1
|
Pal D, Nazarenko Y, Preston TC, Ariya PA. Advancing the science of dynamic airborne nanosized particles using Nano-DIHM. Commun Chem 2021; 4:170. [PMID: 36697661 PMCID: PMC9814397 DOI: 10.1038/s42004-021-00609-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/23/2021] [Indexed: 01/28/2023] Open
Abstract
In situ and real-time characterization of aerosols is vital to several fundamental and applied research domains including atmospheric chemistry, air quality monitoring, or climate change studies. To date, digital holographic microscopy is commonly used to characterize dynamic nanosized particles, but optical traps are required. In this study, a novel integrated digital in-line holographic microscope coupled with a flow tube (Nano-DIHM) is demonstrated to characterize particle phase, shape, morphology, 4D dynamic trajectories, and 3D dimensions of airborne particles ranging from the nanoscale to the microscale. We demonstrate the application of Nano-DIHM for nanosized particles (≤200 nm) in dynamic systems without optical traps. The Nano-DIHM allows observation of moving particles in 3D space and simultaneous measurement of each particle's three dimensions. As a proof of concept, we report the real-time observation of 100 nm and 200 nm particles, i.e. polystyrene latex spheres and the mixture of metal oxide nanoparticles, in air and aqueous/solid/heterogeneous phases in stationary and dynamic modes. Our observations are validated by high-resolution scanning/transmission electron microscopy and aerosol sizers. The complete automation of software (Octopus/Stingray) with Nano-DIHM permits the reconstruction of thousands of holograms within an hour with 62.5 millisecond time resolution for each hologram, allowing to explore the complex physical and chemical processes of aerosols.
Collapse
Affiliation(s)
- Devendra Pal
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada
| | - Yevgen Nazarenko
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada
| | - Thomas C Preston
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC, H3A 2K6, Canada
| | - Parisa A Ariya
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada.
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC, H3A 2K6, Canada.
| |
Collapse
|
2
|
Xiong Z, Potter CJ, McLeod E. High-Speed Lens-Free Holographic Sensing of Protein Molecules Using Quantitative Agglutination Assays. ACS Sens 2021; 6:1208-1217. [PMID: 33587611 DOI: 10.1021/acssensors.0c02481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate, cost-effective, easy-to-use, and point-of-care sensors for protein biomarker levels are important for disease diagnostics. A cost-effective and compact readout approach that has been used for several diagnostic applications is lens-free holographic microscopy, which provides an ultralarge field of view and submicron resolution when it is coupled with pixel super-resolution techniques. Despite its potential as a diagnostic technique, lens-free microscopy has not previously been applied to quantitative protein molecule sensing in solution, which can simplify sensing protocols and ultimately enable measurements of binding kinetics in physiological conditions. Here, we sense interferon-γ (an immune system biomarker) and NeutrAvidin molecules in solution by combining lens-free microscopy with a one-step bead-based agglutination assay, enabled by a custom high-speed light-emitting diode (LED) array and automated image processing routines. We call this a quantitative large-area binding (QLAB) sensor. The high-speed light source provides, for the first time, pixel super-resolved imaging of >104 2 μm beads in solution undergoing Brownian motion, without significant motion blur. The automated image processing routines enable the counting of individual beads and clusters, providing a quantitative sensor readout that depends on both bead and analyte concentrations. Fits to the chemical binding theory are provided. For NeutrAvidin, we find a limit of detection (LOD) of <27 ng/mL (450 pM) and a dynamic range of 2-4 orders of magnitude. For mouse interferon-γ, the LOD is <3 ng/mL (200 pM) and the dynamic range is at least 4 orders of magnitude. The QLAB sensor holds promise for point-of-care applications in low-resource communities and where protocol simplicity is important.
