1
|
Szwaj M, Davidson IA, Johnson PB, Jasion G, Jung Y, Sandoghchi SR, Herdzik KP, Bourdakos KN, Wheeler NV, Mulvad HC, Richardson DJ, Poletti F, Mahajan S. Double-Clad Antiresonant Hollow-Core Fiber and Its Comparison with Other Fibers for Multiphoton Micro-Endoscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:2482. [PMID: 38676099 PMCID: PMC11054428 DOI: 10.3390/s24082482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Label-free and multiphoton micro-endoscopy can transform clinical histopathology by providing an in situ tool for diagnostic imaging and surgical treatment in diseases such as cancer. Key to a multiphoton imaging-based micro-endoscopic device is the optical fiber, for distortion-free and efficient delivery of ultra-short laser pulses to the sample and effective signal collection. In this work, we study a new hollow-core (air-filled) double-clad anti-resonant fiber (DC-ARF) as a high-performance candidate for multiphoton micro-endoscopy. We compare the fiber characteristics of the DC-ARF with a single-clad anti-resonant fiber (SC-ARF) and a solid core fiber (SCF). In this work, while the DC-ARF and the SC-ARF enable low-loss (<0.2 dBm-1), close to dispersion-free excitation pulse delivery (<10% pulse width increase at 900 nm per 1 m fiber) without any induced non-linearities, the SCF resulted in spectral broadening and pulse-stretching (>2000% of pulse width increase at 900 nm per 1 m fiber). An ideal optical fiber endoscope needs to be several meters long and should enable both excitation and collection through the fiber. Therefore, we performed multiphoton imaging on endoscopy-compatible 1 m and 3 m lengths of fiber in the back-scattered geometry, wherein the signals were collected either directly (non-descanned detection) or through the fiber (descanned detection). Second harmonic images were collected from barium titanate crystals as well as from biological samples (mouse tail tendon). In non-descanned detection conditions, the ARFs outperformed the SCF by up to 10 times in terms of signal-to-noise ratio of images. Significantly, only the DC-ARF, due to its high numerical aperture (NA) of 0.45 and wide-collection bandwidth (>1 µm), could provide images in the de-scanned detection configuration desirable for endoscopy. Thus, our systematic characterization and comparison of different optical fibers under different image collection configurations, confirms and establishes the utility of DC-ARFs for high-performing label-free multiphoton imaging-based micro-endoscopy.
Collapse
Affiliation(s)
- Marzanna Szwaj
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Ian A. Davidson
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Peter B. Johnson
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Greg Jasion
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Yongmin Jung
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Seyed Reza Sandoghchi
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Krzysztof P. Herdzik
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Konstantinos N. Bourdakos
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Natalie V. Wheeler
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Hans Christian Mulvad
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - David J. Richardson
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Francesco Poletti
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Sumeet Mahajan
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
2
|
Pence IJ, Evans CL. Translational biophotonics with Raman imaging: clinical applications and beyond. Analyst 2021; 146:6379-6393. [PMID: 34596653 PMCID: PMC8543123 DOI: 10.1039/d1an00954k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Clinical medicine continues to seek novel rapid non-invasive tools capable of providing greater insight into disease progression and management. Raman scattering based technologies constitute a set of tools under continuing development to address outstanding challenges spanning diagnostic medicine, surgical guidance, therapeutic monitoring, and histopathology. Here we review the mechanisms and clinical applications of Raman scattering, specifically focusing on high-speed imaging methods that can provide spatial context for translational biomedical applications.
Collapse
Affiliation(s)
- Isaac J Pence
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | - Conor L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
3
|
Ogawa H, Hashimoto M. Avoidance of four-wave mixing in optical fiber bundle for coherent anti-Stokes Raman scattering endomicroscopy. OPTICS LETTERS 2021; 46:3356-3359. [PMID: 34264212 DOI: 10.1364/ol.425644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
We propose and demonstrate a method of suppressing four-wave mixing (FWM) in an optical fiber bundle to realize coherent anti-Stokes Raman scattering (CARS) endomicroscopy, which is the leading candidate for a definitive diagnosis of gastrointestinal cancer. Two excitation laser beams with different wavelengths are delivered via different cores to suppress FWM and are then combined with a polarization prism and a dual-wavelength wave plate and are focused to a spot. The background emission from the optical fiber bundle was suppressed to 1/3289, and we demonstrated CARS imaging of a polystyrene bead using the proposed method.
