1
|
Birnbacher L, Braig EM, Pfeiffer D, Pfeiffer F, Herzen J. Quantitative X-ray phase contrast computed tomography with grating interferometry : Biomedical applications of quantitative X-ray grating-based phase contrast computed tomography. Eur J Nucl Med Mol Imaging 2021; 48:4171-4188. [PMID: 33846846 PMCID: PMC8566444 DOI: 10.1007/s00259-021-05259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The ability of biomedical imaging data to be of quantitative nature is getting increasingly important with the ongoing developments in data science. In contrast to conventional attenuation-based X-ray imaging, grating-based phase contrast computed tomography (GBPC-CT) is a phase contrast micro-CT imaging technique that can provide high soft tissue contrast at high spatial resolution. While there is a variety of different phase contrast imaging techniques, GBPC-CT can be applied with laboratory X-ray sources and enables quantitative determination of electron density and effective atomic number. In this review article, we present quantitative GBPC-CT with the focus on biomedical applications.
Collapse
Affiliation(s)
- Lorenz Birnbacher
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eva-Maria Braig
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Kumar N, Lopez KG, Alathur Ramakrishnan S, Hallinan JTPD, Fuh JYH, Pandita N, Madhu S, Kumar A, Benneker LM, Vellayappan BA. Evolution of materials for implants in metastatic spine disease till date - Have we found an ideal material? Radiother Oncol 2021; 163:93-104. [PMID: 34419506 DOI: 10.1016/j.radonc.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022]
Abstract
"Metastatic Spine Disease" (MSD) often requires surgical intervention and instrumentation with spinal implants. Ti6Al4V is widely used in metastatic spine tumor surgery (MSTS) and is the current implant material of choice due to improved biocompatibility, mechanical properties, and compatibility with imaging modalities compared to stainless steel. However, it is still not the ideal implant material due to the following issues. Ti6Al4V implants cause stress-shielding as their Young's modulus (110 gigapascal [GPa]) is higher than cortical bone (17-21 GPa). Ti6Al4V also generates artifacts on CT and MRI, which interfere with the process of postoperative radiotherapy (RT), including treatment planning and delivery. Similarly, charged particle therapy is hindered in the presence of Ti6Al4V. In addition, artifacts on CT and MRI may result in delayed recognition of tumor recurrence and postoperative complications. In comparison, polyether-ether-ketone (PEEK) is a promising alternative. PEEK has a low Young's modulus (3.6 GPa), which results in optimal load-sharing and produces minimal artifacts on imaging with less hinderance on postoperative RT. However, PEEK is bioinert and unable to provide sufficient stability in the immediate postoperative period. This issue may possibly be mitigated by combining PEEK with other materials to form composites or through surface modification, although further research is required in these areas. With the increasing incidence of MSD, it is an opportune time for the development of spinal implants that possess all the ideal material properties for use in MSTS. Our review will explore whether there is a current ideal implant material, available alternatives and whether these require further investigation.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Orthopaedic Surgery, National University Health System, Singapore.
| | - Keith Gerard Lopez
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | | | | | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Naveen Pandita
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Sirisha Madhu
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Aravind Kumar
- Department of Orthopaedic Surgery, Ng Teng Fong General Hospital, Singapore
| | - Lorin M Benneker
- Department of Orthopaedics, Spine Surgery, Sonnenhofspital, Bern, Switzerland
| | | |
Collapse
|
3
|
Lee C, Kim HR. Gamma-Ray Sensor Using YAlO 3(Ce) Single Crystal and CNT/PEEK with High Sensitivity and Stability under Harsh Underwater Conditions. SENSORS 2021; 21:s21051606. [PMID: 33668912 PMCID: PMC7956410 DOI: 10.3390/s21051606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/01/2022]
Abstract
A new gamma-ray sensor, which could be employed in harsh underwater conditions, was developed using YAlO3(Ce) single crystal and carbon nanotube reinforced polyetheretherketone (CNT/PEEK). The sensor is compact, highly sensitive and stable, by providing real-time gross counts and an accumulated spectrum for fresh, saline, or contaminated water conditions. The sensor was tested in a water tank for quantification of the limit of detections. The Φ51 × 51 mm2 YAlO3(Ce) crystal exhibits a nearly perfect proportionality with a correlation of over 0.999 in terms of light yield per energy and possesses a high energy resolution. The chemically stable CNT/PEEK window material further enhances the detection efficiency by minimizing the background counts from penetrating gamma-rays. Data timeliness was obtained for regulation-based minimum detectable activity targets within 300 s. For a source-detector distance of up to 300 mm in water, the gross counts demonstrate the existence of radionuclides (Cs-137 and Co-60), owing to their higher efficiency (max. ~15 times) than those of the photopeak counts. Such differences between efficiency values are more likely in water than in air because of the high density of water, resulting in an increased build-up of scattered photons. The proposed sensor is suitable for autonomous underwater systems.
