1
|
Lewis-Thompson I, Zhang EZ, Beard PC, Desjardins AE, Colchester RJ. All-optical ultrasound catheter for rapid B-mode oesophageal imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:4052-4064. [PMID: 37799692 PMCID: PMC10549740 DOI: 10.1364/boe.494878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 10/07/2023]
Abstract
All-optical ultrasound (OpUS) is an imaging paradigm that uses light to both generate and receive ultrasound, and has progressed from benchtop to in vivo studies in recent years, demonstrating promise for minimally invasive surgical applications. In this work, we present a rapid pullback imaging catheter for side-viewing B-mode ultrasound imaging within the upper gastrointestinal tract. The device comprised an ultrasound transmitter configured to generate ultrasound laterally from the catheter and a plano-concave microresonator for ultrasound reception. This imaging probe was capable of generating ultrasound pressures in excess of 1 MPa with corresponding -6 dB bandwidths > 20 MHz. This enabled imaging resolutions as low as 45 µm and 120 µm in the axial and lateral extent respectively, with a corresponding signal-to-noise ratio (SNR) of 42 dB. To demonstrate the potential of the device for clinical imaging, an ex vivo swine oesophagus was imaged using the working channel of a mock endoscope for device delivery. The full thickness of the oesophagus was resolved and several tissue layers were present in the resulting ultrasound images. This work demonstrates the promise for OpUS to provide rapid diagnostics and guidance alongside conventional endoscopy.
Collapse
Affiliation(s)
- India Lewis-Thompson
- Department of Medical Physics and
Biomedical Engineering,
University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional
and Surgical Sciences,
University College London, Charles Bell House, Foley Street, London, W1W 7TY, UK
| | - Edward Z. Zhang
- Department of Medical Physics and
Biomedical Engineering,
University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul C. Beard
- Department of Medical Physics and
Biomedical Engineering,
University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional
and Surgical Sciences,
University College London, Charles Bell House, Foley Street, London, W1W 7TY, UK
| | - Adrien E. Desjardins
- Department of Medical Physics and
Biomedical Engineering,
University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional
and Surgical Sciences,
University College London, Charles Bell House, Foley Street, London, W1W 7TY, UK
| | - Richard J. Colchester
- Department of Medical Physics and
Biomedical Engineering,
University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional
and Surgical Sciences,
University College London, Charles Bell House, Foley Street, London, W1W 7TY, UK
| |
Collapse
|
2
|
Zhen Y, Tu X, Zhu J, Tong Y, Liu L, Yao N, Wang P, Tong L, Zhang L. Atomically Smooth Gold Microflake-Enabled Fiber-Tip Fabry-Perot Interferometer for Temperature and Pressure Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37454397 DOI: 10.1021/acsami.3c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Fiber-tip sensors based on the Fabry-Perot interferometer (FPI) are one of the most widely used devices for temperature and pressure measurements in space-confined scenarios. However, the deposited metal films with a polycrystalline structure tend to form microcracks under strain, which can undermine the optical quality factor and thus sensing performance of these fiber-tip sensors. Here, we demonstrate an atomically smooth gold microflake (GMF)-enabled fiber-tip FPI sensor with a Q factor as high as 628. Benefiting from the high reflectivity and flexibility of GMFs and the elasticity of the PDMS spacer, the fiber-tip FPI can maintain stable sensing performance under large deformation. For temperature sensing, the fiber-tip sensor exhibits a linear response to the temperature in the range 28-40 °C with a sensitivity as high as 1.74 nm °C-1. To realize linear and sensitive pressure sensing, we design and fabricate a PDMS clamped-beam structure on the fiber tip using a soft lithography technique, achieving a sensitivity of 11.48 nm kPa-1. Moreover, simultaneous measurement of the temperature and pressure is also demonstrated using the wavelength demodulation method. The simple and cost-effective fabrication of the clamped beam and the transferable GMFs allow for the facile integration of high-quality FP cavities on fiber tips, opening new opportunities for developing optical sensors with miniaturized sizes.
