1
|
Zhu Y, Zhu L, Lim Y, Makita S, Guo Y, Yasuno Y. Multiple scattering suppression for in vivo optical coherence tomography measurement using the B-scan-wise multi-focus averaging method. BIOMEDICAL OPTICS EXPRESS 2024; 15:4044-4064. [PMID: 39022550 PMCID: PMC11249682 DOI: 10.1364/boe.524894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
We demonstrate a method that reduces the noise caused by multi-scattering (MS) photons in an in vivo optical coherence tomography image. This method combines a specially designed image acquisition (i.e., optical coherence tomography scan) scheme and subsequent complex signal processing. For the acquisition, multiple cross-sectional images (frames) are sequentially acquired while the depth position of the focus is altered for each frame by an electrically tunable lens. In the signal processing, the frames are numerically defocus-corrected, and complex averaged. Because of the inconsistency in the MS-photon trajectories among the different electrically tunable lens-induced defocus, this averaging reduces the MS signal. Unlike the previously demonstrated volume-wise multi-focus averaging method, our approach requires the sample to remain stable for only a brief period, approximately 70 ms, thus making it compatible with in vivo imaging. This method was validated using a scattering phantom and in vivo unanesthetized small fish samples, and was found to reduce MS noise even for unanesthetized in vivo measurement.
Collapse
Affiliation(s)
- Yiqiang Zhu
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Lida Zhu
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Yu Guo
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Han L, Bizheva K. Correcting spatial-spectral crosstalk and chromatic aberrations in broadband line-scan spectral-domain OCT images. BIOMEDICAL OPTICS EXPRESS 2023; 14:3344-3361. [PMID: 37497512 PMCID: PMC10368066 DOI: 10.1364/boe.488881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 07/28/2023]
Abstract
Digital correction of optical aberrations allows for high-resolution imaging across the full depth range in optical coherence tomography (OCT). Many digital aberration correction (DAC) methods have been proposed in the past to evaluate and correct monochromatic error in OCT images. However, other factors that deteriorate the image quality have not been fully investigated. Specifically, in a broadband line-scan spectral-domain OCT system (LS-SD-OCT), photons with different wavelengths scattered from the same transverse location and in the imaged object will be projected onto different spatial coordinates onto the 2D camera sensor, which in this work is defined as spatial-spectral crosstalk. In addition, chromatic aberrations in both axial and lateral directions are not negligible for broad spectral bandwidths. Here we present a novel approach to digital recovery of the spatial resolution in images acquired with a broadband LS-SD-OCT, which addresses these two main factors that limit the effectiveness of DAC for restoring diffraction-limited resolution in LS-SD-OCT images. In the proposed approach, spatial-spectral crosstalk and chromatic aberrations are suppressed by the registration of monochromatic sub-band tomograms that are digitally corrected for aberrations. The new method was validated by imaging a standard resolution target, a microspheres phantom, and different biological tissues. LS-SD-OCT technology combined with the proposed novel image reconstruction method could be a valuable research tool for various biomedical and clinical applications.
Collapse
Affiliation(s)
- Le Han
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Zhu Y, Zhou Y, Guo Z. Fractal-based aberration-corrected full-field OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:3775-3797. [PMID: 37497484 PMCID: PMC10368032 DOI: 10.1364/boe.485090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
The Kolmogorov turbulence model has been validated as a quantitative 3D light scattering model of the inhomogeneous refraction index of biological tissue using full-field OCT (FF-OCT). A fractal-based computational compensation approach was proposed for correcting of depth-resolved aberrations with volumetric FF-OCT. First, the power-spectral density spectrum of the index inhomogeneities was measured by radial Fourier transformation of volumetric data. The spectrum's shape indicates the spatial correlation function and can be quantified as the fractal dimension of tissue. The defocusing correction matrix was built by applying fractal-based analysis as an image quality metric. For comparison, tissue-induced in-depth aberration models were built by phase compensation. After digital aberration correction of FF-OCT images, it enables extracting the temporal contrast indicating the sample dynamics in onion in mitosis and ex vivo mouse heart during delayed neuronal death. The proposed fractal-based contrast augmented images show subcellular resolution recording of dynamic scatters of the growing-up onion cell wall and some micro activities. In addition, low-frequency chamber and high-frequency cardiac muscle fibers from ex vivo mouse heart tissue. Therefore, the depth-resolved changes in fractal parameters may be regarded as a quantitative indicator of defocus aberration compensation. Also the enhanced temporal contrast in FF-OCT has the potential to be a label-free, non-invasive, and three-dimensional imaging tool to investigate sub-cellular activities in metabolism studies.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Optical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Yuan Zhou
- Department of Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Zhenyan Guo
