira
- São José do Rio Preto State School of Medicine, São José do Rio PretoSP, Brazil, Medical Academic, São José do Rio Preto State School of Medicine (FAMERP) - São José do Rio Preto (SP), Brazil
| |
Collapse
|
13
|
Yao J, Wang LV. Sensitivity of photoacoustic microscopy. PHOTOACOUSTICS 2014; 2:87-101. [PMID: 25302158 PMCID: PMC4182819 DOI: 10.1016/j.pacs.2014.04.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/12/2014] [Indexed: 05/03/2023]
Abstract
Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement.
Collapse
Affiliation(s)
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
14
|
Levi J, Sathirachinda A, Gambhir SS. A high-affinity, high-stability photoacoustic agent for imaging gastrin-releasing peptide receptor in prostate cancer. Clin Cancer Res 2014; 20:3721-9. [PMID: 24850845 DOI: 10.1158/1078-0432.ccr-13-3405] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the utility of targeted photoacoustic imaging (PAI) in providing molecular information to complement intrinsic functional and anatomical details of the vasculature within prostate lesion. EXPERIMENTAL DESIGN We developed a PAI agent, AA3G-740, that targets gastrin-releasing peptide receptor (GRPR), found to be highly overexpressed in prostate cancer. The binding specificity of the agent was evaluated in human prostate cancer cell lines, PC3 and LNCaP, and antagonist properties determined by cell internalization and intracellular calcium mobilization studies. The imaging sensitivity was assessed for the agent itself and for the PC3 cells labeled with agent. The in vivo stability of the agent was determined in human plasma and in the blood of living mice. The in vivo binding of the agent was evaluated in PC3 prostate tumor models in mice, and was validated ex vivo by optical imaging. RESULTS AA3G-740 demonstrated strong and specific binding to GRPR. The sensitivity of detection in vitro indicated suitability of the agent to image very small lesions. In mice, the agent was able to bind to GRPR even in poorly vascularized tumors leading to nearly 2-fold difference in photoacoustic signal relative to the control agent. CONCLUSIONS The ability to image both vasculature and molecular profile outside the blood vessels gives molecular PAI a unique advantage over currently used imaging techniques. The imaging method presented here can find application both in diagnosis and in image-guided biopsy.
Collapse
Affiliation(s)
- Jelena Levi
- Authors' Affiliations: Canary Center at Stanford for Cancer Early Detection; and Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, Stanford, California
| | - Ataya Sathirachinda
- Authors' Affiliations: Canary Center at Stanford for Cancer Early Detection; and Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, Stanford, California
| | - Sanjiv S Gambhir
- Authors' Affiliations: Canary Center at Stanford for Cancer Early Detection; and Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Palo Alto, Stanford, California
| |
Collapse
|
15
|
Zackrisson S, van de Ven SMWY, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res 2014; 74:979-1004. [PMID: 24514041 DOI: 10.1158/0008-5472.can-13-2387] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoacoustic imaging (PAI) has the potential for real-time molecular imaging at high resolution and deep inside the tissue, using nonionizing radiation and not necessarily depending on exogenous imaging agents, making this technique very promising for a range of clinical applications. The fact that PAI systems can be made portable and compatible with existing imaging technologies favors clinical translation even more. The breadth of clinical applications in which photoacoustics could play a valuable role include: noninvasive imaging of the breast, sentinel lymph nodes, skin, thyroid, eye, prostate (transrectal), and ovaries (transvaginal); minimally invasive endoscopic imaging of gastrointestinal tract, bladder, and circulating tumor cells (in vivo flow cytometry); and intraoperative imaging for assessment of tumor margins and (lymph node) metastases. In this review, we describe the basics of PAI and its recent advances in biomedical research, followed by a discussion of strategies for clinical translation of the technique.