Collapse
|
4
|
Abstract
Histopathology plays a central role in diagnosis of many diseases including solid cancers. Efforts are underway to transform this subjective art to an objective and quantitative science. Coherent Raman imaging (CRI), a label-free imaging modality with sub-cellular spatial resolution and molecule-specific contrast possesses characteristics which could support the qualitative-to-quantitative transition of histopathology. In this work we briefly survey major themes related to modernization of histopathology, review applications of CRI to histopathology and, finally, discuss potential roles for CRI in the transformation of histopathology that is already underway.
Collapse
|
5
|
Weng S, Xu X, Li J, Wong STC. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 29086544 PMCID: PMC5661703 DOI: 10.1117/1.jbo.22.10.106017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/04/2017] [Indexed: 05/05/2023]
Abstract
Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging.
Collapse
Affiliation(s)
- Sheng Weng
- Translational Biophotonics Laboratory, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas, United States
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Xiaoyun Xu
- Translational Biophotonics Laboratory, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas, United States
| | - Jiasong Li
- Translational Biophotonics Laboratory, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas, United States
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
- Address all correspondence to: Stephen T. C. Wong, E-mail:
| |
Collapse
|
6
|
Lombardini A, Andresen ER, Kudlinski A, Rimke I, Rigneault H. Origin and suppression of parasitic signals in Kagomé lattice hollow core fibers used for SRS microscopy and endoscopy. OPTICS LETTERS 2017; 42:1824-1827. [PMID: 28454170 DOI: 10.1364/ol.42.001824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hollow core fibers are considered as promising candidates to deliver intense temporally overlapping picosecond pulses in applications such as stimulated Raman scattering (SRS) microscopy and endoscopy because of their inherent low nonlinearity compared to solid-core silica fibers. Here we demonstrate that, contrary to prior assumptions, parasitic signals are generated in Kagomé lattice hollow core fibers. We identify the origin of the parasitic signals as an interplay between the Kerr nonlinearity of air and frequency-dependent fiber losses. Importantly, we identify the special cases of experimental parameters that are free from parasitic signals, making hollow core fibers ideal candidates for noise-free SRS microscopy and endoscopy.
Collapse
|
7
|
Weng S, Chen X, Xu X, Wong KK, Wong STC. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons. BIOMEDICAL OPTICS EXPRESS 2016; 7:2202-18. [PMID: 27375938 PMCID: PMC4918576 DOI: 10.1364/boe.7.002202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/09/2016] [Accepted: 04/09/2016] [Indexed: 05/14/2023]
Abstract
In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications.
Collapse
Affiliation(s)
- Sheng Weng
- Translational Biophotonics Lab, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| | - Xu Chen
- Translational Biophotonics Lab, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas 77030, USA
| | - Xiaoyun Xu
- Translational Biophotonics Lab, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas 77030, USA
| | - Kelvin K. Wong
- Translational Biophotonics Lab, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas 77030, USA
| | - Stephen T. C. Wong
- Translational Biophotonics Lab, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
8
|
Lukić A, Dochow S, Chernavskaia O, Latka I, Matthäus C, Schwuchow A, Schmitt M, Popp J. Fiber probe for nonlinear imaging applications. JOURNAL OF BIOPHOTONICS 2016; 9:138-43. [PMID: 25924223 DOI: 10.1002/jbio.201500010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 05/12/2023]
Abstract
Over the past years it had been demonstrated that multimodal imaging combining the nonlinear modalities coherent anti-Stokes Raman scattering (CARS), two-photon excited auto-fluorescence (TPEF) and second harmonic generation (SHG) show a great potential for tissue diagnosis and tumor identification. To extend the applicability of this multimodal imaging approach for in-vivo tissue screening of difficult to access body regions the development of suitable fiber optic probes is required. Here we report about a novel CARS imaging fiber probe consisting of 10,000 coherent light guiding elements preserving the spatial relationship between the entrance and the output of the fiber. Therefore the scanning procedure can be shifted from the distal to the proximal end of the fiber probe and no moving parts or driving current are required to realize in-vivo CARS endoscopy.