- Department of Optical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| |
Collapse
|
4
|
Chen K, Song W, Han L, Bizheva K. Powell lens-based line-field spectral domain optical coherence tomography system for cellular resolution imaging of biological tissue. BIOMEDICAL OPTICS EXPRESS 2023; 14:2003-2014. [PMID: 37206146 PMCID: PMC10191637 DOI: 10.1364/boe.486980] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
A Powell lens is used in a line-field spectral domain OCT (PL-LF-SD-OCT) system to generate a line-shaped imaging beam with almost uniform distribution of the optical power in the line direction. This design overcomes the severe sensitivity loss (∼10 dB) observed along the line length direction (B-scan) in LF-OCT systems based on cylindrical lens line generators. The PL-LF-SD-OCT system offers almost isotropic spatial resolution (Δx and Δy ∼2 µm, Δz ∼1.8 µm) in free space and sensitivity of ∼87 dB for 2.5 mW imaging power at 2,000 fps imaging rate with only ∼1.6 dB sensitivity loss along the line length. Images acquired with the PL-LF-SD-OCT system allow for visualization of the cellular and sub-cellular structure of biological tissues.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Weixiang Song
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Le Han
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Systems Design Engineering Department, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
5
|
Han L, Tan B, Hosseinaee Z, Chen LK, Hileeto D, Bizheva K. Line-scanning SD-OCT for in-vivo, non-contact, volumetric, cellular resolution imaging of the human cornea and limbus. BIOMEDICAL OPTICS EXPRESS 2022; 13:4007-4020. [PMID: 35991928 PMCID: PMC9352278 DOI: 10.1364/boe.465916] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 05/12/2023]
Abstract
In-vivo, non-contact, volumetric imaging of the cellular and sub-cellular structure of the human cornea and limbus with optical coherence tomography (OCT) is challenging due to involuntary eye motion that introduces both motion artifacts and blur in the OCT images. Here we present the design of a line-scanning (LS) spectral-domain (SD) optical coherence tomography system that combines 2 × 3 × 1.7 µm (x, y, z) resolution in biological tissue with an image acquisition rate of ∼2,500 fps, and demonstrate its ability to image in-vivo and without contact with the tissue surface, the cellular structure of the human anterior segment tissues. Volumetric LS-SD-OCT images acquired over a field-of-view (FOV) of 0.7 mm × 1.4 mm reveal fine morphological details in the healthy human cornea, such as epithelial and endothelial cells, sub-basal nerves, as well as the cellular structure of the limbal crypts, the palisades of Vogt (POVs) and the blood microvasculature of the human limbus. LS-SD-OCT is a promising technology that can assist ophthalmologists with the early diagnostics and optimal treatment planning of ocular diseases affecting the human anterior eye.
Collapse
Affiliation(s)
- Le Han
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- Contributed equally
| | - Bingyao Tan
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- School of Chemical and Biomedical
Engineering, Nanyang Technological
University, 637460, Singapore
- SERI-NTU Advanced Ocular
Engineering (STANCE), 639798, Singapore
- Singapore Eye Research Institute,
Singapore National Eye Center, 169856,
Singapore
- Contributed equally
| | - Zohreh Hosseinaee
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- Department of Systems Design Engineering,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
| | - Lin Kun Chen
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
| | - Denise Hileeto
- School of Optometry and Vision Science,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- Department of Systems Design Engineering,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
- School of Optometry and Vision Science,
University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada
| |
Collapse
|
6
|
Sen D, Classen A, Fernández A, Grüner-Nielsen L, Gibbs HC, Esmaeili S, Hemmer P, Baltuska A, Sokolov AV, Leitgeb RA, Verhoef AJ. Extended focal depth Fourier domain optical coherence microscopy with a Bessel-beam - LP 02 mode - from a higher order mode fiber. BIOMEDICAL OPTICS EXPRESS 2021; 12:7327-7337. [PMID: 35003836 PMCID: PMC8713682 DOI: 10.1364/boe.442081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 05/27/2023]
Abstract
We present a robust fiber-based setup for Bessel-like beam extended depth-of-focus Fourier-domain optical coherence microscopy, where the Bessel-like beam is generated in a higher order mode fiber module. In this module a stable guided LP02 core mode is selectively excited by a long period grating written in the higher order mode fiber. Imaging performance of this system in terms of lateral resolution and depth of focus was analyzed using samples of suspended microbeads and compared to the case where illumination is provided by the fundamental LP01 mode of a single mode fiber. Illumination with the LP02 mode allowed for a lateral resolution down to 2.5 µm as compared to 4.5 µm achieved with the LP01 mode of the single mode fiber. A three-fold enhancement of the depth of focus compared to a Gaussian beam with equally tight focus is achieved with the LP02 mode. Analysis of the theoretical lateral point spread functions for the case of LP01 and LP02 illumination agrees well with the experimental data. As the design space of waveguides and long-period gratings allows for further optimization of the beam parameters of the generated Bessel-like beams in an all-fiber module, this approach offers a robust and yet flexible alternative to free-space optics approaches or the use of conical fiber tips.