Collapse
Affiliation(s)
- Yuqi Zhen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xitao Tu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiajie Zhu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanbiao Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lufang Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ni Yao
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Limin Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
3
|
Lin WK, Ni L, Wang X, Guo JL, Xu G. Fabrication of a translational photoacoustic needle sensing probe for interstitial photoacoustic spectral analysis. PHOTOACOUSTICS 2023; 31:100519. [PMID: 37362870 PMCID: PMC10285275 DOI: 10.1016/j.pacs.2023.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
In our previous study, we demonstrated the feasibility of using an all-optical interstitial photoacoustic (PA) needle sensing probe for quantitative study of tissue architectures with PA spectral analysis (PASA). In this work, we integrated the optical components into an 18 G steel needle sheath for clinical translation. The dimensions of the needle probe are identical to those of a core biopsy probe and are fully compatible with standard procedures such as prostate biopsy. To our knowledge, this is the first interstitial PA probe that can acquire signals with sufficient temporal length for statistics-based PASA. We treated the inner surface of the steel needle sheath and successfully suppressed the vibrational PA signals generated at the surface. Purposed at boosting the measurement sensitivity and extending sensing volume, we upgraded the Fabry-Pérot hydrophone with a plano-concave structure. The performance of the translational needle PA sensing probe was examined with phantoms containing microspheres. The trend of the linear spectral slopes shows negatively correlated to the microsphere dimensions while the midband-fits are positively correlated to microsphere diameters and concentrations. The PASA quantifications show the ability to differentiate microspheres with varied dimensions.
Collapse
Affiliation(s)
- Wei-Kuan Lin
- Department of Electrical Engineering and Computer Sciences, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, USA
| | - Linyu Ni
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, USA
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, USA
| | - Jay L. Guo
- Department of Electrical Engineering and Computer Sciences, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, USA
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Chen Y, Wang Y, Lv T, Zhang J, Yu H. Single optical fiber based forward-viewing all-optical ultrasound self-transceiving probe. OPTICS LETTERS 2023; 48:868-871. [PMID: 36790962 DOI: 10.1364/ol.479718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
All-optical ultrasound probes with fully integrated ultrasound generation and detection functions demonstrate some unique advantages over traditional electroacoustic counterparts. However, due to the lack of an effective solution, the most commonly used method is to assemble two separate functional optical fibers together for ultrasound generation and detection, respectively. In this Letter, an innovative strategy, to the best of our knowledge, is developed to integrate the photoacoustic effect based ultrasound generation and the Fabry-Pérot (FP) interference based ultrasound detection structures together at the end of a single double clad optical fiber (DCF), so as to make a compact forward-viewing ultrasound self-transceiving probe (1-mm diameter). From the experiment results, the as-fabricated probe can generate an ultrasound signal with an amplitude of 2.36 MPa at 2.25 mm in the transmitting mode, and its peak frequency and -6-dB bandwidth are measured to be 10.64 MHz and 22.93 MHz, respectively. When being operated under the receiving mode, the probe has a detection sensitivity of 208.4 mV/MPa for ultrasound signals with the peak frequency of 8.24 MHz, and the noise equivalent pressure (NEP) is 76.8 kPa. In addition, the forward-viewing format ultrasound self-transceiving experiment is also performed and the pulse-echo signal varying with the transmission distance is successfully captured for the first time.
Collapse
|
5
|
Yang L, Dai C, Wang A, Chen G, Xu D, Li Y, Yan Z, Sun Q. Multi-channel parallel ultrasound detection based on a photothermal tunable fiber optic sensor array. OPTICS LETTERS 2022; 47:3700-3703. [PMID: 35913293 DOI: 10.1364/ol.464148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
A multi-channel parallel ultrasound detection system based on a photothermal tunable fiber optic sensor array is proposed. The resonant wavelength of the ultrasound sensor has a quadratic relationship with the power of a 980-nm heating laser. The maximum tuning range is larger than 15 nm. Through photothermal tuning, the inconsistent operating wavelengths of the Fabry-Perot (FP) sensor array can be solved, and then a multiplexing capacity of up to 53 can be theoretically realized, which could greatly reduce the time required for data acquisition. Then, a fixed wavelength laser with ultra-narrow linewidth is used to interrogate the sensor array. The interrogation system demonstrates a noise equivalent pressure (NEP) as low as 0.12 kPa, which is 5.5-times lower than the commercial hydrophone. Furthermore, a prototype of a four-channel ultrasound detection system is built to demonstrate the parallel detection capability. Compared with the independent detection, the SNR of parallel detection does not deteriorate, proving that the parallel detection system and the sensor array own very low cross talk characteristics. The parallel detection technique paves a way for real-time photoacoustic/ultrasound imaging.
