1
|
Feng C, Wang X, Miao B, Gu Z, Li J. Real-time free spectral range measurement based on a correlated resonance-tracking technology. OPTICS EXPRESS 2023; 31:30604-30614. [PMID: 37710600 DOI: 10.1364/oe.500573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
In this paper, we present a real-time measurement technology for the free spectral range (FSR) of an ultrahigh-aspect-ratio silicon nitride (Si3N4) waveguide ring resonator (WRR). Two different correlated resonant modes were tracked by two optical single-sideband frequency-shifted lights to eliminate interference noise in the Pound-Drever-Hall error signals. A relative precision of 0.1474 ppm was achieved for a 35 mm WRR with FSR = 1,844,944.5 kHz and finesse (F) = 13.2. Furthermore, a cross-correlation of 0.913 between FSR-calculated and thermistor-measured temperatures indicated a high correlation between the real-time FSR and room temperature. We believe this technology is currently the best way to realize low-finesse (F < 50) real-time FSR measurements in the GHz range.
Collapse
|
2
|
Słowiński M, Makowski M, Sołtys KL, Stankiewicz K, Wójtewicz S, Lisak D, Piwiński M, Wcisło P. Cryogenic mirror position actuator for spectroscopic applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:115003. [PMID: 36461519 DOI: 10.1063/5.0116691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate a mirror position actuator that operates in a wide temperature range from room temperature to a deep cryogenic regime (10 K). We use a Michelson interferometer to measure the actuator tuning range (and piezoelectric efficiency) in the full temperature range. We demonstrate an unprecedented range of tunability of the mirror position in the cryogenic regime (over 22 μm at 10 K). The capability of controlling the mirror position in the range from few to few tens of microns is crucial for cavity-enhanced molecular spectroscopy techniques, especially in the important mid-infrared spectral regime where the length of an optical cavity has to be tunable in a range larger than the laser wavelength. The piezoelectric actuator offering this range of tunability in the cryogenic conditions, on the one hand, will enable development of optical cavities operating at low temperatures that are crucial for spectroscopy of large molecules whose dense spectra are difficult to resolve at room temperature. On the other hand, this will enable us to increase the accuracy of the measurement of simple molecules aimed at fundamental studies.
Collapse
Affiliation(s)
- Michał Słowiński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Marcin Makowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Kamil Leon Sołtys
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Kamil Stankiewicz
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Szymon Wójtewicz
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Daniel Lisak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Mariusz Piwiński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Piotr Wcisło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
3
|
Twayana K, Rebolledo-Salgado I, Deriushkina E, Schröder J, Karlsson M, Torres-Company V. Spectral Interferometry with Frequency Combs. MICROMACHINES 2022; 13:614. [PMID: 35457918 PMCID: PMC9026469 DOI: 10.3390/mi13040614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023]
Abstract
In this review paper, we provide an overview of the state of the art in linear interferometric techniques using laser frequency comb sources. Diverse techniques including Fourier transform spectroscopy, linear spectral interferometry and swept-wavelength interferometry are covered in detail. The unique features brought by laser frequency comb sources are shown, and specific applications highlighted in molecular spectroscopy, optical coherence tomography and the characterization of photonic integrated devices and components. Finally, the possibilities enabled by advances in chip scale swept sources and frequency combs are discussed.
Collapse
Affiliation(s)
- Krishna Twayana
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Israel Rebolledo-Salgado
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
- Measurement Science and Technology, RISE Research Institutes of Sweden, SE-50115 Borås, Sweden
| | - Ekaterina Deriushkina
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Jochen Schröder
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Magnus Karlsson
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Victor Torres-Company
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| |
Collapse
|
4
|
Lisak D, Charczun D, Nishiyama A, Voumard T, Wildi T, Kowzan G, Brasch V, Herr T, Fleisher AJ, Hodges JT, Ciuryło R, Cygan A, Masłowski P. Dual-comb cavity ring-down spectroscopy. Sci Rep 2022; 12:2377. [PMID: 35149716 PMCID: PMC8837621 DOI: 10.1038/s41598-022-05926-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectroscopy without significantly compromising spectral resolution. We present dual-comb cavity ring-down spectroscopy (DC-CRDS) based on the parallel heterodyne detection of ring-down signals with a local oscillator comb to yield absorption and dispersion spectra. These spectra are obtained from widths and positions of cavity modes. We present two approaches which leverage the dynamic cavity response to coherently or randomly driven changes in the amplitude or frequency of the probe field. Both techniques yield accurate spectra of methane-an important greenhouse gas and breath biomarker. When combined with broadband frequency combs, the high sensitivity, spectral resolution and accuracy of our DC-CRDS technique shows promise for applications like studies of the structure and dynamics of large molecules, multispecies trace gas detection and isotopic composition.