Collapse
Affiliation(s)
- Dipankar Sen
- Texas A&M University, College Station, TX 77843, USA
| | - Anton Classen
- Texas A&M University, College Station, TX 77843, USA
| | | | - Lars Grüner-Nielsen
- Danish Optical Fiber Innovation, Åvendingen 22A, 2700 Brønshøj, Denmark
- Technical University of Denmark, Department of Photonics Engineering, 2800 Kgs. Lyngby, Denmark
| | | | | | - Philip Hemmer
- Texas A&M University, College Station, TX 77843, USA
| | - Andrius Baltuska
- Photonics Institute, TU Wien, Gusshausstraße 27-29/387, 1040 Vienna, Austria
| | | | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20/4L, 1090 Vienna, Austria
| | | |
Collapse
|
7
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
8
|
Kumar A, Georgiev S, Salas M, Leitgeb RA. Digital adaptive optics based on digital lateral shearing of the computed pupil field for point scanning retinal swept source OCT. BIOMEDICAL OPTICS EXPRESS 2021; 12:1577-1592. [PMID: 33796374 PMCID: PMC7984793 DOI: 10.1364/boe.416569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
A novel non-iterative digital adaptive optics technique is presented in which the wavefront error is calculated using the phase difference between the pupil field and its digital copies translated by a pixel along the horizontal and vertical direction in the pupil plane. This method provides slope data per pixel, thus can generate > 50k local slope data samples for a circular pupil of diameter 256 pixels with high accuracy and dynamic range. It offers more than 12x faster computational speed in comparison to the sub-aperture based digital adaptive optics method. Furthermore, it is independent of any system parameters, the light distribution in the pupil plane, or the intensity of the image. The technique is useful in applications such as interferometric or digital holography based microscopy, metrology, and as digital wavefront sensor in adaptive optics, where focusing of light in the sample is involved that creates a guide star or where the sample itself exhibits guide star-like structures. This technique is implemented in a point scanning swept-source OCT at 1060 nm, and a large wavefront error with a peak to valley of 20 radians and root mean square error of 0.71 waves is detected and corrected in case of a micro-beads phantom sample. Also, human photoreceptor images are recovered from aberrated retinal OCT volumes acquired at eccentricities of 2 and 2.5 degrees from the fovea in vivo.
Collapse
Affiliation(s)
- Abhishek Kumar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Wavesense Engineering GmbH, Vienna, Austria
- These authors contributed equally to this work
| | - Stefan Georgiev
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Vienna Institute for Research in Ocular Surgery, Austria
- These authors contributed equally to this work
| | - Matthias Salas
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University of Vienna, Austria
| |
Collapse
|
9
|
Oikawa K, Oida D, Makita S, Yasuno Y. Bulk-phase-error correction for phase-sensitive signal processing of optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:5886-5902. [PMID: 33149994 PMCID: PMC7587287 DOI: 10.1364/boe.396666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 05/11/2023]
Abstract
We present a numerical phase stabilization method for phase-sensitive signal processing of optical coherence tomography (OCT). This method removes the bulk phase error caused by the axial bulk motion of the sample and the environmental perturbation during volumetric acquisition. In this method, the partial derivatives of the phase error are computed along both fast and slow scanning directions, so that the vectorial gradient field of the phase error is given. Then, the phase error is estimated from the vectorial gradient field by a newly developed line integration method; a smart integration path method. The performance of this method was evaluated by analyzing the spatial frequency spectra of en face OCT images, and it objectively shows the significant phase-error-correction ability of the method. The performance was also evaluated by observing computationally refocused en face images of ex vivo tissue samples, and it was found that the image quality was improved by the phase-error correction.
Collapse
|
10
|
Auksorius E, Borycki D, Stremplewski P, Liżewski K, Tomczewski S, Niedźwiedziuk P, Sikorski BL, Wojtkowski M. In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:2849-2865. [PMID: 32499965 PMCID: PMC7249809 DOI: 10.1364/boe.393801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 05/06/2023]
Abstract
Corneal evaluation in ophthalmology necessitates cellular-resolution and fast imaging techniques that allow for accurate diagnoses. Currently, the fastest volumetric imaging technique is Fourier-domain full-field optical coherence tomography (FD-FF-OCT), which uses a fast camera and a rapidly tunable laser source. Here, we demonstrate high-resolution, high-speed, non-contact corneal volumetric imaging in vivo with FD-FF-OCT that can acquire a single 3D volume with a voxel rate of 7.8 GHz. The spatial coherence of the laser source was suppressed to prevent it from focusing on a spot on the retina, and therefore, exceeding the maximum permissible exposure (MPE). The inherently volumetric nature of FD-FF-OCT data enabled flattening of curved corneal layers. The acquired FD-FF-OCT images revealed corneal cellular structures, such as epithelium, stroma and endothelium, as well as subbasal and mid-stromal nerves.