Collapse
|
6
|
Zhang S, Zhang EZ, Beard PC, Desjardins AE, Colchester RJ. Dual-modality fibre optic probe for simultaneous ablation and ultrasound imaging. COMMUNICATIONS ENGINEERING 2022; 1:s44172-022-00020-9. [PMID: 37033302 PMCID: PMC7614394 DOI: 10.1038/s44172-022-00020-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022]
Abstract
All-optical ultrasound (OpUS) is an emerging high resolution imaging paradigm utilising optical fibres. This allows both therapeutic and imaging modalities to be integrated into devices with dimensions small enough for minimally invasive surgical applications. Here we report a dual-modality fibre optic probe that synchronously performs laser ablation and real-time all-optical ultrasound imaging for ablation monitoring. The device comprises three optical fibres: one each for transmission and reception of ultrasound, and one for the delivery of laser light for ablation. The total device diameter is < 1 mm. Ablation monitoring was carried out on porcine liver and heart tissue ex vivo with ablation depth tracked using all-optical M-mode ultrasound imaging and lesion boundary identification using a segmentation algorithm. Ablation depths up to 2.1 mm were visualised with a good correspondence between the ultrasound depth measurements and visual inspection of the lesions using stereomicroscopy. This work demonstrates the potential for OpUS probes to guide minimally invasive ablation procedures in real time.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, Foley Street, London, W1W 7TY UK
| | - Edward Z. Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, Foley Street, London, W1W 7TY UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, Foley Street, London, W1W 7TY UK
| | - Richard J. Colchester
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, Foley Street, London, W1W 7TY UK
| |
Collapse
|
7
|
Colchester RJ, Zhang EZ, Beard PC, Desjardins AE. High-resolution sub-millimetre diameter side-viewing all-optical ultrasound transducer based on a single dual-clad optical fibre. BIOMEDICAL OPTICS EXPRESS 2022; 13:4047-4057. [PMID: 35991929 PMCID: PMC9352281 DOI: 10.1364/boe.459486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/31/2023]
Abstract
All-optical ultrasound (OpUS), where ultrasound is both generated and received using light, has emerged as a modality well-suited to highly miniaturised applications. In this work we present a proof-of-concept OpUS transducer built onto a single optical fibre with a highly miniaturised lateral dimension (<0.8 mm). A key innovation was to use a dual-clad optical fibre (DCF) to provide multimode light for ultrasound generation and single mode light for ultrasound reception. The transducer comprised a proximal section of DCF spliced to a short section of single mode fibre (SMF). Multimode light was outcoupled at the splice joint and guided within a square capillary to provide excitation for ultrasound generation. Whilst single mode light was guided to the distal tip of the SMF to a plano-concave microresonator for ultrasound reception. The device was capable of generating ultrasound with pressures >0.4 MPa and a corresponding bandwidth >27 MHz. Concurrent ultrasound generation and reception from the transducer enabled imaging via motorised pull-back allowing image acquisition times of 4 s for an aperture of 20 mm. Image resolution was as low as ~50 µm and 190 µm in the axial and lateral extents, respectively, without the need for image reconstruction. Porcine aorta was imaged ex vivo demonstrating detailed ultrasound images. The unprecedented level of miniaturisation along with the high image quality produced by this device represents a radical new paradigm for minimally invasive imaging.