Collapse
Affiliation(s)
- Daniel Lisak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100, Toruń, Poland.
| | - Dominik Charczun
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100, Toruń, Poland
| | - Akiko Nishiyama
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100, Toruń, Poland
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Thibault Voumard
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Thibault Wildi
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Grzegorz Kowzan
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100, Toruń, Poland
| | - Victor Brasch
- CSEM - Swiss Center for Electronics and Microtechnology, 2000, Neuchâtel, Switzerland
| | - Tobias Herr
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Physics Department, Universität Hamburg UHH, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Adam J Fleisher
- Optical Measurements Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Joseph T Hodges
- Optical Measurements Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Roman Ciuryło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100, Toruń, Poland
| | - Agata Cygan
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100, Toruń, Poland
| | - Piotr Masłowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100, Toruń, Poland
| |
Collapse
|
5
|
Abbas MA, van Dijk L, Jahromi KE, Nematollahi M, Harren FJM, Khodabakhsh A. Broadband Time-Resolved Absorption and Dispersion Spectroscopy of Methane and Ethane in a Plasma Using a Mid-Infrared Dual-Comb Spectrometer. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6831. [PMID: 33260402 PMCID: PMC7730292 DOI: 10.3390/s20236831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Conventional mechanical Fourier Transform Spectrometers (FTS) can simultaneously measure absorption and dispersion spectra of gas-phase samples. However, they usually need very long measurement times to achieve time-resolved spectra with a good spectral and temporal resolution. Here, we present a mid-infrared dual-comb-based FTS in an asymmetric configuration, providing broadband absorption and dispersion spectra with a spectral resolution of 5 GHz (0.18 nm at a wavelength of 3333 nm), a temporal resolution of 20 μs, a total wavelength coverage over 300 cm-1 and a total measurement time of ~70 s. We used the dual-comb spectrometer to monitor the reaction dynamics of methane and ethane in an electrical plasma discharge. We observed ethane/methane formation as a recombination reaction of hydrocarbon radicals in the discharge in various static and dynamic conditions. The results demonstrate a new analytical approach for measuring fast molecular absorption and dispersion changes and monitoring the fast dynamics of chemical reactions over a broad wavelength range, which can be interesting for chemical kinetic research, particularly for the combustion and plasma analysis community.
Collapse
Affiliation(s)
- Muhammad Ali Abbas
- Trace Gas Research Group, Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands; (L.v.D.); (K.E.J.); (M.N.); (F.J.M.H.); (A.K.)
| | | | | | | | | | | |
Collapse
|
6
|
Muraviev AV, Konnov D, Vodopyanov KL. Broadband high-resolution molecular spectroscopy with interleaved mid-infrared frequency combs. Sci Rep 2020; 10:18700. [PMID: 33122659 PMCID: PMC7596569 DOI: 10.1038/s41598-020-75704-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Traditionally, there has been a trade-off in spectroscopic measurements between high resolution, broadband coverage, and acquisition time. Originally envisioned for precision spectroscopy of the hydrogen atom in the ultraviolet, optical frequency combs are now commonly used for probing molecular ro-vibrational transitions throughout broad spectral bands in the mid-infrared providing superior resolution, speed, and the capability of referencing to the primary frequency standards. Here we demonstrate the acquisition of 2.5 million spectral data points over the continuous wavelength range of 3.17-5.13 µm (frequency span 1200 cm-1, sampling point spacing 13-21 MHz), via interleaving comb-tooth-resolved spectra acquired with a highly-coherent broadband dual-frequency-comb system based on optical subharmonic generation. With the original comb-line spacing of 115 MHz, overlaying eight spectra with gradually shifted comb lines we fully resolve the amplitude and phase spectra of molecules with narrow Doppler lines, such as carbon disulfide (CS2) and its three isotopologues.
Collapse
Affiliation(s)
- A V Muraviev
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - D Konnov
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - K L Vodopyanov
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
7
|
Greenberg AP, Prabhakar G, Ramachandran S. High resolution spectral metrology leveraging topologically enhanced optical activity in fibers. Nat Commun 2020; 11:5257. [PMID: 33067451 PMCID: PMC7568529 DOI: 10.1038/s41467-020-18931-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022] Open
Abstract
Optical rotation, a form of optical activity, is a phenomenon employed in various metrological applications and industries including chemical, food, and pharmaceutical. In naturally-occurring, as well as structured media, the integrated effect is, however, typically small. Here, we demonstrate that, by exploiting the inherent and stable spin-orbit interaction of orbital angular momentum fiber modes, giant, scalable optical activity can be obtained, and that we can use this effect to realize a new type of wavemeter by exploiting its optical rotary dispersion. The device we construct provides for an instantaneous wavelength-measurement technique with high resolving power R = 3.4 × 106 (i.e., resolution < 0.3 pm at 1-μm wavelengths) and can also detect spectral bandwidths of known lineshapes with high sensitivity.
