1
|
Sahoo N, Sun B, Tan Y, Zhou K, Zhang L. A Novel Biosensor for the Detection of Glucose Concentration Using the Dual-Peak Long Period Grating in the Near- to Mid-Infrared. SENSORS (BASEL, SWITZERLAND) 2024; 24:1247. [PMID: 38400404 PMCID: PMC10892875 DOI: 10.3390/s24041247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
In this article, we demonstrate an improved efficient fibre sensor with a high sensitivity to measure glucose concentrations in the physiological range of human beings, operating in a broad spectral bandwidth from the near- to mid-infrared. The sensor consists of a dual-peak long period grating (DPLPG) with a period of 150 μm inscribed in an optical fibre with a diameter of 80 μm. The investigation of sensing for refractive index results in a sensitivity of ~-885.7 nm/refractive index unit (RIU) and ~2008.6 nm/RIU in the range of 1.30-1.44. The glucose measurement is achieved by the immobilisation of a layer of enzyme of glucose oxidase (GOD) onto the fibre surface for the selective enhancement of sensitivity for glucose. The sensor can measure glucose concentrations with a maximum sensitivity of -36.25 nm/(mg/mL) in the range of 0.1-3.0 mg/mL. To the best of our knowledge, this is the highest sensitivity ever achieved for a measurement of glucose with a long period grating-based sensor, indicating its potential for many applications including pharmaceutical, biomedical and food industries.
Collapse
Affiliation(s)
- Namita Sahoo
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (K.Z.); (L.Z.)
| | - Bing Sun
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
| | - Yidong Tan
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
| | - Kaiming Zhou
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (K.Z.); (L.Z.)
| | - Lin Zhang
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK; (K.Z.); (L.Z.)
| |
Collapse
|
2
|
Kumari A, Vyas V, Kumar S. Synthesis, characterization, and applications of gold nanoparticles in development of plasmonic optical fiber-based sensors. NANOTECHNOLOGY 2022; 34:042001. [PMID: 36223727 DOI: 10.1088/1361-6528/ac9982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/12/2022] [Indexed: 05/24/2023]
Abstract
Gold nanoparticles (Au-NPs) are readily used nanoparticles which finds applications in fields like biosensors, drug delivery, optical bioimaging and many state of art systems used for detection. In the recent years fiber optic sensors have seen utilization of Au-NPs along with other nanoparticles for implementation of sensors for sensing various biomolecules like cholesterol, glucose, and uric acid. The cancer cells, creatinine and bacteria can also be detected with the fiber optic sensors. Given the significance of Au-NPs in fiber optic sensors, the current work is a review of the synthesis, the common methods used for characterization, and the applications of Au-NPs. It is important to discuss and analyse the work reported in the literature to understand the trend and gaps in developing plasmonic optical fiber sensors.
Collapse
Affiliation(s)
- Anamika Kumari
- Department of Electronics & Telecommunication Engineering, College of Engineering Pune, Pune 411005, India
| | - Vibha Vyas
- Department of Electronics & Telecommunication Engineering, College of Engineering Pune, Pune 411005, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, People's Republic of China
| |
Collapse
|
3
|
Li C, Liu Y, Lang C, Zhang Y, Qu S. Femtosecond laser direct writing of a 3D microcantilever on the tip of an optical fiber sensor for on-chip optofluidic sensing. LAB ON A CHIP 2022; 22:3734-3743. [PMID: 36039614 DOI: 10.1039/d2lc00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real-time detection of the concentration of input fluid is essential for optofluidic sensing, especially in the case of biochips and organ-on-a-chip systems. In this paper, a microcantilever structure that enables temperature and liquid concentration sensing was fabricated on the tip of the optical fiber by femtosecond laser direct writing (two-photon polymerization, TPP) technology. An open Fabry-Pérot interferometer (F-P) structure was formed between the end of the optical fiber and the cantilever, so the sensor becomes quite sensitive to the localized temperature, concentration and refractive index of the target liquids. The reasonable size parameters of the cantilever were determined by structural stress analysis and interference spectrum analysis. By integrating the fiber sensor with a microfluidic chip, an on-chip optofluidic sensing platform is developed, which shows high sensitivities of the temperature (92.7 pm °C-1), concentration (0.3287 nm (g L-1)-1), and refractive index (1385.819 nm RIU-1). The reported optofluidic sensing platform demonstrates reasonably high stability and satisfactory sensing effect, holding great promise for applications in lab-on-a-chip systems.