Collapse
Affiliation(s)
- Zhen Xiong
- Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85719, United States
| | - Colin J. Potter
- Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85719, United States
| | - Euan McLeod
- Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85719, United States
| |
Collapse
|
3
|
Tian D, Yu N, Li Z, Li S, Li N. A super-resolution scanning algorithm for lensless microfluidic imaging using the dual-line array image sensor. PLoS One 2020; 15:e0235111. [PMID: 32584867 PMCID: PMC7316336 DOI: 10.1371/journal.pone.0235111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/09/2020] [Indexed: 11/19/2022] Open
Abstract
The lensless optical fluid microscopy is of great significance to the miniaturization, portability and low cost development of cell detection instruments. However, the resolution of the cell image collected directly is low, because the physical pixel size of the image sensor is the same order of magnitude as the cell size. To solve this problem, this paper proposes a super-resolution scanning algorithm using a dual-line array sensor and a microfluidic chip. For dual-line array sensor images, the multi-group velocity and acceleration of cells flowing through the line array sensor are calculated. Then the reconstruction model of the super-resolution image is constructed with variable acceleration. By changing the angle between the line array image sensor and the direction of cell flow, the super-resolution image scanning and reconstruction are achieved in both horizontal and vertical directions. In addition, it is necessary to study the row by row extraction algorithm for cell foreground image. In this paper, the dual-line array sensor is implemented by adjusting the acquisition window of the image sensor with a pixel size of 2.2μm. When the tilt angle is 21 degrees, the equivalent pixel size is 0.79μm, improved 2.8 times, and after de-diffraction its average size error was 3.249%. As the angle decreases, the image resolution is higher, but the amount of information is less. This super-resolution scanning algorithm can be integrated on the chip and used with a microfluidic chip to realize on-chip instrument.
Collapse
Affiliation(s)
- Dian Tian
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Ningmei Yu
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, Shaanxi Province, China
- * E-mail:
| | - Zhengpeng Li
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Shuaijun Li
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Na Li
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| |
Collapse
|
4
|
Xiong Z, Melzer JE, Garan J, McLeod E. Optimized sensing of sparse and small targets using lens-free holographic microscopy. OPTICS EXPRESS 2018; 26:25676-25692. [PMID: 30469666 DOI: 10.1364/oe.26.025676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/03/2018] [Indexed: 06/09/2023]
Abstract
Lens-free holographic microscopy offers sub-micron resolution over an ultra-large field-of-view >20 mm2, making it suitable for bio-sensing applications that require the detection of small targets at low concentrations. Various pixel super-resolution techniques have been shown to enhance resolution and boost signal-to-noise ratio (SNR) by combining multiple partially-redundant low-resolution frames. However, it has been unclear which technique performs best for small-target sensing. Here, we quantitatively compare SNR and resolution in experiments using no regularization, cardinal-neighbor regularization, and a novel implementation of sparsity-promoting regularization that uses analytically-calculated gradients from Bayer-pattern image sensors. We find that sparsity-promoting regularization enhances the SNR by ~8 dB compared to the other methods when imaging micron-scale beads with surface coverages up to ~4%.
Collapse
|
5
|
Sasagawa K, Kimura A, Haruta M, Noda T, Tokuda T, Ohta J. Highly sensitive lens-free fluorescence imaging device enabled by a complementary combination of interference and absorption filters. BIOMEDICAL OPTICS EXPRESS 2018; 9:4329-4344. [PMID: 30615707 PMCID: PMC6157770 DOI: 10.1364/boe.9.004329] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 05/28/2023]
Abstract
We report a lens-free fluorescence imaging device using a composite filter composed of an interference filter and an absorption filter, each applied to one side of a fiber optic plate (FOP). The transmission of angled excitation light through the interference filter is absorbed by the absorption filter. The auto-fluorescence of the absorption filter is reduced by the reflection from the interference filter of normally incident excitation light. As a result, high-performance rejection of excitation light is achieved in a lens-free device. The FOP provides a flat, hard imaging device surface that does not degrade the spatial resolution. We demonstrate excitation rejection of approximately 108:1 at a wavelength of 450 nm in a fabricated lens-free device. The resolution of fluorescence imaging is approximately 12 µm. Time-lapse imaging of cells containing green fluorescent protein was performed in a 5-µm thin-film chamber. The small dimensions of the device allow observation of cell culturing in a CO2 incubator. We also demonstrate that the proposed lens-free filter is compatible with super-resolution bright-field imaging techniques. These features open a way to develop a high-performance, dual-mode, lens-free imaging device that is expected to be a powerful tool for many applications, such as imaging of labeled cells and point-of-care assay.