Collapse
|
4
|
Jia M, Wen J, Pan X, Xin Z, Pang F, He L, Wang T. Tapered fiber radiation sensor based on Ce/Tb:YAG crystals for remote γ-ray dosimetry. OPTICS EXPRESS 2021; 29:1210-1220. [PMID: 33726340 DOI: 10.1364/oe.413822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
A novel tapered fiber-optic radiation sensor (TFRS) based on cerium (Ce) and terbium (Tb) co-doped YAG scintillation crystals is demonstrated for the first time. Using the CO2 laser-heated method, a Ce/Tb:YAG crystal is well embedded into silica glass cladding without any cracks. The scintillation light emitted from the YAG scintillation crystal can be directly coupled into the derived silica optical fiber by the tapered region. The loss of the derived optical fiber is 0.14 dB/cm, which is one order of magnitude lower than the 1.59 dB/cm of the YAG crystal in the TFRS. Subsequently, strong photo- and radio-luminescence of Tb3+ (5D4→7F5) ions in TFRS are achieved under ultraviolet light and high-energy ray excitation, respectively. In particular, a prominent remote radiation response of the TFRS is presented under excitation by γ-rays through fusion splicing with multimode optical fibers. The response is approximately four times larger than that of a plastic scintillation fiber (BCF-12) sensor. Furthermore, the results possess high stability as well as a good linearity between the radiation dose rate and the response intensity. The TFRS in combination with an all-silica fiber system is a promising candidate for remote radiation detection.
Collapse
|
5
|
Tomographic 99mTc radioactivity quantification in three-dimensional printed polymeric phantoms with bioinspired geometries. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Takeshita T, Magome T, Watanabe R, Onozawa S, Tsuchiya K, Tago M, Sasaki M. Evaluation of a Monte Carlo-based algorithm for the influence of totally implantable venous access ports in external radiation therapy. Jpn J Radiol 2020; 39:387-394. [PMID: 33136255 DOI: 10.1007/s11604-020-01062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This study aimed to assess whether a Monte Carlo (MC)-based algorithm reflects the influence of totally implantable venous access ports (TIVAPs) in external radiation therapy. MATERIALS AND METHODS The present study comprised two steps: experimental measurements of depth doses and surface doses with and without TIVAPs and calculation with an MC-based algorithm. RESULTS The TIVAP-associated maximum dose reduction compared with the dose at the same depths without TIVAPs was 7.8% at 4 MV, 6.9% at 6 MV, and 5.7% at 10 MV in measurement, and 7.4% at 4 MV, 6.6% at 6 MV, and 5.5% at 10 MV in calculation. Relative surface doses were higher with TIVAPs made of titanium, due to a higher fluence of backscattered electrons from the TIVAPs, than with plastic TIVAPs. There were no significant differences in the relative differences between the measured and calculated doses of the titanium TIVAP group and the plastic TIVAP group at 4 MV (p = 0.99), 6 MV (p = 0.67), and 10 MV (p = 0.54). CONCLUSION TIVAPs caused target dose reductions and dose increase near the TIVAP, especially when made of titanium. The influences are reflected in the MC-based algorithm.