Collapse
Affiliation(s)
- Changxu Li
- School of Physics, Harbin Institute of Technology, Harbin 15001, China.
| | - Yi Liu
- Department of Optoelectronics Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Changpeng Lang
- School of Physics, Harbin Institute of Technology, Harbin 15001, China.
| | - Yonglai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Shiliang Qu
- School of Physics, Harbin Institute of Technology, Harbin 15001, China.
- Photonics Research Center, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
4
|
Sypabekova M, Tosi D, Vangelista L. Perspectives on Assembling Coronavirus Spikes on Fiber Optics to Reveal Broadly Recognizing Antibodies and Generate a Universal Coronavirus Detector. Front Bioeng Biotechnol 2021; 9:637715. [PMID: 34900951 PMCID: PMC8661133 DOI: 10.3389/fbioe.2021.637715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In time of COVID-19 biological detection technologies are of crucial relevance. We propose here the use of state of the art optical fiber biosensors to address two aspects of the fight against SARS-CoV-2 and other pandemic human coronaviruses (HCoVs). Fiber optic biosensors functionalized with HCoV spikes could be used to discover broadly neutralizing antibodies (bnAbs) effective against known HCoVs (SARS-CoV, MERS-CoV and SARS-CoV-2) and likely future ones. In turn, identified bnAbs, once immobilized onto fiber optic biosensors, should be capable to detect HCoVs as diagnostic and environmental sensing devices. The therapeutic and preventative value of bnAbs is immense as they can be used for passive immunization and for the educated development of a universal vaccine (active immunization). Hence, HCoV bnAbs represent an extremely important resource for future preparedness against coronavirus-borne pandemics. Furthermore, the assembly of bnAb-based biosensors constitutes an innovative approach to counteract public health threats, as it bears diagnostic competence additional to environmental detection of a range of pandemic strains. This concept can be extended to different pandemic viruses, as well as bio-warfare threats that entail existing, emerging and extinct viruses (e.g., the smallpox-causing Variola virus). We report here the forefront fiber optic biosensor technology that could be implemented to achieve these aims.
Collapse
Affiliation(s)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan.,Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan, Kazakhstan
| | - Luca Vangelista
- School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
5
|
Abstract
Optical sensors for biomedical applications have gained prominence in recent decades due to their compact size, high sensitivity, reliability, portability, and low cost. In this review, we summarized and discussed a few selected techniques and corresponding technological platforms enabling the manufacturing of optical biomedical sensors of different types. We discussed integrated optical biosensors, vertical grating couplers, plasmonic sensors, surface plasmon resonance optical fiber biosensors, and metasurface biosensors, Photonic crystal-based biosensors, thin metal films biosensors, and fiber Bragg grating biosensors as the most representative cases. All of these might enable the identification of symptoms of deadly illnesses in their early stages; thus, potentially saving a patient’s life. The aim of this paper was not to render a definitive judgment in favor of one sensor technology over another. We presented the pros and cons of all the major sensor systems enabling the readers to choose the solution tailored to their needs and demands.