Collapse
Affiliation(s)
- Kiyotaka Sasagawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Ayaka Kimura
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Makito Haruta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Toshihiko Noda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Takashi Tokuda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| |
Collapse
|
6
|
Wu Y, Ozcan A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 2017; 136:4-16. [PMID: 28864356 DOI: 10.1016/j.ymeth.2017.08.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/06/2023] Open
Abstract
Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.
Collapse
Affiliation(s)
- Yichen Wu
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA; Bioengineering Department, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA; Bioengineering Department, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA; David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
McLeod E, Ozcan A. Unconventional methods of imaging: computational microscopy and compact implementations. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:076001. [PMID: 27214407 DOI: 10.1088/0034-4885/79/7/076001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.
Collapse
Affiliation(s)
- Euan McLeod
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
8
|
Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis. Sci Rep 2016; 6:28793. [PMID: 27356625 PMCID: PMC4928089 DOI: 10.1038/srep28793] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/10/2016] [Indexed: 11/08/2022] Open
Abstract
Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient's joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient's tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm(2)), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.
Collapse
|
9
|
PicoMolar level detection of protein biomarkers based on electronic sizing of bead aggregates: theoretical and experimental considerations. Biomed Microdevices 2016; 17:119. [PMID: 26589228 DOI: 10.1007/s10544-015-0022-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate a novel method for electronically detecting and quantifying protein biomarkers using microfluidic impedance cytometry. Our biosensor, which consists of gold electrodes micro-fabricated in a microchannel, detects the differences between bead aggregates of varying sizes in a micro-pore sandwiched between two micro channels. We perform a sandwich immunoassay, where the complementary antibody pairs are immobilized on two different bead types, and the presence of antigen results in bead aggregation, the amount of which depends on antigen quantity. When single beads or bead aggregates pass through the impedance sensor, differences in impedance change are detected. In this manuscript, we perform a comprehensive theoretical study on the limits imposed on sensitivity of this technique due to electronic noise and also mass transfer and reaction limits. We also experimentally characterize the performance of this technique by validating the technique on an IgG detection assay. A detection limit at the picoMolar level is demonstrated, thus comparable in sensitivity to a sandwich ELISA.
Collapse
|
10
|
Abstract
High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.
Collapse
Affiliation(s)
- Aydogan Ozcan
- Department of Electrical Engineering.,Department of Bioengineering, and.,California NanoSystems Institute, University of California, Los Angeles, California 90095;
| | - Euan McLeod
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
11
|
Schelkanova I, Pandya A, Saiko G, Nacy L, Babar H, Shah D, Lilge L, Douplik A. Spatially resolved, diffuse reflectance imaging for subsurface pattern visualization toward development of a lensless imaging platform: phantom experiments. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:15004. [PMID: 26767434 DOI: 10.1117/1.jbo.21.1.015004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Irina Schelkanova
- Ryerson University, Physics Department, 60 Gould Street, Toronto, M5B 2K3, Canada
| | - Aditya Pandya
- Ryerson University, Physics Department, 60 Gould Street, Toronto, M5B 2K3, Canada
| | - Guennadi Saiko
- Ryerson University, Physics Department, 60 Gould Street, Toronto, M5B 2K3, Canada
| | - Lidia Nacy
- Ryerson University, Physics Department, 60 Gould Street, Toronto, M5B 2K3, Canada
| | - Hannan Babar
- Ryerson University, Physics Department, 60 Gould Street, Toronto, M5B 2K3, Canada
| | - Duoaud Shah
- UHN Microfabrication Center, Techna Institute for the Advancement of Technology for Health, Toronto M5G 2C4, Canada
| | - Lothar Lilge
- UHN Microfabrication Center, Techna Institute for the Advancement of Technology for Health, Toronto M5G 2C4, CanadacUniversity of Toronto, Princess Margaret Cancer Center, Department of Medical Biophysics, Toronto M5G 2C4, Canada
| | - Alexandre Douplik
- Keenan Research Center, LKS Knowledge Institute St. Michael Hospital, Toronto M5B 1W8, CanadaeFriedrich Alexander University Erlangen-Nuremberg, Erlangen Graduate School in Advanced Optical Technologies, Erlangen 91052, Germany
| |
Collapse
|
12
|
Wong A, Kazemzadeh F, Jin C, Wang XY. Bayesian-based aberration correction and numerical diffraction for improved lensfree on-chip microscopy of biological specimens. OPTICS LETTERS 2015; 40:2233-2236. [PMID: 26393707 DOI: 10.1364/ol.40.002233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lensfree on-chip microscopy is an emerging imaging technique that can be used to visualize and study biological specimens without the need for imaging lens systems. Important issues that can limit the performance of lensfree on-chip microscopy include interferometric aberrations, acquisition noise, and image reconstruction artifacts. In this study, we introduce a Bayesian-based method for performing aberration correction and numerical diffraction that accounts for all three of these issues to improve the effective numerical aperture (NA) and signal-to-noise ratio (SNR) of the reconstructed microscopic image. The proposed method was experimentally validated using the USAF resolution target as well as real waterborne Anabaena flos-aquae samples, demonstrating improvements in NA by ∼25% over the standard method, and improvements in SNR of 2.8 and 8.2 dB in the reconstructed image when compared to the reconstructed images produced using the standard method and a maximum likelihood estimation method, respectively.