Collapse
Affiliation(s)
- Richard J. Colchester
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| | - Edward Z. Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| |
Collapse
|
8
|
Abstract
Photoacoustic (PA) imaging is able to provide extremely high molecular
contrast while maintaining the superior imaging depth of ultrasound (US)
imaging. Conventional microscopic PA imaging has limited access to deeper tissue
due to strong light scattering and attenuation. Endoscopic PA technology enables
direct delivery of excitation light into the interior of a hollow organ or
cavity of the body for functional and molecular PA imaging of target tissue.
Various endoscopic PA probes have been developed for different applications,
including the intravascular imaging of lipids in atherosclerotic plaque and
endoscopic imaging of colon cancer. In this paper, the authors review
representative probe configurations and corresponding preclinical applications.
In addition, the potential challenges and future directions of endoscopic PA
imaging are discussed.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California Irvine,
Irvine, CA 92617, USA
| | - Gengxi Lu
- Roski Eye Institute, Keck School of Medicine, University of
Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Roski Eye Institute, Keck School of Medicine, University of
Southern California, Los Angeles, CA 90033, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California Irvine,
Irvine, CA 92617, USA
- The Edwards Lifesciences Center for Cardiovascular
Technology, University of California Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of
California Irvine, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
9
|
Rong Q, Lee Y, Tang Y, Vu T, Taboada C, Zheng W, Xia J, Czaplewski DA, Zhang HF, Sun C, Yao J. High-Frequency 3D Photoacoustic Computed Tomography Using an Optical Microring Resonator. BME FRONTIERS 2022; 2022:9891510. [PMID: 36818003 PMCID: PMC9933894 DOI: 10.34133/2022/9891510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3D photoacoustic computed tomography (3D-PACT) has made great advances in volumetric imaging of biological tissues, with high spatial-temporal resolutions and large penetration depth. The development of 3D-PACT requires high-performance acoustic sensors with a small size, large detection bandwidth, and high sensitivity. In this work, we present a new high-frequency 3D-PACT system that uses a micro-ring resonator (MRR) as the acoustic sensor. The MRR sensor has a size of 80 μm in diameter, and was fabricated using the nanoimprint lithography technology. Using the MRR sensor, we have developed a transmission-mode 3D-PACT system that has achieved a detection bandwidth of ~23 MHz, an imaging depth of ~8 mm, a lateral resolution of 114 μm, and an axial resolution of 57 μm. We have demonstrated the 3D PACT's performance on in vitro phantoms, ex vivo mouse brain, and in vivo mouse ear and tadpole. The MRR-based 3D-PACT system can be a promising tool for structural, functional, and molecular imaging of biological tissues at depths.
Collapse
Affiliation(s)
- Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| | - Youngseop Lee
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yuqi Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| | - Carlos Taboada
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| | - Wenhan Zheng
- Optical & Ultrasonic Imaging Laboratory, University at Buffalo, North Campus Buffalo, NY 14260, USA
| | - Jun Xia
- Optical & Ultrasonic Imaging Laboratory, University at Buffalo, North Campus Buffalo, NY 14260, USA
| | - David A. Czaplewski
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA 27708
| |
Collapse
|
10
|
Baumann E, Pohle U, Zhang E, Allen T, Villringer C, Pulwer S, Gerhardt H, Laufer J. A backward-mode optical-resolution photoacoustic microscope for 3D imaging using a planar Fabry-Pérot sensor. PHOTOACOUSTICS 2021; 24:100293. [PMID: 34466380 PMCID: PMC8385441 DOI: 10.1016/j.pacs.2021.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) combines high spatial resolution and strong absorption-based contrast in tissue, which has enabled structural and spectroscopic imaging of endogenous chromophores, primarily hemoglobin. Conventional piezoelectric ultrasound transducers are typically placed far away from the photoacoustic source due to their opacity, which reduces acoustic sensitivity. Optical ultrasound sensors are an alternative as their transparency allows them to be positioned close to the sample with minimal source-detector distances. In this work, a backward-mode OR-PAM system based on a planar Fabry-Pérot ultrasound sensor and coaxially aligned excitation and interrogation beams was developed. Two 3D imaging modes, using raster-scanning for enhanced image quality and continuous-scanning for fast imaging, were implemented and tested on a leaf skeleton phantom. In fast imaging mode, a scan-rate of 100,000 A-lines/s was achieved. 3D images of a zebrafish embryo were acquired in vivo in raster-scanning mode. The transparency of the FP sensor in the visible and near-infrared wavelength region makes it suitable for combined functional and molecular imaging applications using OR-PAM and multi-photon fluorescence microscopy.
