1
|
Dou D, Jiao M, Feng M, Liang M, Mu K, Qiao Y, Li L, Shan C. Ppb-Level Photoacoustic Detection of Chloroform Using Four-Microphone Array. Anal Chem 2025; 97:1809-1815. [PMID: 39814559 DOI: 10.1021/acs.analchem.4c05658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas. The microphones are positioned at 90° intervals around the PAC resonance chamber wall, enhancing the spatial sampling rate of the signals. A digital phase-locked algorithm demodulates the combined signals from the four microphones into the concentration data. Experimental results show that, compared to a single-microphone system, the four-microphone array system increases sensitivity by a factor of 4, doubles the signal-to-noise ratio, and achieves a minimum detection limit of 69 ppb, demonstrating a significant improvement in sensitivity by capturing the spatial distribution of PA signals.
Collapse
Affiliation(s)
- Dou Dou
- International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Mingqi Jiao
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Mingyang Feng
- International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Mu Liang
- International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Kaijun Mu
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Qiao
- International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Li
- International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Chongxin Shan
- International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Gao Z, Li L, Liu M, Tian S, Feng M, Qiao Y, Shan C. Photoacoustic trace gas detection of OCS using a 2.45 mL Helmholtz resonator and a 4823.3 nm ICL light source. PHOTOACOUSTICS 2024; 38:100612. [PMID: 38711869 PMCID: PMC11070921 DOI: 10.1016/j.pacs.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
A miniaturized photoacoustic spectroscopy-based gas sensor is proposed for the purpose of detecting sub-ppm-level carbonyl sulfide (OCS) using a tunable mid-infrared interband cascade laser (ICL) and a Helmholtz photoacoustic cell. The tuning characteristics of the tunable ICL with a center wavelength of 4823.3 nm were investigated to achieve the optimal driving parameters. A Helmholtz photoacoustic cell with a volume of ∼2.45 mL was designed and optimized to miniaturize the measurement system. By optimizing the modulation parameters and signal processing, the system was verified to have a good linear response to OCS concentration. With a lock-in amplifier integration time of 10 s, the 1σ noise standard deviation in differential mode was 0.84 mV and a minimum detection limit (MDL) of 409.2 ppbV was achieved at atmospheric pressure and room temperature.
Collapse
Affiliation(s)
| | | | - Minghui Liu
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Tian
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Mingyang Feng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Qiao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Chongxin Shan
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Zhang C, He Y, Qiao S, Liu Y, Ma Y. High-sensitivity trace gas detection based on differential Helmholtz photoacoustic cell with dense spot pattern. PHOTOACOUSTICS 2024; 38:100634. [PMID: 39100198 PMCID: PMC11296056 DOI: 10.1016/j.pacs.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024]
Abstract
A high-sensitivity photoacoustic spectroscopy (PAS) sensor based on differential Helmholtz photoacoustic cell (DHPAC) with dense spot pattern is reported in this paper for the first time. A multi-pass cell based on two concave mirrors was designed to achieve a dense spot pattern, which realized 212 times excitation of incident laser. A finite element analysis was utilized to simulate the sound field distribution and frequency response of the designed DHPAC. An erbium-doped fiber amplifier (EDFA) was employed to amplify the output optical power of the laser to achieve strong excitation. In order to assess the designed sensor's performance, an acetylene (C2H2) detection system was established using a near infrared diode laser with a central wavelength 1530.3 nm. According to experimental results, the differential characteristics of DHPAC was verified. Compared to the sensor without dense spot pattern, the photoacoustic signal with dense spot pattern had a 44.73 times improvement. The minimum detection limit (MDL) of the designed C2H2-PAS sensor can be improved to 5 ppb when the average time of the sensor system is 200 s.
Collapse
Affiliation(s)
- Chu Zhang
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| | - Ying He
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| | - Shunda Qiao
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| | - Yahui Liu
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| | - Yufei Ma
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Fu L, Zhang J, Pan Y, Lu P. Differential photoacoustic spectroscopy for flow gas detection based on single microphone. PHOTOACOUSTICS 2024; 38:100624. [PMID: 38872921 PMCID: PMC11169465 DOI: 10.1016/j.pacs.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Differential photoacoustic spectroscopy (PAS) for flow gas detection based on single microphone is innovatively proposed and experimentally demonstrated. Unlike the traditional systems, only one microphone is used to suppress flowing gas noise. Wavelength modulation spectroscopy and second harmonic detection technique are applied in this PAS system with Q-point demodulation for acetylene (C2H2) gas detection. The experiment is conducted at 1 atm and 300 K. Different concentrations and flow rates of C2H2 from 0 sccm to 225 sccm are detected by using nitrogen (N2) as the carrier gas, which indicates that the system can respond well to flowing gases while maintaining the noise at the same level. The system response time decreases to 3.58 s while the gas velocity is 225 sccm. The detection limit of 43.97 ppb with 1 s integration time and normalized noise equivalent absorption (NNEA) coefficient of 4.0 × 10-9 cm-1 W Hz-1/2 is achieved at the flow rate of 225 sccm. The firstly proposed differential PAS based on single microphone greatly simplifies the system structure for flow gas detection, which provides a novel route for development of PAS with significant practical implementation prospects.