Collapse
|
13
|
Im H, Castro CM, Shao H, Liong M, Song J, Pathania D, Fexon L, Min C, Avila-Wallace M, Zurkiya O, Rho J, Magaoay B, Tambouret RH, Pivovarov M, Weissleder R, Lee H. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone. Proc Natl Acad Sci U S A 2015; 112:5613-8. [PMID: 25870273 PMCID: PMC4426451 DOI: 10.1073/pnas.1501815112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts.
Collapse
Affiliation(s)
- Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114
| | - Huilin Shao
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Monty Liong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Jun Song
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Divya Pathania
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Lioubov Fexon
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Changwook Min
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Maria Avila-Wallace
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114
| | - Omar Zurkiya
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Junsung Rho
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Brady Magaoay
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | | | - Misha Pivovarov
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114; Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114;
| |
Collapse
|
14
|
Molaei M, Sheng J. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm. OPTICS EXPRESS 2014; 22:32119-37. [PMID: 25607177 PMCID: PMC4317141 DOI: 10.1364/oe.22.032119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/30/2014] [Accepted: 11/30/2014] [Indexed: 05/24/2023]
Abstract
Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories.
Collapse
Affiliation(s)
- Mehdi Molaei
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409,
USA
| | - Jian Sheng
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409,
USA
| |
Collapse
|
15
|
Chang KT, Chang YJ, Chen CL, Wang YN. Multichannel lens-free CMOS sensors for real-time monitoring of cell growth. Electrophoresis 2014; 36:413-9. [DOI: 10.1002/elps.201400272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Ko-Tung Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology; Pingtung Taiwan
| | - Yu-Jen Chang
- Department of Vehicle Engineering, National Pingtung University of Science and Technology; Pingtung Taiwan
| | - Chia-Ling Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology; Pingtung Taiwan
| | - Yao-Nan Wang
- Department of Vehicle Engineering, National Pingtung University of Science and Technology; Pingtung Taiwan
| |
Collapse
|
16
|
Abstract
Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles.
Collapse
|
17
|
Lee H, Xu L, Koh D, Nyayapathi N, Oh KW. Various on-chip sensors with microfluidics for biological applications. SENSORS 2014; 14:17008-36. [PMID: 25222033 PMCID: PMC4208211 DOI: 10.3390/s140917008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/29/2014] [Accepted: 09/10/2014] [Indexed: 12/29/2022]
Abstract
In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.
Collapse
Affiliation(s)
- Hun Lee
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| | - Linfeng Xu
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| | - Domin Koh
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| | - Nikhila Nyayapathi
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| | - Kwang W Oh
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| |
Collapse
|
18
|
Abstract
In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings.