Collapse
Affiliation(s)
- Egidijus Auksorius
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Equal contribution
| | - Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Equal contribution
| | - Patrycjusz Stremplewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kamil Liżewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Slawomir Tomczewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Paulina Niedźwiedziuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Bartosz L. Sikorski
- Department of Ophthalmology, Nicolaus Copernicus University, 9 M. Sklodowskiej-Curie St., Bydgoszcz 85-309, Poland
- Oculomedica Eye Research & Development Center, 9 Broniewskiego St, 85-391 Bydgoszcz, Poland
| | - Maciej Wojtkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
11
|
Yao X, Devarajan K, Werkmeister RM, dos Santos VA, Ang M, Kuo A, Wong DWK, Chua J, Tan B, Barathi VA, Schmetterer L. In vivo corneal endothelium imaging using ultrahigh resolution OCT. BIOMEDICAL OPTICS EXPRESS 2019; 10:5675-5686. [PMID: 31799039 PMCID: PMC6865113 DOI: 10.1364/boe.10.005675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 05/03/2023]
Abstract
We investigate the influence of optical coherence tomography (OCT) system resolution on high-quality in vivo en face corneal endothelial cell images of the monkey eye, to allow for quantitative analysis of cell density. We vary the lateral resolution of the ultrahigh resolution (UHR) OCT system (centered at 850 nm) by using different objectives, and the axial resolution by windowing the source spectrum. By suppressing the motion of the animal, we are able to obtain a high-quality en face corneal endothelial cell map in vivo using UHR OCT for the first time with a lateral resolution of 3.1 µm. Increasing lateral resolution did not result in a better image quality but a smaller field of view (FOV), and the axial resolution had little impact on the visualization of corneal endothelial cells. Quantitative analysis of cell density was performed on in vivo en face OCT images of corneal endothelial cells, and the results are in agreement with previously reported data. Our study may offer a practical guideline for designing OCT systems that allow for in vivo corneal endothelial cell imaging with high quality.
Collapse
Affiliation(s)
- Xinwen Yao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- These authors equally contributed to this work
| | - Kavya Devarajan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- These authors equally contributed to this work
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Anthony Kuo
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Damon W. K. Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- NTU Institute for Health Technologies, Nanyang Technological University, Singapore, Singapore
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Hillmann D, Pfäffle C, Spahr H, Burhan S, Kutzner L, Hilge F, Hüttmann G. Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations. OPTICS LETTERS 2019; 44:3905-3908. [PMID: 31368998 DOI: 10.1364/ol.44.003905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/09/2019] [Indexed: 05/24/2023]
Abstract
Computational adaptive optics (CAO) is emerging as a viable alternative to hardware-based adaptive optics-in particular when applied to optical coherence tomography of the retina. For this technique, algorithms are required that detect wavefront errors precisely and quickly. Here we propose an extension of the frequently used subaperture image correlation. By applying this algorithm iteratively and, more importantly, comparing each subaperture not to the central subaperture but to several randomly selected apertures, we improved aberration correction. Since these modifications only slightly increase the run time of the correction, we believe this method can become the algorithm of choice for many CAO applications.
Collapse
|
13
|
Lyu Z, Bai Y, He Z, Xie S, Wu Z, Dong B. Super-resolution reconstruction of speckle phase in depth-resolved wavelength scanning interference using the total least-squares analysis. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:869-876. [PMID: 31045015 DOI: 10.1364/josaa.36.000869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Depth-resolved wavelength scanning interferometry (DRWSI) is a tomographic imaging tool that employs phase measurement to visualize micro-displacement inside a sample. It is well known that the depth resolution of DRWSI is restricted by a wavelength scanning range. Recently, a nonlinear least-squares analysis (NLS) algorithm was proposed to overcome the limitation of the wavelength scanning range to achieve super-resolution; however, the NLS failed to measure speckle surfaces owing to the sensibility of initial values. To the best of our knowledge, the improvement of depth resolution on measuring a speckle surface remains an open issue for DRWSI. For this study, we redesigned the signal processing algorithm for DRWSI to refine the depth resolution when considering the case of speckle phase measurement. It is mathematically shown that the DRWSI's signal is derived as a model of total least-squares analysis (TLSA). Subsequently, a super-resolution of the speckle phase map was obtained using a singular value decomposition. Further, a numerical simulation to measure the micro-displacements for speckle surfaces was performed to validate the TLSA, and the results show that it can precisely reconstruct the displacements of layers whose depth distance is 5 μm. This study thus provides an opportunity to improve the DRWSI's depth resolution.
Collapse
|
14
|
Wang L, Xiong Q, Ge X, Bo E, Xie J, Liu X, Yu X, Wang X, Wang N, Chen S, Wu X, Liu L. Cellular resolution corneal imaging with extended imaging range. OPTICS EXPRESS 2019; 27:1298-1309. [PMID: 30696198 DOI: 10.1364/oe.27.001298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Current optical coherence tomography (OCT) technology, which is used for imaging the eye's anterior segment, has been established as a clinical gold standard for the diagnosis of corneal diseases. However, the cellular resolution level information that is critical for many clinical applications is still not available. The major technical challenges toward cellular resolution OCT imaging are the limited ranging depth and depth of focus (DOF). In this work, we present a novel ultrahigh resolution OCT system that achieves an isotropic spatial resolution of <2 µm in tissue. The proposed system could approximately double the ranging depth and extend the DOF using the dual-spectrometer design and the forward-model based digital refocusing method, respectively. We demonstrate that the novel system is capable of visualizing the full thickness of the pig cornea over the ranging depth of 3.5 mm and the border of the corneal endothelial cells 8 times Rayleigh range away from the focal plane. This technology has the potential to realize cellular resolution corneal imaging in vivo.