Collapse
Affiliation(s)
- Elisabeth Baumann
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrike Pohle
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Von-danckelmann-platz 3, 06120, Halle (Saale), Germany
| | - Edward Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, UK
| | - Thomas Allen
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, WC1E 6BT, UK
| | - Claus Villringer
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Von-danckelmann-platz 3, 06120, Halle (Saale), Germany
- University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Silvio Pulwer
- University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, 10178, Berlin, Germany
| | - Jan Laufer
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Von-danckelmann-platz 3, 06120, Halle (Saale), Germany
| |
Collapse
|
11
|
Yang W, Zhang C, Zeng J, Song W. Ultrasonic signal detection based on Fabry-Perot cavity sensor. Vis Comput Ind Biomed Art 2021; 4:8. [PMID: 33830349 PMCID: PMC8032835 DOI: 10.1186/s42492-021-00074-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/15/2021] [Indexed: 01/25/2023] Open
Abstract
Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals. The Fabry-Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine. In this study, the outer diameter of the core cladding was 250 μm, the diameter of the core was 9 μm, and the microcavity sensing unit was only 30 μm. It could measure ultrasonic signals with high precision. The characteristics of the proposed ultrasonic sensor were investigated, and its feasibility was proven through experiments. Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection. The sensor is applicable to the field of biomedical information technology, including medical diagnosis, photoacoustic endoscopy, and photoacoustic imaging.
Collapse
Affiliation(s)
- Wu Yang
- Nanophotonics Research Center, Shenzhen University, Shenzhen, 518000, China
| | - Chonglei Zhang
- Nanophotonics Research Center, Shenzhen University, Shenzhen, 518000, China.
| | - Jiaqi Zeng
- Nanophotonics Research Center, Shenzhen University, Shenzhen, 518000, China
| | - Wei Song
- Nanophotonics Research Center, Shenzhen University, Shenzhen, 518000, China
| |
Collapse
|
12
|
Zhou J, Jokerst JV. Photoacoustic imaging with fiber optic technology: A review. PHOTOACOUSTICS 2020; 20:100211. [PMID: 33163358 PMCID: PMC7606844 DOI: 10.1016/j.pacs.2020.100211] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/05/2020] [Accepted: 09/19/2020] [Indexed: 05/03/2023]
Abstract
Photoacoustic imaging (PAI) has achieved remarkable growth in the past few decades since it takes advantage of both optical and ultrasound (US) imaging. In order to better promote the wide clinical applications of PAI, many miniaturized and portable PAI systems have recently been proposed. Most of these systems utilize fiber optic technologies. Here, we overview the fiber optic technologies used in PAI. This paper discusses three different fiber optic technologies: fiber optic light transmission, fiber optic US transmission, and fiber optic US detection. These fiber optic technologies are analyzed in different PAI modalities including photoacoustic microscopy (PAM), photoacoustic computed tomography (PACT), and minimally invasive photoacoustic imaging (MIPAI).