Collapse
Affiliation(s)
- Aleksandar Lukić
- Friedrich-Schiller University of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), PO Box 100239, 07702, Jena, Germany
| | - Sebastian Dochow
- Friedrich-Schiller University of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), PO Box 100239, 07702, Jena, Germany
| | - Olga Chernavskaia
- Friedrich-Schiller University of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), PO Box 100239, 07702, Jena, Germany
| | - Ines Latka
- Friedrich-Schiller University of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), PO Box 100239, 07702, Jena, Germany
| | - Christian Matthäus
- Friedrich-Schiller University of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), PO Box 100239, 07702, Jena, Germany
| | - Anka Schwuchow
- Leibniz Institute of Photonic Technology (IPHT), PO Box 100239, 07702, Jena, Germany
| | - Michael Schmitt
- Leibniz Institute of Photonic Technology (IPHT), PO Box 100239, 07702, Jena, Germany
| | - Jürgen Popp
- Friedrich-Schiller University of Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743, Jena, Germany.
- Leibniz Institute of Photonic Technology (IPHT), PO Box 100239, 07702, Jena, Germany.
| |
Collapse
|
9
|
Chen X, Xu X, McCormick DT, Wong K, Wong ST. Multimodal nonlinear endo-microscopy probe design for high resolution, label-free intraoperative imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6. [PMID: 26203361 PMCID: PMC4505689 DOI: 10.1364/boe.6.002283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present a portable, multimodal, nonlinear endo-microscopy probe designed for intraoperative oncological imaging. Application of a four-wave mixing noise suppression scheme using dual wavelength wave plates (DWW) and a polarization-maintaining fiber improves tissue signal collection efficiency, allowing for miniaturization. The probe, with a small 14 mm transversal diameter, includes a customized miniaturized two-axis MEMS (micro-electromechanical system) raster scanning mirror and micro-optics with an illumination laser delivered by a polarization-maintaining fiber. The probe can potentially be integrated into the arms of a surgical robot, such as da Vinci robotic surgery system, due to its minimal cross sectional area. It has the ability to incorporate multiple imaging modalities including CARS (coherent anti-Stokes Raman scattering), SHG (second harmonic generation), and TPEF (two-photon excited fluorescence) in order to allow the surgeon to locate tumor cells within the context of normal stromal tissue. The resolution of the endo-microscope is experimentally determined to be 0.78 µm, a high level of accuracy for such a compact probe setup. The expected resolution of the as-built multimodal, nonlinear, endo-microscopy probe is 1 µm based on the calculation tolerance allocation using Monte-Carlo simulation. The reported probe is intended for use in laparoscopic or radical prostatectomy, including detection of tumor margins and avoidance of nerve impairment during surgery.