Collapse
Affiliation(s)
- Toshiki Takeshita
- Department of Radiology, Teikyo University School of Medicine Mizonokuchi Hospital, 5-1-1 Futago Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan.,Division of Medical Quantum Science, Department of Health Sciences, Kyushu University Graduate School of Medical Sciences School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Taiki Magome
- Department of Radiological Sciences, Komazawa University Faculty of Health Sciences Graduate School of Health Sciences, Tokyo, Japan
| | - Ryuji Watanabe
- Department of Radiology, Teikyo University School of Medicine Mizonokuchi Hospital, 5-1-1 Futago Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| | - Shiro Onozawa
- Department of Radiology, Teikyo University School of Medicine Mizonokuchi Hospital, 5-1-1 Futago Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| | | | - Masao Tago
- Department of Radiology, Teikyo University School of Medicine Mizonokuchi Hospital, 5-1-1 Futago Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| | - Masayuki Sasaki
- Division of Medical Quantum Science, Department of Health Sciences, Kyushu University Graduate School of Medical Sciences School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
S A, M K, A R M, M O. A Novel Adjustable Anthropomorphic Head Phantom for Verifying the Dose of Radiation Therapy. J Biomed Phys Eng 2020; 10:663-668. [PMID: 33134227 PMCID: PMC7557469 DOI: 10.31661/jbpe.v0i0.2003-1082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
This study aims to make a phantom to verify dose distribution and compare two techniques of radiation therapy, including 3D conventional radiotherapy (3D-CRT) and modulated photon radiotherapy (IMRT). For treatment of brain cancer, physicians have to prescribe radiation therapy to involved patients so that organs at risk receive unwanted dose causing them to be damaged. To know precise dose delivered into them and evaluate treatment-planning system (TPs), it is necessary to do dosimetry in the phantom owing to difficulties of dosimetry in human. It is important to make a phantom with characteristics similar to humans and ability to compute dose and dose distribution in desired organs and tissue. Thus, there is possibility to compute dose in different parts, including doses delivered in ears, eyes, stem brain and optic nerve. Furthermore, this phantom has to provide this opportunity to investigate whether some techniques of radiation therapy such as 3D-CRT or IMRT depend on the size or location of tumors. To this end, a low workload, easy-to-set-up, lightweight, and transportable phantom was designed, and made from Polylactic acid (PLA) in dimensions 23×24×32 cm3. The phantom consists of brain, tumors in different dimeters, including 2, 4, 6 cm and also parts for eyes and ears to locate TLDs. Head, brain and tumors are able to open so that they can be filled with polymer gel dosimetry making possible record dose distribution in three-dimensions (3D) and sharp dose gradients.
Collapse
Affiliation(s)
- Abbasi S
- MSc student, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khosravi M
- MSc, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdizadeh A R
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ostovari M
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Braig EM, Pfeiffer D, Willner M, Sellerer T, Taphorn K, Petrich C, Scholz J, Petzold L, Birnbacher L, Dierolf M, Pfeiffer F, Herzen J. Single spectrum three-material decomposition with grating-based x-ray phase-contrast CT. Phys Med Biol 2020; 65:185011. [PMID: 32460250 DOI: 10.1088/1361-6560/ab9704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.