Collapse
Affiliation(s)
- S Zackrisson
- Departments of Radiology, Bioengineering, and Department of Materials Science & Engineering. Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Diagnostic Radiology, Department of Clinical Sciences in Malmö, Lund University, Sweden
| | - S M W Y van de Ven
- Departments of Radiology, Bioengineering, and Department of Materials Science & Engineering. Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - S S Gambhir
- Departments of Radiology, Bioengineering, and Department of Materials Science & Engineering. Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Yao J, Wang LV. Photoacoustic Microscopy. LASER & PHOTONICS REVIEWS 2013; 7:10.1002/lpor.201200060. [PMID: 24416085 PMCID: PMC3887369 DOI: 10.1002/lpor.201200060] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/02/2012] [Indexed: 05/13/2023]
Abstract
Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (~1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at desired maximum imaging depths up to a few millimeters. Compared with backscattering-based confocal microscopy and optical coherence tomography, PAM provides absorption contrast instead of scattering contrast. Furthermore, PAM can image more molecules, endogenous or exogenous, at their absorbing wavelengths than fluorescence-based methods, such as wide-field, confocal, and multi-photon microscopy. Most importantly, PAM can simultaneously image anatomical, functional, molecular, flow dynamic and metabolic contrasts in vivo. Focusing on state-of-the-art developments in PAM, this Review discusses the key features of PAM implementations and their applications in biomedical studies.
Collapse
Affiliation(s)
- Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
17
|
Montilla LG, Olafsson R, Bauer DR, Witte RS. Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays. Phys Med Biol 2013; 58:N1-12. [PMID: 23221479 DOI: 10.1088/0031-9155/58/1/n1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information during a routine breast exam for cancer. PAI enhances contrast between blood vessels and background tissue, which can help characterize suspicious lesions. However, most PAI systems are either not compatible with commercial ultrasound systems or inefficiently deliver light to the region of interest, effectively reducing the sensitivity of the technique. To address and potentially overcome these limitations, we developed an accessory for a standard linear ultrasound array that optimizes light delivery for PAI. The photoacoustic enabling device (PED) exploits an optically transparent acoustic reflector to help direct laser illumination to the region of interest. This study compares the PED with standard fiber bundle illumination in scattering and non-scattering media. In scattering media with the same incident fluence, the PED enhanced the photoacoustic signal by 18 dB at a depth of 5 mm and 6 dB at a depth of 20 mm. To demonstrate in vivo feasibility, we also used the device to image a mouse with a pancreatic tumor. The PED identified blood vessels at the periphery of the tumor, suggesting that PAI provides complementary contrast to standard pulse echo ultrasound. The PED is a simple and inexpensive solution that facilitates the translation of PAI technology to the clinic for routine screening of breast cancer.
Collapse
Affiliation(s)
- Leonardo G Montilla
- Department of Medical Imaging, Experimental Ultrasound & Neural Imaging Laboratory, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
18
|
Yuan J, Xu G, Yu Y, Zhou Y, Carson PL, Wang X, Liu X. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:86001. [PMID: 23907277 PMCID: PMC3733419 DOI: 10.1117/1.jbo.18.8.086001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/31/2013] [Accepted: 06/21/2013] [Indexed: 05/18/2023]
Abstract
Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.
Collapse
Affiliation(s)
- Jie Yuan
- Nanjing University, School of Electronic Science and Engineering, Nanjing 210093, China
| | - Guan Xu
- University of Michigan, Department of Radiology, Ann Arbor, Michigan 48109
| | - Yao Yu
- Nanjing University, School of Electronic Science and Engineering, Nanjing 210093, China
| | - Yu Zhou
- Nanjing University, School of Electronic Science and Engineering, Nanjing 210093, China
| | - Paul L. Carson
- University of Michigan, Department of Radiology, Ann Arbor, Michigan 48109
| | - Xueding Wang
- University of Michigan, Department of Radiology, Ann Arbor, Michigan 48109
- Address all correspondence to: Xueding Wang, University of Michigan, Department of Radiology, Ann Arbor, Michigan 48109. Tel: +1-734-647-2728; Fax: +1-734-764-8541; E-mail:
| | - Xiaojun Liu
- Nanjing University, School of Physics, Nanjing 210093, China
| |
Collapse
|
19
|
Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013; 10:831-47. [PMID: 23360440 DOI: 10.1021/mp3005885] [Citation(s) in RCA: 449] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and nontoxic. The surface of gold nanoparticles can easily be modified for a specific application, and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the aforementioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so-called theranostics. This review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs.