Collapse
|
15
|
Grebenyuk AA, Ginner L, Leitgeb RA. Numerically focused full-field swept-source optical coherence microscopy with structured illumination. OPTICS EXPRESS 2018; 26:33772-33782. [PMID: 30650810 DOI: 10.1364/oe.26.033772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/10/2018] [Indexed: 05/28/2023]
Abstract
This paper presents an experimental investigation of the possibility of transverse resolution improvement combined with effective numerically focused 3D imaging in full-field swept-source optical coherence microscopy (OCM) by using structured illumination and specific numerical post-processing. The possibility of transverse resolution improvement of the OCM coherence signal combined with the possibility of numerical focusing is demonstrated by imaging a resolution test target in the optical focus and defocus regions. The possibility of numerically focused 3D imaging with high transverse resolution is further demonstrated by imaging a 3D phantom and a biological sample. The results obtained demonstrate the feasibility and prospects of the combination of structured illumination and numerical focusing in Fourier domain OCM.
Collapse
|
16
|
Ginner L, Schmoll T, Kumar A, Salas M, Pricoupenko N, Wurster LM, Leitgeb RA. Holographic line field en-face OCT with digital adaptive optics in the retina in vivo. BIOMEDICAL OPTICS EXPRESS 2018; 9:472-485. [PMID: 29552387 PMCID: PMC5854052 DOI: 10.1364/boe.9.000472] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 05/05/2023]
Abstract
We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and 5.5 µm in lateral directions. Subaperture based DAO is successfully applied to increase the visibility of cone-photoreceptors and nerve fibers. Furthermore, en-face Doppler OCT maps are generated based on calculating the differential phase shifts between recorded lines.
Collapse
Affiliation(s)
- Laurin Ginner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University of Vienna, Austria
| | | | - Abhishek Kumar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Matthias Salas
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University of Vienna, Austria
| | - Nastassia Pricoupenko
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Lara M. Wurster
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University of Vienna, Austria
| |
Collapse
|
17
|
Bo E, Ge X, Wang L, Wu X, Luo Y, Chen S, Chen S, Liang H, Ni G, Yu X, Liu L. Multiple aperture synthetic optical coherence tomography for biological tissue imaging. OPTICS EXPRESS 2018; 26:772-780. [PMID: 29401957 DOI: 10.1364/oe.26.000772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
An inherent compromise must be made between transverse resolution and depth of focus (DOF) in spectral domain optical coherence tomography (SD-OCT). Thus far, OCT has not been capable of providing a sufficient DOF to stably acquire cellular-resolution images. We previously reported a novel technique named multiple aperture synthesis (MAS) to extend the DOF in high-resolution OCT [Optica4, 701 (2017)]. In this technique, the illumination beam is scanned across the objective lens pupil plane by being steered at the pinhole using a custom-made microcylindrical lens. Images captured via multiple distinctive apertures were digitally refocused, which is similar to synthetic aperture radar. In this study, we applied this technique for the first time to image both a homemade microparticle sample and biological tissue. The results demonstrated the feasibility and efficacy of high-resolution biological tissue imaging with a dramatic DOF extension.
Collapse
|
18
|
Coquoz S, Bouwens A, Marchand PJ, Extermann J, Lasser T. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy. OPTICS EXPRESS 2017; 25:30807-30819. [PMID: 29221107 DOI: 10.1364/oe.25.030807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/19/2017] [Indexed: 05/22/2023]
Abstract
Optical coherence microscopy (OCM) is an interferometric technique providing 3D images of biological samples with micrometric resolution and penetration depth of several hundreds of micrometers. OCM differs from optical coherence tomography (OCT) in that it uses a high numerical aperture (NA) objective to achieve high lateral resolution. However, the high NA also reduces the depth-of-field (DOF), scaling with 1/NA2. Interferometric synthetic aperture microscopy (ISAM) is a computed imaging technique providing a solution to this trade-off between resolution and DOF. An alternative hardware method to achieve an extended DOF is to use a non-Gaussian illumination. Extended focus OCM (xfOCM) uses a Bessel beam to obtain a narrow and extended illumination volume. xfOCM detects back-scattered light using a Gaussian mode in order to maintain good sensitivity. However, the Gaussian detection mode limits the DOF. In this work, we present extended ISAM (xISAM), a method combining the benefits of both ISAM and xfOCM. xISAM uses the 3D coherent transfer function (CTF) to generalize the ISAM algorithm to different system configurations. We demonstrate xISAM both on simulated and experimental data, showing that xISAM attains a combination of high transverse resolution and extended DOF which has so far been unobtainable through conventional ISAM or xfOCM individually.
Collapse
|
19
|
Bizheva K, Tan B, MacLellan B, Hosseinaee Z, Mason E, Hileeto D, Sorbara L. In-vivo imaging of the palisades of Vogt and the limbal crypts with sub-micrometer axial resolution optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:4141-4151. [PMID: 28966853 PMCID: PMC5611929 DOI: 10.1364/boe.8.004141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 05/05/2023]
Abstract
A research-grade OCT system was used to image in-vivo and without contact with the tissue, the cellular structure and microvasculature of the healthy human corneo-scleral limbus. The OCT system provided 0.95 µm axial and 4 µm (2 µm) lateral resolution in biological tissue depending on the magnification of the imaging objective. Cross-sectional OCT images acquired tangentially from the inferior limbus showed reflective, loop-like features that correspond to the fibrous folds of the palisades of Vogt (POV). The high OCT resolution allowed for visualization of individual cells inside the limbal crypts, capillaries extending from the inside of the POV's fibrous folds and connecting to a lateral grid of micro-vessels located in the connective tissue directly below the POV, as well as reflections from individual red blood cells inside the capillaries. Difference in the reflective properties of the POV was observed among subjects of various pigmentation levels of the POV. Morphological features observed in the high resolution OCT images correlated well with histology. The ability to visualize the limbal morphology and microvasculature in-vivo at cellular level can aid the diagnostics and treatment of limbal stem cell dysfunction and dystrophies.