Collapse
Affiliation(s)
- Lujun Fu
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangshan Zhang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufeng Pan
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ping Lu
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan OV Optical Networking Technology Co., Ltd., Wuhan 430074, China
| |
Collapse
|
5
|
Si G, Wang Y, Liu X, Sun C, Xu H, Li Z. Highly sensitive photoacoustic gas sensor based on near-concentric cavity. OPTICS EXPRESS 2024; 32:22759-22770. [PMID: 39538755 DOI: 10.1364/oe.525307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 11/16/2024]
Abstract
The precise detection of trace gases in the atmosphere is vital for both environmental preservation and human health. Addressing the inherent challenges in enhancing the sensitivity of photoacoustic spectroscopy, a highly sensitive photoacoustic gas detection method utilizing a near-concentric cavity was proposed. By constructing a near-concentric optical cavity, laser reflections within the photoacoustic cell were substantially amplified, resulting in enhanced sensitivity of photoacoustic signal detection. Additionally, to align with the optical path characteristics of the near-concentric cavity, a miniaturized dumbbell-like photoacoustic cell was designed. Characterized by its high-frequency resonance, this design effectively mitigated background noise while maintaining a high sound pressure level. Experimental results demonstrated a remarkable enhancement in both signal intensity and signal-to-noise ratio by factors of 22.06 and 21.26, respectively, compared to traditional excitation methods. According to the 1σ standard, with a laser power of 21 mW, the setup achieved a detection limit of 10.15 ppb for NO2. The corresponding normalized noise equivalent absorption was calculated to be 2.84 × 10-9 cm-1WHz-1/2, with a gas consumption rate of merely 15.19 mL.
Collapse
|
6
|
Guo G, Li L, Zhou Y, Gong T, Tian Y, Sun X, Cui J, Shi S, Guo Z, He X, Qiu X, Sun J, Jiang C, Fittschen C, Li C. High-Sensitivity Differential Helmholtz Photoacoustic System Combined with the Herriott Multipass Cell and Its Application in Seed Respiration. Anal Chem 2024; 96:7730-7737. [PMID: 38703107 DOI: 10.1021/acs.analchem.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
A highly sensitive photoacoustic detection system using a differential Helmholtz resonator (DHR) combined with a Herriott multipass cell is presented, and its implementation to sub-ppm level carbon dioxide (CO2) detection is demonstrated. Through the utilization of erbium-doped optical fiber amplifier (EDFA), the laser power was amplified to 150 mW. Within the multipass cell, a total of 22 reflections occurred, contributing to an impressive 33.6 times improvement in the system sensitivity. The normalized noise equivalent absorption coefficient (NNEA) was 8.64 × 10-11 cm-1·W·Hz-1/2 [signal-to-noise ratio, (SNR) = 1] and according to the Allan variance analysis, a minimum detection limit of 500 ppb could be achieved for CO2 at 1204 s, which demonstrates the long-term stability of the system. The system was applied to detect the respiration of rice and upland rice seeds. It is demonstrated that the system can monitor and distinguish the respiration intensity and respiration rate of different seeds in real time.