Collapse
|
6
|
Bulbul AAM, Jibon RH, Biswas S, Pasha ST, Sayeed MA. Photonic crystal fiber-based blood components detection in THz regime: Design and simulation. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Zheng W, Han B, E S, Sun Y, Li X, Cai Y, Zhang YN. Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Wu S, Tan Q, Forsberg E, Hu S, He S. In-situ dual-channel surface plasmon resonance fiber sensor for temperature-compensated detection of glucose concentration. OPTICS EXPRESS 2020; 28:21046-21061. [PMID: 32680152 DOI: 10.1364/oe.395524] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
External temperature variations inevitably affect the accuracy of surface plasmon resonance (SPR) biosensors. To that end, we propose an ultra-compact label-free dual-channel SPR fiber sensor (DSPRFS) that can simultaneously measure the glucose concentration and ambient temperature in real-time. The proposed sensor is based on a unique dual-channel structure fabricated by etching a side-hole fiber (SHF), and has significantly higher spatial sensitivity than traditional SPR biosensors. After coating with silver and zinc oxide films, one channel was filled with polydimethylsiloxane (PDMS) to sense the ambient temperature, and the other channel was immobilized with glucose oxidase (GOx) enzyme for glucose sensing. The proposed sensor is analyzed theoretically, fabricated and characterized. Glucose concentration sensitivity and temperature sensitivity of the manufactured sensor sample were found to be as high as 6.156 nm/mMand -1.604 nm/°C with limits of detection (LOD) of 16.24 µM and 0.06 °C, respectively. The proposed sensor has an extremely compact structure, enables temperature compensation, and is suitable for in-situ monitoring and high-precision sensing of glucose and other biological analytes.
Collapse
|
9
|
Wang M, Li H, Xu T, Li G, Yu M, Jiang B, Xu J, Wu J. Probing a chiral drug using long period fiber gratings. OPTICS EXPRESS 2019; 27:31407-31417. [PMID: 31684375 DOI: 10.1364/oe.27.031407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The electromagnetic field theory for a step-index fiber geometry is developed to sense a surrounding chiral drug via long-period fiber gratings (LPFGs). This theory employs Debye potentials and electromagnetic fields for cladding modes in the LPFGs by introducing constitutive relations for a chiral drug. The fields in the chiral drug are transformed and decomposed into right- and left-hand circularly polarized components to account for the magnetoelectric coupling due to the chirality. The solving process for complex propagation constants is given. Numerical results show that responses of the LPFGs to refractive index and chirality changes are different. The two minimum transmissions of a coated LPFG are very sensitive to the variation of the complex chirality. On the other hand, the two resonance wavelengths keep invariant as real and imaginary parts of the comparatively small chirality change. This work enriches the electromagnetic field theory for better design of LPFGs against the highly sensitive chirality detection.
Collapse
|
10
|
Zhao Y, Tong RJ, Xia F, Peng Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron 2019; 142:111505. [DOI: 10.1016/j.bios.2019.111505] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023]
|
11
|
Wan H, Chen J, Wan C, Zhou Q, Wang J, Zhang Z. Optofluidic microcapillary biosensor for label-free, low glucose concentration detection. BIOMEDICAL OPTICS EXPRESS 2019; 10:3929-3937. [PMID: 31452985 PMCID: PMC6701542 DOI: 10.1364/boe.10.003929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 05/30/2023]
Abstract
We demonstrate label-free detection of low glucose concentration based on whispery gallery mode resonance in an optofluidic microcapillary (OFMC) biosensor. The wall surface of the OFMC is bio-chemically functionalized to detect cellular-level glucose concentration as low as 2.78 mM. The measured sensitivity is 0.966 pm/mM. The fabricated microcapillary has a thin wall thickness of 2 μm and a Q factor of 1.3 × 106, corresponding to a bulk refractive index sensitivity of 23.36 nm/RIU. The OFMC biosensor has advantages such as high resistance to environmental perturbation, small sample volume down to 90 nL and cost-effectiveness. Theoretical analysis shows the sensor sensitivity depends on the microcapillary wall thickness and liquid core refractive index.