Collapse
Affiliation(s)
- Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Systems Design Engineering Department, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bingyao Tan
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Benjamin MacLellan
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zohreh Hosseinaee
- Systems Design Engineering Department, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Erik Mason
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Denise Hileeto
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Luigina Sorbara
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
20
|
Yin B, Hyun C, Gardecki JA, Tearney GJ. Extended depth of focus for coherence-based cellular imaging. OPTICA 2017; 4:959-965. [PMID: 29675447 PMCID: PMC5902383 DOI: 10.1364/optica.4.000959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Improving lateral resolution for cross-sectional optical coherence tomography (OCT) imaging is difficult due to the rapid divergence of light once it is focused to a small spot. To overcome this obstacle, we introduce a fiber optics system that generates a coaxially focused multimode (CAFM) beam for depth of focus (DOF) extension. We fabricated a CAFM beam OCT probe and show that the DOF is more than fivefold that of a conventional Gaussian beam, enabling cross-sectional imaging of biological tissues with clearly resolved cellular and subcellular structures over more than a 400 μm depth range. The compact and straightforward design and high-resolution extended DOF imaging capabilities of this technique suggests that it will be very useful for endoscopic cross-sectional imaging of human internal organs in vivo.
Collapse
Affiliation(s)
- Biwei Yin
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Chulho Hyun
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
- Corresponding author:
| |
Collapse
|
21
|
Kumar A, Wurster LM, Salas M, Ginner L, Drexler W, Leitgeb RA. In-vivo digital wavefront sensing using swept source OCT. BIOMEDICAL OPTICS EXPRESS 2017; 8:3369-3382. [PMID: 28717573 PMCID: PMC5508834 DOI: 10.1364/boe.8.003369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 05/08/2023]
Abstract
Sub-aperture based digital adaptive optics is demonstrated in a fiber based point scanning optical coherence tomography system using a 1060 nm swept source laser. To detect optical aberrations in-vivo, a small lateral field of view of ~[Formula: see text] is scanned on the sample at a high volume rate of 17 Hz (~1.3 kHz B-scan rate) to avoid any significant lateral and axial motion of the sample, and is used as a "guide star" for the sub-aperture based DAO. The proof of principle is demonstrated using a micro-beads phantom sample, wherein a significant root mean square wavefront error (RMS WFE) of 1.48 waves (> 1[Formula: see text]) is detected. In-vivo aberration measurement with a RMS WFE of 0.33 waves, which is ~5 times higher than the Marechal's criterion of [Formula: see text] waves for the diffraction limited performance, is shown for a human retinal OCT. Attempt has been made to validate the experimental results with the conventional Shack-Hartmann wavefront sensor within reasonable limitations.
Collapse
Affiliation(s)
- Abhishek Kumar
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20 A-1090 Vienna, Austria
| | - Lara M. Wurster
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20 A-1090 Vienna, Austria
| | - Matthias Salas
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20 A-1090 Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University Vienna, Waehringer Guertel 18-20 A-1090 Vienna, Austria
| | - Laurin Ginner
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20 A-1090 Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University Vienna, Waehringer Guertel 18-20 A-1090 Vienna, Austria
| | - Wolfgang Drexler
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20 A-1090 Vienna, Austria
| | - Rainer A. Leitgeb
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20 A-1090 Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University Vienna, Waehringer Guertel 18-20 A-1090 Vienna, Austria
| |
Collapse
|
22
|
de Boer JF, Leitgeb R, Wojtkowski M. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:3248-3280. [PMID: 28717565 PMCID: PMC5508826 DOI: 10.1364/boe.8.003248] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/26/2017] [Accepted: 05/22/2017] [Indexed: 05/19/2023]
Abstract
Optical coherence tomography (OCT) has become one of the most successful optical technologies implemented in medicine and clinical practice mostly due to the possibility of non-invasive and non-contact imaging by detecting back-scattered light. OCT has gone through a tremendous development over the past 25 years. From its initial inception in 1991 [Science254, 1178 (1991)] it has become an indispensable medical imaging technology in ophthalmology. Also in fields like cardiology and gastro-enterology the technology is envisioned to become a standard of care. A key contributor to the success of OCT has been the sensitivity and speed advantage offered by Fourier domain OCT. In this review paper the development of FD-OCT will be revisited, providing a single comprehensive framework to derive the sensitivity advantage of both SD- and SS-OCT. We point out the key aspects of the physics and the technology that has enabled a more than 2 orders of magnitude increase in sensitivity, and as a consequence an increase in the imaging speed without loss of image quality. This speed increase provided a paradigm shift from point sampling to comprehensive 3D in vivo imaging, whose clinical impact is still actively explored by a large number of researchers worldwide.