Collapse
Affiliation(s)
- Xu Chen
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas 77030, USA
| | - Xiaoyun Xu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas 77030, USA
| | | | - Kelvin Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas 77030, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas 77030, USA
| | - Stephen T.C. Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, Texas 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas 77030, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Deladurantaye P, Paquet A, Paré C, Zheng H, Doucet M, Gay D, Poirier M, Cormier JF, Mermut O, Wilson BC, Seibel EJ. Advances in engineering of high contrast CARS imaging endoscopes. OPTICS EXPRESS 2014; 22:25053-64. [PMID: 25401538 PMCID: PMC4247180 DOI: 10.1364/oe.22.025053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The translation of CARS imaging towards real time, high resolution, chemically selective endoscopic tissue imaging applications is limited by a lack of sensitivity in CARS scanning probes sufficiently small for incorporation into endoscopes. We have developed here a custom double clad fiber (DCF)-based CARS probe which is designed to suppress the contaminant Four-Wave-Mixing (FWM) background generated within the fiber and integrated it into a fiber based scanning probe head of a few millimeters in diameter. The DCF includes a large mode area (LMA) core as a first means of reducing FWM generation by ~3 dB compared to commercially available, step-index single mode fibers. A micro-fabricated miniature optical filter (MOF) was grown on the distal end of the DCF to block the remaining FWM background from reaching the sample. The resulting probe was used to demonstrate high contrast images of polystyrene beads in the forward-CARS configuration with > 10 dB suppression of the FWM background. In epi-CARS geometry, images exhibited lower contrast due to the leakage of MOF-reflected FWM from the fiber core. Improvements concepts for the fiber probe are proposed for high contrast epi-CARS imaging to enable endoscopic implementation in clinical tissue assessment contexts, particularly in the early detection of endoluminal cancers and in tumor margin assessment.
Collapse
Affiliation(s)
| | - Alex Paquet
- INO, 2740, rue Einstein, Québec, G1P 4S4,
Canada
| | - Claude Paré
- INO, 2740, rue Einstein, Québec, G1P 4S4,
Canada
| | - Huimin Zheng
- INO, 2740, rue Einstein, Québec, G1P 4S4,
Canada
| | | | - David Gay
- INO, 2740, rue Einstein, Québec, G1P 4S4,
Canada
| | | | | | - Ozzy Mermut
- INO, 2740, rue Einstein, Québec, G1P 4S4,
Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre/university Health Network, and University of Toronto, Ontario,
Canada
| | - Eric J. Seibel
- University of Washington, Department of Mechanical Engineering, Seattle, Washington 98195,
USA
| |
Collapse
|
11
|
Affiliation(s)
- Karen A. Antonio
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| | - Zachary D. Schultz
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
12
|
Smith B, Naji M, Murugkar S, Alarcon E, Brideau C, Stys P, Anis H. Portable, miniaturized, fibre delivered, multimodal CARS exoscope. OPTICS EXPRESS 2013; 21:17161-75. [PMID: 23938563 DOI: 10.1364/oe.21.017161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We demonstrate for the first time, a portable multimodal coherent anti-Stokes Raman scattering microscope (exoscope) for minimally invasive in-vivo imaging of tissues. This device is based around a micro-electromechanical system scanning mirror and miniaturized optics with light delivery accomplished by a photonic crystal fibre. A single Ti:sapphire femtosecond pulsed laser is used as the light source to produce CARS, two photon excitation fluorescence and second harmonic generation images. The high resolution and distortion-free images obtained from various resolution and bio-samples, particularly in backward direction (epi) successfully demonstrate proof of concept, and pave the path towards future non or minimally-invasive in vivo imaging.
Collapse
Affiliation(s)
- Brett Smith
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, PO Box450 Stn A, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | | | | | | | |
Collapse
|
13
|
Gao L, Wang Z, Li F, Hammoudi AA, Thrall MJ, Cagle PT, Wong STC. Differential diagnosis of lung carcinoma with coherent anti-Stokes Raman scattering imaging. Arch Pathol Lab Med 2013. [PMID: 23194042 DOI: 10.5858/arpa.2012-0238-sa] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aimed at bridging imaging technology development with cancer diagnosis, this paper first presents the prevailing challenges of lung cancer detection and diagnosis, with an emphasis on imaging techniques. It then elaborates on the working principle of coherent anti-Stokes Raman scattering microscopy, along with a description of pathologic applications to show the effectiveness and potential of this novel technology for lung cancer diagnosis. As a nonlinear optical technique probing intrinsic molecular vibrations, coherent anti-Stokes Raman scattering microscopy offers an unparalleled, label-free strategy for clinical cancer diagnosis and allows differential diagnosis of fresh specimens based on cell morphology information and patterns, without any histology staining. This powerful feature promises a higher biopsy yield for early cancer detection by incorporating a real-time imaging feed with a biopsy needle. In addition, molecularly targeted therapies would also benefit from early access to surgical specimen with high accuracy but minimum tissue consumption, therefore potentially saving specimens for follow-up diagnostic tests. Finally, we also introduce the potential of a coherent anti-Stokes Raman scattering-based endoscopy system to support intraoperative applications at the cellular level.