Collapse
Affiliation(s)
| | - Gautam Prabhakar
- Boston University, Boston, MA, 02215, USA
- Aeva Inc, Mountain View, CA, 94043, USA
| | | |
Collapse
|
8
|
Rutkowski L, Johansson AC, Zhao G, Hausmaninger T, Khodabakhsh A, Axner O, Foltynowicz A. Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution: erratum. OPTICS EXPRESS 2020; 28:13290-13291. [PMID: 32403806 DOI: 10.1364/oe.392937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 06/11/2023]
Abstract
We correct the values of the group delay dispersion of the cavity mirrors and N2, as well as the concentration of CO2, obtained from the measurement of the center frequencies of cavity modes using a comb-based Fourier transform spectrometer. The corrected values of group delay dispersion are a factor of 3 higher, which implies that the precision and accuracy of the dispersion measurements is 0.3 fs2 and 3 fs2, respectively.
Collapse
|
9
|
Cygan A, Wcisło P, Wójtewicz S, Kowzan G, Zaborowski M, Charczun D, Bielska K, Trawiński RS, Ciuryło R, Masłowski P, Lisak D. High-accuracy and wide dynamic range frequency-based dispersion spectroscopy in an optical cavity. OPTICS EXPRESS 2019; 27:21810-21821. [PMID: 31510251 DOI: 10.1364/oe.27.021810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
A spectroscopic method free from systematic errors is desired for many challenging applications of gas detection. Although existing cavity-enhanced techniques exhibit very high precision, their accuracy strongly depends on propagation of the light amplitude through an optical system and its detection. Here, we demonstrate that the frequency-based molecular dispersion spectroscopy, involving sub-Hz-level precision in frequency measurements of optical cavity resonances, leads to sub-per-mille accuracy and a wide dynamic range, both previously unattainable by any other spectroscopic technique. The method offers great sensitivity of 5×10-11 cm-1, high speed, limited only by the fundamental response time of the cavity, and traceability of both axes of the spectrum to the primary frequency standard. All these features are necessary for convenient realization of comprehensive molecular spectroscopy from Doppler up to collisional regime without changing the spectroscopic method and modification of the experimental setup. Moreover, the presented approach does not require linear, high-bandwidth nor phase-sensitive detectors and can be directly implemented in existing cavity-enhanced spectrometers utilizing either continuous-wave or coherent broadband radiation. We experimentally prove the predominance of frequency-based spectroscopy over intensity-based one. Our results motivate replacement of intensity-based absorption spectroscopy with a pure frequency-based dispersion one in applications where the highest accuracy is required.
Collapse
|
10
|
Kowzan G, Charczun D, Cygan A, Trawiński RS, Lisak D, Masłowski P. Broadband Optical Cavity Mode Measurements at Hz-Level Precision With a Comb-Based VIPA Spectrometer. Sci Rep 2019; 9:8206. [PMID: 31160670 PMCID: PMC6547875 DOI: 10.1038/s41598-019-44711-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/08/2019] [Indexed: 11/09/2022] Open
Abstract
Optical frequency comb spectrometers open up new avenues of investigation into molecular structure and dynamics thanks to their accuracy, sensitivity and broadband, high-speed operation. We combine broadband direct frequency comb spectroscopy with a dispersive spectrometer providing single-spectrum acquisition time of a few tens of milliseconds and high spectral resolution. We interleave a few tens of such comb-resolved spectra to obtain profiles of 14-kHz wide cavity resonances and determine their positions with precision of a few hertz. To the best of our knowledge, these are the most precise and highest resolution spectral measurements performed with a broadband spectrometer, either comb-based or non-comb-based. This result pushes the limits of broadband comb-based spectroscopy to Hz-level regime. As a demonstration of these capabilities, we perform simultaneous cavity-enhanced measurements of molecular absorption and dispersion, deriving the gas spectra from cavity mode widths and positions. Such approach is particularly important for gas metrology and was made possible by the Hz-level resolution of the system. The presented method should be especially applicable to monitoring of chemical kinetics in, for example, plasma discharges or measurements of narrow resonances in cold atoms and molecules.