Collapse
Affiliation(s)
- Aneta J Mieszawska
- Translational and Molecular Imaging Institute and Imaging Science Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | |
Collapse
|
20
|
Petschke A, La Rivière PJ. Comparison of photoacoustic image reconstruction algorithms using the channelized Hotelling observer. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:26009. [PMID: 23386197 PMCID: PMC4023646 DOI: 10.1117/1.jbo.18.2.026009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We demonstrate the use of task-based image-quality metrics to compare various photoacoustic image-reconstruction algorithms, including a method based on the pseudoinverse of the system matrix, simple backprojection, filtered backprojection, and a method based on the Fourier transform. We use a three-dimensional forward model with a linear transducer array to simulate a photoacoustic imaging system. The reconstructed images correspond with two-dimensional slices of the object and are 128×128 pixels. In order to compare the algorithms, we use channelized Hotelling observers that predict the detection ability of human observers. We use two sets of channels: constant Q and difference of Gaussian spatial frequency channels. We look at three tasks, identification of a point source in a uniform background, identification of a 0.5-mm cube in a uniform background, and identification of a point source in a lumpy background. For the lumpy background task, which is the most realistic of the tasks, the method based on the pseudoinverse performs best according to both sets of channels.
Collapse
Affiliation(s)
- Adam Petschke
- The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637
| | - Patrick J. La Rivière
- The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637
- Address all correspondence to: Patrick J. La Rivière, The University of Chicago, Department of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637. Tel: 773-702-6975; Fax: 773-702-5986; E-mail:
| |
Collapse
|
21
|
Yang D, Zeng L, Pan C, Zhao X, Ji X. Noninvasive photoacoustic detecting intraocular foreign bodies with an annular transducer array. OPTICS EXPRESS 2013; 21:984-991. [PMID: 23388992 DOI: 10.1364/oe.21.000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a fast photoacoustic imaging system based on an annular transducer array for detection of intraocular foreign bodies. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experimental models of intraocular metal and glass foreign bodies were constructed on ex vivo pig's eyes and clear photoacoustic images of intraocular foreign bodies were obtained. Experimental results demonstrate the photoacoustic imaging system holds the potential for in clinic detecting the intraocular foreign bodies.
Collapse
Affiliation(s)
- Diwu Yang
- Department of Physics and Engineering, Hunan University of Technology, Zhuzhou 412000, China.
| | | | | | | | | |
Collapse
|
22
|
Size- and Ligand-Specific Bioresponse of Gold Clusters and Nanoparticles: Challenges and Perspectives. STRUCTURE AND BONDING 2013. [DOI: 10.1007/430_2013_127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
HUANG HUANGCHIAO, RAMOS JAMES, GRANDHI TARAKASAIPAVAN, POTTA THRIMOORTHY, REGE KAUSHAL. GOLD NANOPARTICLES IN CANCER IMAGING AND THERAPEUTICS. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984410000274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of nanomedicine in the war on cancer diseases has progressed significantly in the recent past. Liposomal- and albumin-based chemotherapeutic agents as well as tumor contrast agents (e.g. Gd-DTPA, ferumoxides) have received FDA approval for human clinical use, while many other agents are in different phases of pre-clinical investigation and clinical trials. Plasmonic gold nanoparticles hold great promise as potential theranostic devices for detection and ablation of cancer diseases. This review discusses recent progress in the imaging, photothermal therapy, and nucleic acid/drug delivery using gold nanoparticles (spheres, shells, rods, cages) in vitro and in vivo. Issues relating to toxicity, biocompatibility, biodistribution, cellular uptake, and targeting efficiency are also discussed.
Collapse
Affiliation(s)
- HUANG-CHIAO HUANG
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - JAMES RAMOS
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - TARAKA SAI PAVAN GRANDHI
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - THRIMOORTHY POTTA
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - KAUSHAL REGE
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| |
Collapse
|
24
|
Wang YH, Liao AH, Chen JH, Wang CRC, Li PC. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:045001. [PMID: 22559675 DOI: 10.1117/1.jbo.17.4.045001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study investigates a photoacoustic/ultrasound dual-modality contrast agent, including extending its applications from image-contrast enhancement to combined diagnosis and therapy with site-specific targeting. The contrast agent comprises albumin-shelled microbubbles with encapsulated gold nanorods (AuMBs). The gas-filled microbubbles, whose diameters range from submicrometer to several micrometers, are not only echogenic but also can serve as drug-delivery vehicles. The gold nanorods are used to enhance the generation of both photoacoustic and photothermal signals. The optical absorption peak of the gold nanorods is tuned to 760 nm and is invariant after microbubble encapsulation. Dual-modality contrast enhancement is first described here, and the applications to cellular targeting and laser-induced thermotherapy in a phantom are demonstrated. Photoacoustic imaging can be used to monitor temperature increases during the treatment. The targeting capability of AuMBs was verified, and the temperature increased by 26°C for a laser power of 980 mW, demonstrating the potential of combined diagnosis and therapy with the dual-modality agent. Targeted photo- or acoustic-mediated delivery is also possible.