Collapse
Affiliation(s)
- Jingcheng Zhou
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
| |
Collapse
|
13
|
Jin H, Zheng Z, Liu S, Zheng Y. Evaluation of Reconstruction Methodology for Helical Scan Guided Photoacoustic Endoscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4198-4208. [PMID: 32755852 DOI: 10.1109/tmi.2020.3014410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoacoustic endoscopy (PAE), combining both advantages of optical contrast and acoustic resolution, can visualize the chemical-specific optical information of tissues inside human-body. Recently, its corresponding reconstruction methods have been extensively researched. However, most of them are limited on cylindrical scan trajectories, rather than a helical scan which is more clinically practical. On this note, this article proposes a methodology of imaging reconstruction and evaluation for helical scan guided PAE. Different from traditional reconstruction method, synthetic aperture focusing technique (SAFT), our method reconstructs image using wavefield extrapolation which significantly improves computational efficiency and even takes only 0.25 seconds for 3-D reconstructions. In addition, the proposed evaluation methodology can estimate the resolutions and deviations of reconstructed images in advance, and then can be used to optimize the PAE scan parameters. Groups of simulations as well as ex-vivo experiments with different scan parameters are provided to fully demonstrate the performance of the proposed techniques. The quantitatively measured angular resolutions and deviations agree well with our theoretical derivation results D√{rs2 +h2} / [1.25(rs rd +h2)] (rad) and -h l / (rs rd +h2) (rad), respectively D,rd, rs,h and l represent transducer diameter, radius of scan trajectory, radius of source position, unit helical pitch and the distance from targets to helical scan plane, respectively). This theoretical result also suits for circular and cylindrical scan in case of h = 0 .
Collapse
|
14
|
Chen B, Chen Y, Ma C. Photothermally tunable Fabry-Pérot fiber interferometer for photoacoustic mesoscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2607-2618. [PMID: 32499947 PMCID: PMC7249810 DOI: 10.1364/boe.391980] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 05/15/2023]
Abstract
An optical fiber based Fabry-Pérot interferometer whose resonant wavelength can be dynamically tuned was designed and realized for photoacoustic mesoscopy. The optical path length (OPL) of the Fabry-Pérot cavity can be modulated by a photothermal heating process, which was achieved by adjusting the power of a 650 nm heating laser. The optical heating process can effectively change the thickness and refractive index of the polymer spacer of the sensor cavity. The robustness of the sensor can be greatly improved by proper packaging. The interferometer was interrogated by a relatively cheap wavelength-fixed 1550 nm laser for broadband and sensitive ultrasound detection, eliminating the requirement for an expensive tunable interrogation laser. The sensing module was then integrated into a photoacoustic mesoscopic imaging system. Two phantom imaging experiments and an ex vivo imaging experiment demonstrated the capability of such a miniature sensor. The interferometer has an acoustic detection bandwidth of up to 30 MHz and a noise equivalent pressure of 40 mPa/Hz1/2 (i.e., 220 Pa over the full detection bandwidth). The new tuning mechanism and the batch-production compatibility of the sensor holds promises for commercialization and parallelized detection.
Collapse
Affiliation(s)
- Bohua Chen
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuwen Chen
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Cheng Ma
- The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology, Beijing 100084, China
- Beijing Innovation Center for Future Chip, Beijing 100084, China
| |
Collapse
|
15
|
Aytac-Kipergil E, Alles EJ, Pauw HC, Karia J, Noimark S, Desjardins AE. Versatile and scalable fabrication method for laser-generated focused ultrasound transducers. OPTICS LETTERS 2019; 44:6005-6008. [PMID: 32628218 PMCID: PMC7059213 DOI: 10.1364/ol.44.006005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/18/2023]
Abstract
A versatile and scalable fabrication method for laser-generated focused ultrasound transducers is proposed. The method is based on stamping a coated negative mold onto polydimethylsiloxane, and it can be adapted to include different optical absorbers that are directly transferred or synthesized in situ. Transducers with a range of sizes down to 3 mm in diameter are presented, incorporating two carbonaceous (multiwalled carbon nanoparticles and candle soot nanoparticles) and one plasmonic (gold nanoparticles) optically absorbing component. The fabricated transducers operate at central frequencies in the vicinity of 10 MHz with bandwidths in the range of 15-20 MHz. A transducer with a diameter of 5 mm was found to generate a positive peak pressure greater than 35 MPa in the focal zone with a tight focal spot of 150 μm in lateral width. Ultrasound cavitation on the tip of an optical fiber was demonstrated in water for a transducer with a diameter as small as 3 mm.