Collapse
Affiliation(s)
- Grzegorz Kowzan
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland.
| | - Dominik Charczun
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| | - Agata Cygan
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| | - Ryszard S Trawiński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| | - Daniel Lisak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| | - Piotr Masłowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziadzka 5, 87-100, Toruń, Poland
| |
Collapse
|
11
|
Sadiek I, Mikkonen T, Vainio M, Toivonen J, Foltynowicz A. Optical frequency comb photoacoustic spectroscopy. Phys Chem Chem Phys 2018; 20:27849-27855. [PMID: 30398249 DOI: 10.1039/c8cp05666h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first photoacoustic detection scheme using an optical frequency comb-optical frequency comb photoacoustic spectroscopy (OFC-PAS). OFC-PAS combines the broad spectral coverage and the high resolution of OFCs with the small sample volume of cantilever-enhanced PA detection. In OFC-PAS, a Fourier transform spectrometer (FTS) is used to modulate the intensity of the exciting comb source at a frequency determined by its scanning speed. One of the FTS outputs is directed to the PA cell and the other is measured simultaneously with a photodiode and used to normalize the PA signal. The cantilever-enhanced PA detector operates in a non-resonant mode, enabling detection of a broadband frequency response. The broadband and the high-resolution capabilities of OFC-PAS are demonstrated by measuring the rovibrational spectra of the fundamental C-H stretch band of CH4, with no instrumental line shape distortions, at total pressures of 1000 mbar, 650 mbar, and 400 mbar. In this first demonstration, a spectral resolution two orders of magnitude better than previously reported with broadband PAS is obtained, limited by the pressure broadening. A limit of detection of 0.8 ppm of methane in N2 is accomplished in a single interferogram measurement (200 s measurement time, 1000 MHz spectral resolution, 1000 mbar total pressure) for an exciting power spectral density of 42 μW/cm-1. A normalized noise equivalent absorption of 8 × 10-10 W cm-1 Hz-1/2 is obtained, which is only a factor of three higher than the best reported with PAS based on continuous wave lasers. A wide dynamic range of up to four orders of magnitude and a very good linearity (limited by the Beer-Lambert law) over two orders of magnitude are realized. OFC-PAS extends the capability of optical sensors for multispecies trace gas analysis in small sample volumes with high resolution and selectivity.
Collapse
Affiliation(s)
- Ibrahim Sadiek
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Johansson AC, Rutkowski L, Filipsson A, Hausmaninger T, Zhao G, Axner O, Foltynowicz A. Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb. OPTICS EXPRESS 2018; 26:20633-20648. [PMID: 30119372 DOI: 10.1364/oe.26.020633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
We present broadband cavity-enhanced complex refractive index spectroscopy (CE-CRIS), a technique for calibration-free determination of the complex refractive index of entire molecular bands via direct measurement of transmission modes of a Fabry-Perot cavity filled with the sample. The measurement of the cavity transmission spectrum is done using an optical frequency comb and a mechanical Fourier transform spectrometer with sub-nominal resolution. Molecular absorption and dispersion spectra (corresponding to the imaginary and real parts of the refractive index) are obtained from the cavity mode broadening and shift retrieved from fits of Lorentzian profiles to the individual cavity modes. This method is calibration-free because the mode broadening and shift are independent of the cavity parameters such as the length and mirror reflectivity. In this first demonstration of broadband CE-CRIS we measure simultaneously the absorption and dispersion spectra of three combination bands of CO2 in the range between 1525 nm and 1620 nm and achieve good agreement with theoretical models. This opens up for precision spectroscopy of the complex refractive index of several molecular bands simultaneously.
Collapse
|
13
|
Fleisher AJ, Long DA, Hodges JT. Quantitative modeling of complex molecular response in coherent cavity-enhanced dual-comb spectroscopy. JOURNAL OF MOLECULAR SPECTROSCOPY 2018; 352:10.1016/j.jms.2018.07.010. [PMID: 30983629 PMCID: PMC6459610 DOI: 10.1016/j.jms.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a complex-valued electric field model for experimentally observed cavity transmission in coherent cavity-enhanced (CE) multiplexed spectroscopy (i.e., dual-comb spectroscopy, DCS). The transmission model for CE-DCS differs from that previously derived for Fourier-transform CE direct frequency comb spectroscopy [Foltynowicz et al., Appl. Phys. B 110, 163-175 (2013)] by the treatment of the local oscillator which, in the case of CE-DCS, does not interact with the enhancement cavity. Validation is performed by measurements of complex-valued near-infrared spectra of CO and CO2 by an electro-optic frequency comb coherently coupled to an enhancement cavity of finesse F = 19600. Following validation, we measure the 30012 ← 00001 12C16O2 vibrational band origin with a combined standard uncertainty of 770 kHz (fractional uncertainty of 4 × 10-9).
Collapse
Affiliation(s)
- Adam J. Fleisher
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, U.S.A
| | - David A. Long
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, U.S.A
| | - Joseph T. Hodges
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, U.S.A
| |
Collapse
|