Collapse
Affiliation(s)
- Liang Gao
- Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Gao L, Hammoudi AA, Li F, Thrall MJ, Cagle PT, Chen Y, Yang J, Xia X, Fan Y, Massoud Y, Wang Z, Wong STC. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:066017. [PMID: 22734773 DOI: 10.1117/1.jbo.17.6.066017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.
Collapse
Affiliation(s)
- Liang Gao
- Cornell University, The Methodist Hospital Research Institute, Weill Cornell Medical College, Department of Systems Medicine and Bioengineering, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bélanger E, Crépeau J, Laffray S, Vallée R, De Koninck Y, Côté D. Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:021107. [PMID: 22463025 DOI: 10.1117/1.jbo.17.2.021107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In vivo imaging of cellular dynamics can be dramatically enabling to understand the pathophysiology of nervous system diseases. To fully exploit the power of this approach, the main challenges have been to minimize invasiveness and maximize the number of concurrent optical signals that can be combined to probe the interplay between multiple cellular processes. Label-free coherent anti-Stokes Raman scattering (CARS) microscopy, for example, can be used to follow demyelination in neurodegenerative diseases or after trauma, but myelin imaging alone is not sufficient to understand the complex sequence of events that leads to the appearance of lesions in the white matter. A commercially available microendoscope is used here to achieve minimally invasive, video-rate multimodal nonlinear imaging of cellular processes in live mouse spinal cord. The system allows for simultaneous CARS imaging of myelin sheaths and two-photon excitation fluorescence microendoscopy of microglial cells and axons. Morphometric data extraction at high spatial resolution is also described, with a technique for reducing motion-related imaging artifacts. Despite its small diameter, the microendoscope enables high speed multimodal imaging over wide areas of tissue, yet at resolution sufficient to quantify subtle differences in myelin thickness and microglial motility.
Collapse
Affiliation(s)
- Erik Bélanger
- Université Laval, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Stewart S, Priore RJ, Nelson MP, Treado PJ. Raman imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:337-60. [PMID: 22524218 DOI: 10.1146/annurev-anchem-062011-143152] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The past decade has seen an enormous increase in the number and breadth of imaging techniques developed for analysis in many industries, including pharmaceuticals, food, and especially biomedicine. Rather than accept single-dimensional forms of information, users now demand multidimensional assessment of samples. High specificity and the need for little or no sample preparation make Raman imaging a highly attractive analytical technique and provide motivation for continuing advances in its supporting technology and utilization. This review discusses the current tools employed in Raman imaging, the recent advances, and the major applications in this ever-growing analytical field.
Collapse
Affiliation(s)
- Shona Stewart
- ChemImage Corporation, Pittsburgh, Pennsylvania 15208, USA
| | | | | | | |
Collapse
|
17
|
Wang Z, Liu Y, Gao L, Chen Y, Luo P, Wong KK, Wong STC. Use of multimode optical fibers for fiber-based coherent anti-Stokes Raman scattering microendoscopy imaging. OPTICS LETTERS 2011; 36:2967-9. [PMID: 21808374 DOI: 10.1364/ol.36.002967] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A multimode fiber (MMF) was used for both delivery of excitation lasers and collection of returned coherent anti-Stokes Raman scattering (CARS) signals in a CARS microendoscopy prototype imaging system. We demonstrated a polarization-based scheme for suppression of four-wave mixing (FWM) signals in delivery fibers. Our experimental results showed that this polarization-based FWM-suppressing scheme can dramatically reduce FWM signals generated in MMFs, and MMFs can be used to produce CARS images in this microendoscopy system. The proposed MMF-based CARS microendoscopy imaging system with the polarization-based FWM-suppressing scheme offers a potential platform for building fiber-based CARS microendoscopes that can effectively suppress FWM background noises.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|