Collapse
Affiliation(s)
- Johannes F. de Boer
- Department of Physics and Astronomy and LaserLaB Amsterdam, VU University, De Boelelaan 1105, 1081 HV Amsterdam, Department of Ophthalmology, VU Medical Center, Amsterdam, The Netherlands
- Authors are listed in alphabetical order and contributed equally
| | - Rainer Leitgeb
- Christian Doppler Laboratory OPTRAMED, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Authors are listed in alphabetical order and contributed equally
| | - Maciej Wojtkowski
- Physical Optics and Biophotonics Group, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224 Warsaw, Poland
- Authors are listed in alphabetical order and contributed equally
| |
Collapse
|
23
|
Liu YZ, South FA, Xu Y, Carney PS, Boppart SA. Computational optical coherence tomography [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1549-1574. [PMID: 28663849 PMCID: PMC5480564 DOI: 10.1364/boe.8.001549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) has become an important imaging modality with numerous biomedical applications. Challenges in high-speed, high-resolution, volumetric OCT imaging include managing dispersion, the trade-off between transverse resolution and depth-of-field, and correcting optical aberrations that are present in both the system and sample. Physics-based computational imaging techniques have proven to provide solutions to these limitations. This review aims to outline these computational imaging techniques within a general mathematical framework, summarize the historical progress, highlight the state-of-the-art achievements, and discuss the present challenges.
Collapse
Affiliation(s)
- Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
| | - Fredrick A. South
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
| | - Yang Xu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
| | - P. Scott Carney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
- Departments of Bioengineering and Internal Medicine, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
24
|
Li E, Makita S, Hong YJ, Kasaragod D, Yasuno Y. Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:1290-1305. [PMID: 28663829 PMCID: PMC5480544 DOI: 10.1364/boe.8.001290] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
A custom made dermatological Jones matrix optical coherence tomography (JM-OCT) is presented. It uses a passive-polarization-delay component based swept-source JM-OCT configuration, but is specially designed for in vivo human skin measurement. The center wavelength of its probe beam is 1310 nm and the A-line rate is 49.6 kHz. The JM-OCT is capable of simultaneously providing birefringence (local retardation) tomography, degree-of-polarization-uniformity tomography, complex-correlation-based optical coherence angiography, and conventional scattering OCT. To evaluate the performance of this JM-OCT, we measured in vivo human skin at several locations. Using the four kinds of OCT contrasts, the morphological characteristics and optical properties of different skin types were visualized.
Collapse
Affiliation(s)
- En Li
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Young-Joo Hong
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Deepa Kasaragod
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573,
Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki,
Japan
| |
Collapse
|
25
|
Thouvenin O, Grieve K, Xiao P, Apelian C, Boccara AC. En face coherence microscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:622-639. [PMID: 28270972 PMCID: PMC5330590 DOI: 10.1364/boe.8.000622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 05/13/2023]
Abstract
En face coherence microscopy or flying spot or full field optical coherence tomography or microscopy (FF-OCT/FF-OCM) belongs to the OCT family because the sectioning ability is mostly linked to the source coherence length. In this article we will focus our attention on the advantages and the drawbacks of the following approaches: en face versus B scan tomography in terms of resolution, coherent versus incoherent illumination and influence of aberrations, and scanning versus full field imaging. We then show some examples to illustrate the diverse applications of en face coherent microscopy and show that endogenous or exogenous contrasts can add valuable information to the standard morphological image. To conclude we discuss a few domains that appear promising for future development of en face coherence microscopy.
Collapse
Affiliation(s)
- Olivier Thouvenin
- Institut Langevin ESPCI, PSL Research University, CNRS UMR7587 1rue Jussieu, Paris F75005, France
| | - Kate Grieve
- CHNO des Quinze Vingts/Institut de la Vision, 28 rue de Charenton, Paris F75012, France
| | - Peng Xiao
- Institut Langevin ESPCI, PSL Research University, CNRS UMR7587 1rue Jussieu, Paris F75005, France
| | - Clement Apelian
- Institut Langevin ESPCI, PSL Research University, CNRS UMR7587 1rue Jussieu, Paris F75005, France; LLTech Pépinière Paris Santé Cochin 29 rue du Faubourg Saint Jacques Paris F75014, France
| | - A Claude Boccara
- Institut Langevin ESPCI, PSL Research University, CNRS UMR7587 1rue Jussieu, Paris F75005, France
| |
Collapse
|
26
|
South FA, Liu YZ, Carney PS, Boppart SA. Computed Optical Interferometric Imaging: Methods, Achievements, and Challenges. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6800911. [PMID: 27795663 PMCID: PMC5082437 DOI: 10.1109/jstqe.2015.2493962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Three-dimensional high-resolution optical imaging systems are generally restricted by the trade-off between resolution and depth-of-field as well as imperfections in the imaging system or sample. Computed optical interferometric imaging is able to overcome these longstanding limitations using methods such as interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) which manipulate the complex interferometric data. These techniques correct for limited depth-of-field and optical aberrations without the need for additional hardware. This paper aims to outline these computational methods, making them readily available to the research community. Achievements of the techniques will be highlighted, along with past and present challenges in implementing the techniques. Challenges such as phase instability and determination of the appropriate aberration correction have been largely overcome so that imaging of living tissues using ISAM and CAO is now possible. Computed imaging in optics is becoming a mature technology poised to make a significant impact in medicine and biology.