Collapse
Affiliation(s)
- Yu-Hsin Wang
- National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Zeng L, Liu G, Yang D, Ji X. 3D-visual laser-diode-based photoacoustic imaging. OPTICS EXPRESS 2012; 20:1237-46. [PMID: 22274468 DOI: 10.1364/oe.20.001237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a 3D-visual laser-diode-based photoacoustic imaging (LD-PAI) system with a pulsed semiconductor laser source, which has the properties of being inexpensive, portable, and durable. The laser source was operated at a wavelength of 905 nm with a repetition rate of 0.8 KHz. The energy density on the sample surface is about 2.35 mJ/cm(2) with a pulse energy as low as 5.6 μJ. By raster-scanning, preliminary 3D volumetric renderings of the knotted and helical blood vessel phantoms have been visualized integrally with an axial resolution of 1.1 mm and a lateral resolution of 0.5 mm, and typical 2D photoacoustic image slices with different thickness and orientation were produced with clarity for detailed comparison and analysis in 3D diagnostic visualization. In addition, the pulsed laser source was integrated with the optical lens group and the 3D adjustable rotational stage, with the result that the compact volume of the total radiation source is only 10 × 3 × 3 cm(3). Our goal is to significantly reduce the costs and sizes of the deep 3D-visual PAI system for future producibility.
Collapse
Affiliation(s)
- Lvming Zeng
- Key Laboratory of Optic-Electronic and Communication, Jiangxi Sciences and Technology Normal College, Nanchang, China.
| | | | | | | |
Collapse
|
26
|
Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012; 41:2885-911. [DOI: 10.1039/c2cs15260f] [Citation(s) in RCA: 857] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A. Nanoparticles in dermatology. Arch Dermatol Res 2011; 303:533-50. [PMID: 21837474 DOI: 10.1007/s00403-011-1163-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/16/2011] [Accepted: 06/29/2011] [Indexed: 12/17/2022]
Abstract
Recent advances in the field of nanotechnology have allowed the manufacturing of elaborated nanometer-sized particles for various biomedical applications. A broad spectrum of particles, extending from various lipid nanostructures such as liposomes and solid lipid nanoparticles, to metal, nanocrystalline and polymer particles have already been tested as drug delivery systems in different animal models with remarkable results, promising an extensive commercialization in the coming years. Controlled drug release to skin and skin appendages, targeting of hair follicle-specific cell populations, transcutaneous vaccination and transdermal gene therapy are only a few of these new applications. Carrier systems of the new generation take advantage of improved skin penetration properties, depot effect with sustained drug release and of surface functionalization (e.g., the binding to specific ligands) allowing specific cellular and subcellular targeting. Drug delivery to skin by means of microparticles and nanocarriers could revolutionize the treatment of several skin disorders. However, the toxicological and environmental safety of micro- and nanoparticles has to be evaluated using specific toxicological studies prior to a wider implementation of the new technology. This review aims to give an overview of the most investigated applications of transcutaneously applied particle-based formulations in the fields of cosmetics and dermatology.