Collapse
Affiliation(s)
- Zoltán Göröcs
- Department of Electrical Engineering, University of California Los Angeles (UCLA Electrical Engineering and Bioengineering Departments), CA 90095, USA.
| | | |
Collapse
|
19
|
Abstract
Nanostructured optical components, such as nanolenses, direct light at subwavelength scales to enable, among others, high-resolution lithography, miniaturization of photonic circuits, and nanoscopic imaging of biostructures. A major challenge in fabricating nanolenses is the appropriate positioning of the lens with respect to the sample while simultaneously ensuring it adopts the optimal size and shape for the intended use. One application of particular interest is the enhancement of contrast and signal-to-noise ratio in the imaging of nanoscale objects, especially over wide fields-of-view (FOVs), which typically come with limited resolution and sensitivity for imaging nano-objects. Here we present a self-assembly method for fabricating time- and temperature-tunable nanolenses based on the condensation of a polymeric liquid around a nanoparticle, which we apply to the high-throughput on-chip detection of spheroids smaller than 40 nm, rod-shaped particles with diameter smaller than 20 nm, and biofunctionalized nanoparticles, all across an ultralarge FOV of >20 mm(2). Previous nanoparticle imaging efforts across similar FOVs have detected spheroids no smaller than 100 nm, and therefore our results demonstrate the detection of particles >15-fold smaller in volume, which in free space have >240 times weaker Rayleigh scattering compared to the particle sizes detected in earlier wide-field imaging work. This entire platform, with its tunable nanolens condensation and wide-field imaging functions, is also miniaturized into a cost-effective and portable device, which might be especially important for field use, mobile sensing, and diagnostics applications, including, for example, the measurement of viral load in bodily fluids.
Collapse
Affiliation(s)
- Euan McLeod
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Chau Nguyen
- Chemistry & Biochemistry Department, University of California, Los Angeles, California 90095, United States
| | - Patrick Huang
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Wei Luo
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Muhammed Veli
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Address correspondence to ; http://innovate.ee.ucla.edu/
| |
Collapse
|
20
|
Label-free analysis of prostate acini-like 3D structures by lensfree imaging. Biosens Bioelectron 2013; 49:176-83. [DOI: 10.1016/j.bios.2013.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 11/22/2022]
|
21
|
Hennequin Y, Allier CP, McLeod E, Mudanyali O, Migliozzi D, Ozcan A, Dinten JM. Optical detection and sizing of single nanoparticles using continuous wetting films. ACS NANO 2013; 7:7601-9. [PMID: 23889001 PMCID: PMC3909561 DOI: 10.1021/nn403431y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The physical interaction between nanoscale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with subwavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing submicrometer or nanoscale particles creates liquid microlenses that arise from the local deformations of the continuous wetting film. These microlenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low-magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nanoparticles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nanoparticles (100 and 200 nm), CpGV granuloviruses, as well as Staphylococcus epidermidis bacteria over a wide field-of-view of 5.10 × 3.75 mm(2) using a 5× objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting-film-based approach is also applicable to lens-free computational on-chip imaging, which can be used to detect single nanoparticles over a large field-of-view of >20-30 mm(2). These results could be especially useful for high-throughput field analysis of nanoscale objects using compact and cost-effective microscope designs.
Collapse
Affiliation(s)
- Yves Hennequin
- CEA, LETI, MINATEC, 17 rue des martyrs, 38054 Grenoble cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Mudanyali O, McLeod E, Luo W, Greenbaum A, Coskun AF, Hennequin Y, Allier CP, Ozcan A. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses. NATURE PHOTONICS 2013; 7:10.1038/nphoton.2012.337. [PMID: 24358054 PMCID: PMC3866034 DOI: 10.1038/nphoton.2012.337] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/03/2012] [Indexed: 05/18/2023]
Abstract
The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.
Collapse
Affiliation(s)
- Onur Mudanyali
- Electrical Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Euan McLeod
- Electrical Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Wei Luo
- Electrical Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Alon Greenbaum
- Electrical Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Ahmet F. Coskun
- Electrical Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Yves Hennequin
- CEA, LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
| | - Cédric P. Allier
- CEA, LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
23
|
Zhu H, Isikman SO, Mudanyali O, Greenbaum A, Ozcan A. Optical imaging techniques for point-of-care diagnostics. LAB ON A CHIP 2013; 13:51-67. [PMID: 23044793 PMCID: PMC3510351 DOI: 10.1039/c2lc40864c] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Improving access to effective and affordable healthcare has long been a global endeavor. In this quest, the development of cost-effective and easy-to-use medical testing equipment that enables rapid and accurate diagnosis is essential to reduce the time and costs associated with healthcare services. To this end, point-of-care (POC) diagnostics plays a crucial role in healthcare delivery in both developed and developing countries by bringing medical testing to patients, or to sites near patients. As the diagnosis of a wide range of diseases, including various types of cancers and many endemics, relies on optical techniques, numerous compact and cost-effective optical imaging platforms have been developed in recent years for use at the POC. Here, we review the state-of-the-art optical imaging techniques that can have a significant impact on global health by facilitating effective and affordable POC diagnostics.