Collapse
Affiliation(s)
- E. Aytac-Kipergil
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
- Corresponding author:
| | - E. J. Alles
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| | - H. C. Pauw
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - J. Karia
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - S. Noimark
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| | - A. E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| |
Collapse
|
16
|
Li Y, Lu G, Chen JJ, Jing JC, Huo T, Chen R, Jiang L, Zhou Q, Chen Z. PMN-PT/Epoxy 1-3 composite based ultrasonic transducer for dual-modality photoacoustic and ultrasound endoscopy. PHOTOACOUSTICS 2019; 15:100138. [PMID: 31440448 PMCID: PMC6698699 DOI: 10.1016/j.pacs.2019.100138] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 05/03/2023]
Abstract
Endoscopic dual-modality photoacoustic (PA) and ultrasound (US) imaging has the capability of providing morphology and molecular information simultaneously. An ultrasonic transducer was applied for detecting PA signals and performing US imaging which determines the sensitivity and performance of a dual-modality PA/US system. In our study, a miniature single element 32-MHz lead magnesium niobate-lead titanate (PMN-PT) epoxy 1-3 composite based ultrasonic transducer was developed. A miniature endoscopic probe based on this transducer has been fabricated. Using the dual modality PA/US system with a PMN-PT/epoxy 1-3 composite based ultrasonic transducer, phantom and in vivo animal studies have been conducted to evaluate the performance. The preliminary results show enhanced bandwidths of the new ultrasonic transducer and improved signal-to-noise ratio of PA and US images of rat colorectal wall compared with PMN-PT and lead zirconate titanate (PZT) composite based ultrasonic transducers.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jason J. Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Joseph C. Jing
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Tiancheng Huo
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
| | - Ruimin Chen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Laiming Jiang
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
- Corresponding author at: Beckman Laser Institute, University of California, Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
17
|
Jin X, Wang X, Xiong K, Yang S. High-resolution and extended-depth-of-field photoacoustic endomicroscopy by scanning-domain synthesis of optical beams. OPTICS EXPRESS 2019; 27:19369-19381. [PMID: 31503697 DOI: 10.1364/oe.27.019369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Photoacoustic endomicroscopy (PAEM) is capable of imaging fine structures in digestive tract. However, conventional PAEM employs a tightly focused laser beam to irradiate the object, which results in a limited depth-of-field (DOF). Here, we propose a scanning-domain synthesis of optical beams (SDSOB) to optimize both transverse resolution and the DOF by synthetic effective focused beams in scanning domain for the PAEM. By utilizing the SDSOB technique, multiple defocused and scattered beams are refocused to synthesize virtual focuses covering a large range of depth. A transverse point spread function that is 5.7-time sharper, and a transverse spatial bandwidth that is 8.5-time broader than those of the conventional PAEM were simulatively obtained through SDSOB-PAEM at the defocus distance of 2.4 mm. We validated the transverse resolution improvement at both in- and out-focus positions via phantom experiments of carbon fibers. In addition, in vivo rabbit experiments were conducted to acquire vascular images over radial depth range of 900 µm. And further morphological analysis revealed that the SDSOB images were acquired with abundant vascular branches and nodes, large total-length and small average-length of blood vessels, which indicated that the SDSOB-PAEM achieved high-resolution imaging in distinct rectal layers. All these results suggest that the SDSOB-PAEM possesses high transverse resolution and extended DOF, which demonstrates the SDSOB-PAEM can provide more accurate information for clinical assessment.
Collapse
|
18
|
Guo Z, Li G, Chen SL. Miniature probe for all-optical double gradient-index lenses photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201800147. [PMID: 30003707 DOI: 10.1002/jbio.201800147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/03/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
A novel all-optical double gradient-index (GRIN) lens optical-resolution photoacoustic microscopy (OR-PAM), termed as DGL-PAM, is demonstrated. The miniature probe consists of a single-mode fiber and double GRIN lenses for optical focusing and a miniature fiber Fabry-Perot sensor for ultrasound detection. The new design is simple and realizes high resolution with long working distance (WD) by virtue of the double GRIN lenses. The overall size of the probe is 2.7 mm in diameter. High lateral resolution of 3.7 μm (at 532 nm laser wavelength) and long WD of 5.5 mm are achieved. In vivo OR-PAM of mouse ear demonstrates the imaging ability of DGL-PAM. Since precise alignment of optical and acoustic foci is not needed, the proposed DGL-PAM is relatively easy to implement. It has potential to be developed as a low-cost, disposable OR-PAM probe and for endoscopic applications. The proposed double GRIN lenses for making miniature endoscopic probes can also be applied to other modalities, such as optical coherence tomography and confocal fluorescence microscopy, to enable high resolution and long WD.