Collapse
Affiliation(s)
- Dimitrios Papakostas
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | |
Collapse
|
28
|
Huang HC, Barua S, Sharma G, Dey SK, Rege K. WITHDRAWN: Inorganic nanoparticles for cancer imaging and therapy. J Control Release 2011:S0168-3659(11)00482-2. [PMID: 21782865 DOI: 10.1016/j.jconrel.2011.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/26/2011] [Indexed: 01/30/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, doi:10.1016/j.jconrel.2011.07.005. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Huang-Chiao Huang
- Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, United States
| | | | | | | | | |
Collapse
|
29
|
Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release 2011; 155:344-57. [PMID: 21723891 DOI: 10.1016/j.jconrel.2011.06.004] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/26/2011] [Indexed: 12/22/2022]
Abstract
Inorganic nanoparticles have received increased attention in the recent past as potential diagnostic and therapeutic systems in the field of oncology. Inorganic nanoparticles have demonstrated successes in imaging and treatment of tumors both ex vivo and in vivo, with some promise towards clinical trials. This review primarily discusses progress in applications of inorganic nanoparticles for cancer imaging and treatment, with an emphasis on in vivo studies. Advances in the use of semiconductor fluorescent quantum dots, carbon nanotubes, gold nanoparticles (spheres, shells, rods, cages), iron oxide magnetic nanoparticles and ceramic nanoparticles in tumor targeting, imaging, photothermal therapy and drug delivery applications are discussed. Limitations and toxicity issues associated with inorganic nanoparticles in living organisms are also discussed.
Collapse
|
30
|
Bauer DR, Olafsson R, Montilla LG, Witte RS. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:026012. [PMID: 21361696 PMCID: PMC3065344 DOI: 10.1117/1.3540668] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 12/18/2010] [Accepted: 12/22/2010] [Indexed: 05/20/2023]
Abstract
Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-μm(3) resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm(3)/day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo.
Collapse
Affiliation(s)
- Daniel R Bauer
- University of Arizona, Department of Radiology, 1609 North Warren Avenue, Tucson, Arizona 85724, USA.
| | | | | | | |
Collapse
|
31
|
Lukianova-Hleb EY, Oginsky AO, Samaniego AP, Shenefelt DL, Wagner DS, Hafner JH, Farach-Carson MC, Lapotko DO. Tunable plasmonic nanoprobes for theranostics of prostate cancer. Theranostics 2011; 1:3-17. [PMID: 21547151 PMCID: PMC3086615 DOI: 10.7150/thno/v01p0003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Theranostic applications require coupling of diagnosis and therapy, a high degree of specificity and adaptability to delivery methods compatible with clinical practice. The tunable physical and biological effects of selective targeting and activation of plasmonic nanobubbles (PNB) were studied in a heterogeneous biological microenvironment of prostate cancer and stromal cells. All cells were targeted with conjugates of gold nanoparticles (NPs) through an antibody-receptor-endocytosis-nanocluster mechanism that produced NP clusters. The simultaneous pulsed optical activation of intracellular NP clusters at several wavelengths resulted in higher optical contrast and therapeutic selectivity of PNBs compared with those of gold NPs alone. The developed mechanism was termed "rainbow plasmonic nanobubbles." The cellular effect of rainbow PNBs was tuned in situ in target cells, thus supporting a theranostic algorithm of prostate cancer cell detection and follow-up guided destruction without damage to collateral cells. The specificity and tunability of PNBs is promising for theranostic applications and we discuss a fiber optic platform that will capitalize on these features to bring theranostic tools to the clinic.
Collapse
|
32
|
Solomon M, Liu Y, Berezin MY, Achilefu S. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Princ Pract 2011; 20:397-415. [PMID: 21757928 PMCID: PMC7388590 DOI: 10.1159/000327655] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/16/2011] [Indexed: 01/19/2023] Open
Abstract
Accurate and rapid detection of diseases is of great importance for assessing the molecular basis of pathogenesis, preventing the onset of complications, and implementing a tailored therapeutic regimen. The ability of optical imaging to transcend wide spatial imaging scales ranging from cells to organ systems has rejuvenated interest in using this technology for medical imaging. Moreover, optical imaging has at its disposal diverse contrast mechanisms for distinguishing normal from pathologic processes and tissues. To accommodate these signaling strategies, an array of imaging techniques has been developed. Importantly, light absorption, and emission methods, as well as hybrid optical imaging approaches are amenable to both small animal and human studies. Typically, complex methods are needed to extract quantitative data from deep tissues. This review focuses on the development of optical imaging platforms, image processing techniques, and molecular probes, as well as their applications in cancer diagnosis, staging, and monitoring therapeutic response.
Collapse
Affiliation(s)
- Metasebya Solomon
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Yang Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|