Collapse
Affiliation(s)
- Hongying Zhu
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Serhan O. Isikman
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Onur Mudanyali
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Alon Greenbaum
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Abstract
Lab-on-a-chip systems have been rapidly emerging to pave the way toward ultra-compact, efficient, mass producible and cost-effective biomedical research and diagnostic tools. Although such microfluidic and microelectromechanical systems have achieved high levels of integration, and are capable of performing various important tasks on the same chip, such as cell culturing, sorting and staining, they still rely on conventional microscopes for their imaging needs. Recently, several alternative on-chip optical imaging techniques have been introduced, which have the potential to substitute conventional microscopes for various lab-on-a-chip applications. Here we present a critical review of these recently emerging on-chip biomedical imaging modalities, including contact shadow imaging, lens-free holographic microscopy, fluorescent on-chip microscopy and lens-free optical tomography.
Collapse
Affiliation(s)
- Zoltán Göröcs
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
25
|
Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat Methods 2012; 9:889-95. [PMID: 22936170 DOI: 10.1038/nmeth.2114] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We discuss unique features of lens-free computational imaging tools and report some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture (NA) of ∼0.8-0.9 across a field of view (FOV) of more than 20 mm(2) or an NA of ∼0.1 across a FOV of ∼18 cm(2), which corresponds to an image with more than 1.5 gigapixels. We also discuss the current challenges that these computational on-chip microscopes face, shedding light on their future directions and applications.
Collapse
|
26
|
Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. OPTICS EXPRESS 2012; 20:3129-43. [PMID: 22330550 PMCID: PMC3364049 DOI: 10.1364/oe.20.003129] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lensfree in-line holographic microscopy offers sub-micron resolution over a large field-of-view (e.g., ~24 mm2) with a cost-effective and compact design suitable for field use. However, it is limited to relatively low-density samples. To mitigate this limitation, we demonstrate an on-chip imaging approach based on pixel super-resolution and phase recovery, which iterates among multiple lensfree intensity measurements, each having a slightly different sample-to-sensor distance. By digitally aligning and registering these lensfree intensity measurements, phase and amplitude images of dense and connected specimens can be iteratively reconstructed over a large field-of-view of ~24 mm2 without the use of any spatial masks. We demonstrate the success of this multi-height in-line holographic approach by imaging dense Papanicolaou smears (i.e., Pap smears) and blood samples.
Collapse
Affiliation(s)
- Alon Greenbaum
- Electrical Engineering Department, University of California, Los Angeles, CA 90095,
USA
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, CA 90095,
USA
- Bioengineering Department, University of California, Los Angeles, CA 90095,
USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095,
USA
| |
Collapse
|
27
|
Rosen J, Siegel N, Brooker G. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging. OPTICS EXPRESS 2011; 19:26249-68. [PMID: 22274210 DOI: 10.1364/oe.19.026249] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fresnel Incoherent Correlation Holography (FINCH) enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator. We previously described its application to general three dimensional incoherent imaging and specifically to fluorescence microscopy, wherein one complex hologram contains the three dimensional information in the field of view, obviating the need for scanning or serial sectioning. We have now further analyzed FINCH in view of linear system theory and in comparison to conventional coherent and incoherent two dimensional imaging systems. We demonstrate, theoretically and experimentally, improved resolution by FINCH, when compared to conventional imaging.
Collapse
Affiliation(s)
- Joseph Rosen
- Department of Biomedical Engineering, Johns Hopkins University, Rockville, Maryland 20850, USA.
| | | | | |
Collapse
|