Collapse
Affiliation(s)
- Eva-Maria Braig
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Özpolat ÖF, Alım B, Şakar E, Büyükyıldız M, Kurudirek M. Phy-X/ZeXTRa: a software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:321-329. [PMID: 31960126 DOI: 10.1007/s00411-019-00829-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
The purpose of the present work is robust calculation of effective atomic numbers ([Formula: see text]s) for photon, electron, proton, alpha particle and carbon ion interactions through the newly developed software, Phy-X/ZeXTRa (Zeff of materials for X-Type Radiation attenuation). A pool of total mass attenuation and energy absorption coefficients (for photons) and total mass stopping powers (for charged particles) for elements was constructed first. Then, a matrix of interaction cross sections for elements Z = 1-92 was constructed. Finally, effective atomic numbers were calculated for any material by interpolating adjacent cross sections through a linear logarithmic interpolation formula. The results for [Formula: see text] for photon interaction were compared with those calculated through Mayneord's formula, which suggests a single-valued [Formula: see text] for any material for low-energy photons for which photoelectric absorption is the dominant interaction process. The single-valued [Formula: see text] was found to agree well with that obtained by other methods, in the low-energy region. In addition, [Formula: see text] values of various materials of biological interest were compared with those obtained experimentally at 59.54 keV. In general, the agreement between values calculated with Phy-X/ZeXTRa and Auto-Zeff and those measured were satisfactory. A comparison of [Formula: see text] values for photon energy absorption calculated with Phy-X/ZeXTRa and literature values for a nucleotide base, adenine, was made, and the relative difference (RD) in [Formula: see text] between Phy-X/ZeXTRa and literature values was found to be 2% < RD < 11%, at low photon energies (1-100 keV), while it was less than 1% at energies higher than 100 keV. Highest [Formula: see text] values were observed at low photon energies, where photoelectric absorption dominates photon interaction. For electrons, corresponding RD(%) values in [Formula: see text] were found to be in the range 0.4 ≤ RD(%) ≤ 1.7, while for heavy charged particle interactions it was 2.4 ≤ RD(%) ≤ 4.2 for total proton interaction and 0 ≤ RD(%) ≤ 8 for total alpha particle interaction. In view of the importance of [Formula: see text] for identifying and differentiating tissues in diagnostic imaging as well as for estimating accurate dose in radiotherapy and particle-beam therapy, Phy-X/ZeXTRa could be used for fast and accurate calculation of [Formula: see text] in a wide energy range for both photon and charged particle (electrons, protons, alpha particles and C ions) interactions.
Collapse
Affiliation(s)
- Ö F Özpolat
- Department of Physics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - B Alım
- Department of Electricity and Energy, Technical Scientific Vocational School, Bayburt University, 69000, Bayburt, Turkey
| | - E Şakar
- Department of Physics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - M Büyükyıldız
- Termal Vocational School, Yalova University, 77400, Yalova, Turkey
| | - M Kurudirek
- Department of Physics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
10
|
Osipov S, Chakhlov S, Udod V, Usachev E, Schetinkin S, Kamysheva E. Estimation of the effective mass thickness and effective atomic number of the test object material by the dual energy method. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Mechlem K, Sellerer T, Viermetz M, Herzen J, Pfeiffer F. Spectral Differential Phase Contrast X-Ray Radiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:578-587. [PMID: 31380752 DOI: 10.1109/tmi.2019.2932450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate the combination of two emerging X-ray imaging technologies, namely spectral imaging and differential phase contrast imaging. By acquiring spatially and temporally registered images with several different X-ray spectra, spectral imaging can exploit differences in the energy-dependent attenuation to generate material selective images. Differential phase contrast imaging uses an entirely different contrast generation mechanism: The phase shift that an X-ray wave exhibits when traversing an object. As both methods can determine the (projected) electron density, we propose a novel material decomposition algorithm that uses the spectral and the phase contrast information simultaneously. Numerical experiments show that the combination of these two imaging techniques benefits from the strengths of the individual methods while the weaknesses are mitigated: Quantitatively accurate basis material images are obtained and the noise level is strongly reduced, compared to conventional spectral X-ray imaging.