Collapse
Affiliation(s)
- Fredrick A. South
- Beckman Institute for Advanced Science and Technology, also with the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, also with the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - P. Scott Carney
- Beckman Institute for Advanced Science and Technology, also with the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, also with the Departments of Electrical and Computer Engineering, Bioengineering, and Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
27
|
Kumar A, Kamali T, Platzer R, Unterhuber A, Drexler W, Leitgeb RA. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT. BIOMEDICAL OPTICS EXPRESS 2015; 6:1124-34. [PMID: 25908999 PMCID: PMC4399654 DOI: 10.1364/boe.6.001124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 05/22/2023]
Abstract
In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 [Formula: see text]for a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 [Formula: see text]at a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue.
Collapse
Affiliation(s)
- Abhishek Kumar
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
- Christian Doppler Laboratory for Laser Development and their Application to Medicine and Biology, Waehringer Guertel 18-20 A-1090 Vienna,
Austria
| | - Tschackad Kamali
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
| | - René Platzer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19 A-1090 Vienna,
Austria
| | - Angelika Unterhuber
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
| | - Wolfgang Drexler
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
- Christian Doppler Laboratory for Laser Development and their Application to Medicine and Biology, Waehringer Guertel 18-20 A-1090 Vienna,
Austria
| | - Rainer A. Leitgeb
- Center of Medical Physics and Biomedical Engineering, Medical University of Vienna,
Austria
- Christian Doppler Laboratory for Laser Development and their Application to Medicine and Biology, Waehringer Guertel 18-20 A-1090 Vienna,
Austria
| |
Collapse
|
28
|
Shemonski ND, Ahn SS, Liu YZ, South FA, Carney PS, Boppart SA. Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:4131-43. [PMID: 25574426 PMCID: PMC4285593 DOI: 10.1364/boe.5.004131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 05/20/2023]
Abstract
Over the years, many computed optical interferometric techniques have been developed to perform high-resolution volumetric tomography. By utilizing the phase and amplitude information provided with interferometric detection, post-acquisition corrections for defocus and optical aberrations can be performed. The introduction of the phase, though, can dramatically increase the sensitivity to motion (most prominently along the optical axis). In this paper, we present two algorithms which, together, can correct for motion in all three dimensions with enough accuracy for defocus and aberration correction in computed optical interferometric tomography. The first algorithm utilizes phase differences within the acquired data to correct for motion along the optical axis. The second algorithm utilizes the addition of a speckle tracking system using temporally- and spatially-coherent illumination to measure motion orthogonal to the optical axis. The use of coherent illumination allows for high-contrast speckle patterns even when imaging apparently uniform samples or when highly aberrated beams cannot be avoided.
Collapse
Affiliation(s)
- Nathan D. Shemonski
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801,
USA
| | - Shawn S. Ahn
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801,
USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801,
USA
| | - Fredrick A. South
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801,
USA
| | - P. Scott Carney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801,
USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801,
USA
- Departments of Bioengineering, University of Illinois at Urbana-Champaign 1304 West Springfield Avenue, Urbana, Illinois 61801,
USA
- Department of Internal Medicine, University of Illinois at Urbana-Champaign, 506 South Mathews Avenue, Urbana, Illinois 61801,
USA
| |
Collapse
|
29
|
Liu YZ, Shemonski ND, Adie SG, Ahmad A, Bower AJ, Carney PS, Boppart SA. Computed optical interferometric tomography for high-speed volumetric cellular imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:2988-3000. [PMID: 25401012 PMCID: PMC4230871 DOI: 10.1364/boe.5.002988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 05/18/2023]
Abstract
Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the focus through the entire region of interest to perform volumetric imaging. With a higher-numerical-aperture objective, the image quality of OCM is affected by and more sensitive to aberrations. Interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) are computed imaging techniques that overcome the depth-of-field limitation and the effect of optical aberrations in optical coherence tomography (OCT), respectively. In this work we combine OCM with ISAM and CAO to achieve high-speed volumetric cellular imaging. Experimental imaging results of ex vivo human breast tissue, ex vivo mouse brain tissue, in vitro fibroblast cells in 3D scaffolds, and in vivo human skin demonstrate the significant potential of this technique for high-speed volumetric cellular imaging.
Collapse
Affiliation(s)
- Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801, USA
| | - Nathan D. Shemonski
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801, USA
| | - Steven G. Adie
- Department of Biomedical Engineering, Cornell University, 101 Weill Hall, Ithaca, New York 14853, USA
| | - Adeel Ahmad
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801, USA
| | - Andrew J. Bower
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801, USA
| | - P. Scott Carney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, Illinois 61801, USA
- Departments of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|