Collapse
Affiliation(s)
- Zhendong Guo
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyao Li
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Sung-Liang Chen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Li Y, Guo Z, Li G, Chen SL. Miniature fiber-optic high-intensity focused ultrasound device using a candle soot nanoparticles-polydimethylsiloxane composites-coated photoacoustic lens. OPTICS EXPRESS 2018; 26:21700-21711. [PMID: 30130872 DOI: 10.1364/oe.26.021700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/20/2018] [Indexed: 05/18/2023]
Abstract
We present a miniature fiber-optic ultrasound transmitter for generating high-intensity focused ultrasound (HIFU) based on photoacoustic transduction. The HIFU device consists of a fiber and a photoacoustic lens. We develop a simple fabrication procedure for making the photoacoustic lens, which is coated with candle soot nanoparticles-polydimethylsiloxane composites. The fiber is used to deliver pulsed laser for photoacoustic excitation, which facilitates the use of the HIFU device by eliminating the need of free-space optical alignment. The HIFU device (6.5 mm in diameter) produces focused acoustic pressures up to >30 MPa in peak positive with a tight -6-dB focal volume of ~100 μm and ~500 μm in the lateral and axial directions, respectively. Acoustic cavitation induced by the HIFU device is demonstrated. The miniature HIFU device facilitates handheld operation. It holds promise for clinical applications in intraoperative high-precision HIFU therapy. It can even be used for intracavitary therapy with further miniaturization.
Collapse
|
20
|
Optical Ultrasound Generation and Detection for Intravascular Imaging: A Review. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:3182483. [PMID: 29854358 PMCID: PMC5952521 DOI: 10.1155/2018/3182483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/30/2022]
Abstract
Combined ultrasound and photoacoustic imaging has attracted significant interests for intravascular imaging such as atheromatous plaque detection, with ultrasound imaging providing spatial location and morphology and photoacoustic imaging highlighting molecular composition of the plaque. Conventional ultrasound imaging systems utilize piezoelectric ultrasound transducers, which suffer from limited frequency bandwidths and reduced sensitivity with miniature transducer elements. Recent advances on optical methods for both ultrasound generation and detection have shown great promise, as they provide efficient and ultrabroadband ultrasound generation and sensitive and ultrabroadband ultrasound detection. As such, all-optical ultrasound imaging has a great potential to become a next generation ultrasound imaging method. In this paper, we review recent developments on optical ultrasound transmitters, detectors, and all-optical ultrasound imaging systems, with a particular focus on fiber-based probes for intravascular imaging. We further discuss our thoughts on future directions on developing combined all-optical photoacoustic and ultrasound imaging systems for intravascular imaging.
Collapse
|
21
|
Guo Z, Li Y, Chen SL. Miniature probe for in vivo optical- and acoustic-resolution photoacoustic microscopy. OPTICS LETTERS 2018; 43:1119-1122. [PMID: 29489793 DOI: 10.1364/ol.43.001119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
We present a miniature probe capable of both optical-resolution (OR) and acoustic-resolution (AR) photoacoustic microscopy. A gradient-index-lens fiber and a multimode fiber are used to deliver light for OR and AR illumination, respectively. The probe achieves lateral resolution of 3.1 μm for OR mode and 46-249 μm (at depth of 1.2-4.3 mm) for AR mode, respectively. The size of the probe attains 3.7 mm in diameter, which can be used for endoscopic applications. In vivo imaging of several different parts of a mouse demonstrates the excellent imaging ability of the probe.
Collapse
|