Collapse
Affiliation(s)
- Hongdan Wan
- Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jijing Chen
- Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Cheng Wan
- Department of Biomedical Engineering, College of Engineering of Peking University, Beijing, China
| | - Quan Zhou
- Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jie Wang
- Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zuxing Zhang
- Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
12
|
Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Li Z, Shen J, Ji Q, Ruan X, Zhang Y, Dai Y, Cai Z. Tuning the resonance of polarization-degenerate LP 1,l cladding mode in excessively tilted long period fiber grating for highly sensitive refractive index sensing. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018. [PMID: 29522041 DOI: 10.1364/josaa.35.000397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This work presents a sensitive refractive index sensor based on the dual resonance of an excessively tilted long period fiber grating (Ex-TLPFG). The Ex-TLPFG is tuned to couple the guided core mode with only the polarization-degenerate cladding mode LP1,l, which consists of TE/TM0,l and HE2,l vector modes. It is found that the p-polarized LP1,lp mode exhibits a higher sensitivity than that of the s-polarized LP1,ls mode. An optimized sensitivity as high as 12182.9 nm/RIU is achieved for the p-polarized LP1,2p mode at the low refractive index region by tuning the initial resonance condition. The sensing performance is also evaluated through the power measurement method for a single resonance band. It is demonstrated that the improved sensitivity in this work for diameter-reduced Ex-TLPFG is much higher than that for the conventional LPFG based devices, which makes this sensing platform very attractive for a variety of index sensing applications.
Collapse
|
14
|
A label-free fiber optic SPR biosensor for specific detection of C-reactive protein. Sci Rep 2017; 7:16904. [PMID: 29203814 PMCID: PMC5715095 DOI: 10.1038/s41598-017-17276-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/21/2017] [Indexed: 01/30/2023] Open
Abstract
A highly sensitive and label-free fiber optic surface plasmon resonance (SPR) biosensor for specific detection of C-reactive protein (CRP) is proposed and demonstrated. We take dopamine as a cross-linking agent to immobilize the anti-CRP monoclonal antibody, which is an efficient and simple method for specific modification of the fiber optic SPR sensor. The modified sensor can successfully detect CRP specifically. We realize the fabrication of a disposable fiber optic SPR sensor for the CRP specific detection. Through optimizing the immobilization time of anti-CRP monoclonal antibody and the reaction time of antigen and antibody experimentally, the sensor shows a satisfactory linear response (R2 = 0.97) to CRP concentration within the range from 0.01 to 20 μg/ml. Moreover, the highest CRP sensitivity is obtained at 1.17 nm per lg (μg/ml). With the advantages of simple structure and easy fabrication, our sensor is convenient to be batch produced and controlled with good consistency, which is especially suitable for the fabrication of disposable biosensor. It makes sense that our detection can effectively avoid the cross pollution caused by repeated use of the sensor.
Collapse
|
15
|
Yan Z, Sun Q, Wang C, Sun Z, Mou C, Zhou K, Liu D, Zhang L. Refractive index and temperature sensitivity characterization of excessively tilted fiber grating. OPTICS EXPRESS 2017; 25:3336-3346. [PMID: 28241548 DOI: 10.1364/oe.25.003336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have investigated experimentally and numerically the temperature and refractive index (RI) sensitivity characteristics of excessively tilted fiber gratings (Ex-TFGs) in detail. Both results have shown that the temperature and RI sensitivities of Ex-TFGs are mode order dependent. For temperature sensitivity, the higher order cladding mode of Ex-TFG exhibited lower temperature sensitivity, quantitatively, the temperature sensitivities of TM cladding modes at the resonance wavelength around 1550nm are 9pm/°C, 6.8pm/°C, 5.6pm/°C and, 4pm/°C for cladding mode 28th, 31st, 35th, 40th, respectively, indicating the overall temperature sensitivity of Ex-TFGs were lower than that of normal FBGs. The SRI sensing results have shown that the RI sensitivity of Ex-TFG at the special index value could be improved by choosing the cladding mode with effective index close to the refractive index of the detecting medium. The SRI sensitivities at the effective mode index were 2250nm/RIU at 1.408, 864nm/RIU at 1.395, 1536nm/RIU at 1.380 and 1360nm/RIU at 1.355, for the cladding mode of 28th, 31st, 35th, 43rd, respectively. The experimental results have also shown the SRI sensitivity of Ex-TFG was increasing with increasing of the resonance wavelength.