Collapse
|
12
|
Toivonen J, Björkqvist M, Minn H, Vallittu PK, Rekola J. Scattering of therapeutic radiation in the presence of craniofacial bone reconstruction materials. J Appl Clin Med Phys 2019; 20:119-126. [PMID: 31782897 PMCID: PMC6909125 DOI: 10.1002/acm2.12776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/05/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Radiation scattering from bone reconstruction materials can cause problems from prolonged healing to osteoradionecrosis. Glass fiber reinforced composite (FRC) has been introduced for bone reconstruction in craniofacial surgery but the effects during radiotherapy have not been previously studied. The purpose of this study was to compare the attenuation and back scatter caused by different reconstruction materials during radiotherapy, especially FRC with bioactive glass (BG) and titanium. Methods The effect of five different bone reconstruction materials on the surrounding tissue during radiotherapy was measured. The materials tested were titanium, glass FRC with and without BG, polyether ether ketone (PEEK) and bone. The samples were irradiated with 6 MV and 10 MV photon beams. Measurements of backscattering and dose changes behind the sample were made with radiochromic film and diamond detector dosimetry. Results An 18% dose enhancement was measured with a radiochromic film on the entrance side of irradiation for titanium with 6 MV energy while PEEK and FRC caused an enhancement of 10% and 4%, respectively. FRC‐BG did not cause any measurable enhancement. The change in dose immediately behind the sample was also greatest with titanium (15% reduction) compared with the other materials (0–1% enhancement). The trend is similar with diamond detector measurements, titanium caused a dose enhancement of up to 4% with a 1 mm sample and a reduction of 8.5% with 6 MV energy whereas FRC, FRC‐BG, PEEK or bone only caused a maximum dose reduction of 2.2%. Conclusions Glass fiber reinforced composite causes less interaction with radiation than titanium during radiotherapy and could provide a better healing environment after bone reconstruction.
Collapse
Affiliation(s)
- Joonas Toivonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland.,Department of Biomaterials Science, Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland
| | - Mikko Björkqvist
- Department of Medical Physics, Division of Medical Imaging, Turku University Hospital, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital and University of Turku, Turku, Finland
| | - Heikki Minn
- Department of Oncology and Radiotherapy, Turku University Hospital and University of Turku, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science, Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland.,City of Turku, Welfare Division, Turku, Finland
| | - Jami Rekola
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland.,Department of Biomaterials Science, Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Braig E, Böhm J, Dierolf M, Jud C, Günther B, Mechlem K, Allner S, Sellerer T, Achterhold K, Gleich B, Noël P, Pfeiffer D, Rummeny E, Herzen J, Pfeiffer F. Direct quantitative material decomposition employing grating-based X-ray phase-contrast CT. Sci Rep 2018; 8:16394. [PMID: 30401876 PMCID: PMC6219573 DOI: 10.1038/s41598-018-34809-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/24/2018] [Indexed: 11/09/2022] Open
Abstract
Dual-energy CT has opened up a new level of quantitative X-ray imaging for many diagnostic applications. The energy dependence of the X-ray attenuation is the key to quantitative material decomposition of the volume under investigation. This material decomposition allows the calculation of virtual native images in contrast enhanced angiography, virtual monoenergetic images for beam-hardening artifact reduction and quantitative material maps, among others. These visualizations have been proven beneficial for various diagnostic questions. Here, we demonstrate a new method of 'virtual dual-energy CT' employing grating-based phase-contrast for quantitative material decomposition. Analogue to the measurement at two different energies, the applied phase-contrast measurement approach yields dual information in form of a phase-shift and an attenuation image. Based on these two image channels, all known dual-energy applications can be demonstrated with our technique. While still in a preclinical state, the method features the important advantages of direct access to the electron density via the phase image, simultaneous availability of the conventional attenuation image at the full energy spectrum and therefore inherently registered image channels. The transfer of this signal extraction approach to phase-contrast data multiplies the diagnostic information gained within a single CT acquisition. The method is demonstrated with a phantom consisting of exemplary solid and fluid materials as well as a chicken heart with an iodine filled tube simulating a vessel. For this first demonstration all measurements have been conducted at a compact laser-undulator synchrotron X-ray source with a tunable X-ray energy and a narrow spectral bandwidth, to validate the quantitativeness of the processing approach.
Collapse
Affiliation(s)
- Eva Braig
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Germany.
| | - Jessica Böhm
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Christoph Jud
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Benedikt Günther
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748, Garching, Germany
| | - Korbinian Mechlem
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Germany
| | - Sebastian Allner
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Thorsten Sellerer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Bernhard Gleich
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Peter Noël
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Germany
| | - Ernst Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Germany
| | - Julia Herzen
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Germany
| |
Collapse
|