Collapse
|
16
|
Yuan Y, Yang X, Gong D, Liu F, Hu W, Cai W, Huang J, Yang M. Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs. OPTICS EXPRESS 2017; 25:3884-3898. [PMID: 28241599 DOI: 10.1364/oe.25.003884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glucose sensitive membrane (GSM) consists of glucose oxidases (GODs) and matrix material (for example, polyacrylamide gel). In this paper, we have investigated the optical property and adsorption isotherms of a GSM based on a terminal reflection optical fiber SPR sensor. Firstly, we reported the fabrication of one kind of GSM which was made of immobilized GODs on SiO2 nanoparticles and PAM gel. Then, we investigated the effects of GSM thickness, GOD content, solution pH and ambient temperature on the reflected spectrum of sensor, and the optimum parameters of the sensor, such as, GSM thickness of 12 times pulling, 4 mg/mL of GOD content in GSM, 7.0 of solution pH and 40 °C of measuring temperature were obtained. Thirdly, we measured the wavelength shifts of the optimized SPR sensor in the solutions with different glucose concentrations. As the glucose concentration increases from 0 to 80 mg/dL, the resonance wavelength decreases approximately linearly and the corresponding sensitivity is about 0.14 nm/(mg/dL). Finally, we investigated the RI of the GSM, the concentration of glucose into GSM and the adsorption isotherm of GSM by the combination of SPR experiment data, theoretical simulation and Gladstone-Dale mixing rule. As the glucose concentration is in the region of [0, 80] mg/dL, the adsorption of GSM for glucose can be explained by the Freundlich isotherm model. As the glucose concentration is in the region of [120, 500] mg/dL, the Langmuir isotherm model is more suitable to describe the adsorption process of GSM for glucose.
Collapse
|
17
|
Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip. SENSORS 2016; 17:s17010063. [PMID: 28042821 PMCID: PMC5298636 DOI: 10.3390/s17010063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022]
Abstract
A curved D-type optical fiber sensor (OFS) combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR) of the Kretchmann’s configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA)-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10−5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.
Collapse
|
18
|
Luo B, Wu S, Zou W, Zhang Z, Zhao M, Shi S, Liu Y, Xi X, Zeng Z, Liang W, Yan Z, Zhang L. Label-free immunoassay for porcine circovirus type 2 based on excessively tilted fiber grating modified with staphylococcal protein A. Biosens Bioelectron 2016; 86:1054-1060. [DOI: 10.1016/j.bios.2016.07.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022]
|
19
|
Yin MJ, Huang B, Gao S, Zhang AP, Ye X. Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection. BIOMEDICAL OPTICS EXPRESS 2016; 7:2067-77. [PMID: 27231643 PMCID: PMC4871103 DOI: 10.1364/boe.7.002067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/27/2016] [Accepted: 03/27/2016] [Indexed: 05/14/2023]
Abstract
An optical fiber sensor integrated microfluidic chip is presented for ultrasensitive detection of glucose. A long-period grating (LPG) inscribed in a small-diameter single-mode fiber (SDSMF) is employed as an optical refractive-index (RI) sensor. With the layer-by-layer (LbL) self-assembly technique, poly (ethylenimine) (PEI) and poly (acrylic acid) (PAA) multilayer film is deposited on the SDSMF-LPG sensor for both supporting and signal enhancement, and then a glucose oxidase (GOD) layer is immobilized on the outer layer for glucose sensing. A microfluidic chip for glucose detection is fabricated after embedding the SDSMF-LPG biosensor into the microchannel of the chip. Experimental results reveal that the SDSMF-LPG biosensor based on such a hybrid sensing film can ultrasensitively detect glucose concentration as low as 1 nM. After integration into the microfluidic chip, the detection range of the sensor is extended from 2 µM to 10 µM, and the response time is remarkablely shortened from 6 minutes to 70 seconds.
Collapse
Affiliation(s)
- Ming-jie Yin
- Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bobo Huang
- Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shaorui Gao
- Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - A. Ping Zhang
- Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|