Collapse
Affiliation(s)
- Guqing Guo
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Lin Li
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yueting Zhou
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Ting Gong
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yali Tian
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaocong Sun
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jiahua Cui
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Shuai Shi
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zhenyu Guo
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaohu He
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xuanbing Qiu
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jing Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Christa Fittschen
- CNRS, UMR 8522-PC2A─Physicochimie des Processus de Combustion et de l'Atmosphère, Université Lille, Lille F-59000, France
| | - Chuanliang Li
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
7
|
Tian S, Chen P, Jiao M, Mu K, Gao Y, Qiao Y, Li L, Shan C. Geometry optimization of cantilever-based optical microphones. OPTICS LETTERS 2024; 49:2101-2104. [PMID: 38621086 DOI: 10.1364/ol.519135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
The introduction of cantilever-based fiber-optic microphones (FOMs) has proven to be effective in acoustic sensing. Further improvements in cantilevers face two key constraints: the challenge of achieving minimal sizes with sufficient reflective area and the trade-off between sensitivity and response bandwidth. Herein, we present a geometry optimization framework for a cantilever-based FOM that addresses this issue. Employing drumstick-shaped cantilevers housed within a Fabry-Perot (F-P) interferometric structure, we showcase a heightened sensitivity of 302.8 mV/Pa at 1 kHz and a minimum detectable acoustic pressure (MDP) of 2.35 µPa/H z. Notably, these metrics outperform those of the original rectangular cantilever with identical dimensions. Furthermore, our proposed cantilever effectively mitigates the reduction in resonance frequencies, thereby improving the response bandwidth. This geometry optimization framework offers considerable design flexibility and scalability, making it especially suitable for high-performance acoustic sensing applications.
Collapse
|
8
|
Li Z, Liu J, Ning Z, Xu H, Miao J, Pan Y, Yang C, Fang Y. Compact gas cell for simultaneous detection of atmospheric aerosol optical properties based on photoacoustic spectroscopy and integrating sphere scattering enhancement. PHOTOACOUSTICS 2024; 36:100591. [PMID: 38322617 PMCID: PMC10844632 DOI: 10.1016/j.pacs.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Atmospheric aerosols play a pivotal role in the earth-atmospheric system. Analyzing their optical properties, specifically absorption and scattering coefficients, is essential for comprehending the impact of aerosols on climate. When different optical properties of aerosols are individually measured using multiple devices, cumulative errors in the detection results inevitably occur. To address this challenge, based on photoacoustic spectroscopy (PAS) and integrating sphere (IS) scattering enhancement, a compact gas cell (PASIS-Cell) was developed. The PASIS-Cell comprises a dual-T-type photoacoustic cell (DTPAC) and an IS. IS is coupled with DTPAC through a transparent quartz tube, thereby enhancing the scattering signal without compromising the acoustic characteristics of DTPAC. Concurrently, DTPAC can realize high-performance photoacoustic detection of absorption signal. Experimental results demonstrate that PASIS-Cell can simultaneously invert atmospheric aerosol absorption and scattering coefficients, with a minimum detection limit of less than 1 Mm-1, showcasing its potential in the analysis of aerosol optical properties.
Collapse
Affiliation(s)
- Zhengang Li
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jiaxiang Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhiqiang Ning
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Haichun Xu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Junfang Miao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ying Pan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changping Yang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yonghua Fang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Zhang C, Qiao S, He Y, Ma Y. Trace gas sensor based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell and a power amplified diode laser. OPTICS EXPRESS 2024; 32:848-856. [PMID: 38175104 DOI: 10.1364/oe.512104] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
A high-sensitive photoacoustic spectroscopy (PAS) sensor, which is based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell (DHPAC) and a high power diode laser amplified by erbium-doped fiber amplifier (EDFA), is presented in this work for the first time. In order to improve the interaction length between the light and target gas, the incident light was reflected four times through a multi-pass-retro-reflection-cell constructed by two right-angle prisms. A 1.53 µm distributed feedback (DFB) diode laser was selected to excite photoacoustic signal. Moreover, its power was amplified by an EDFA to 1000 mW to improve the amplitude of photoacoustic signal. Acetylene (C2H2) was chosen as the target analysis to verify the reported sensor performance. Compared to double channel without multiple reflections, the 2f signal of double channel with four reflections was improved by 3.71 times. In addition, when the output optical power of EDFA was 1000 mW, the 2f signal has a 70.57-fold improvement compared with the multi-pass-retro-reflection-cell without EDFA. An Allan deviation analysis was carried out to evaluate the long-term stability of such PAS sensor. When the averaging time was 400 s, the minimum detection limit (MDL) of such PAS sensor was 14 ppb.
Collapse
|
10
|
Fu L, Lu P, Pan Y, Zhong Y, Sima C, Wu Q, Zhang J, Cui L, Liu D. All-optical non-resonant photoacoustic spectroscopy for multicomponent gas detection based on aseismic photoacoustic cell. PHOTOACOUSTICS 2023; 34:100571. [PMID: 38035174 PMCID: PMC10682669 DOI: 10.1016/j.pacs.2023.100571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
An all-optical non-resonant photoacoustic spectroscopy system for multicomponent gas detection based on a silicon cantilever optical microphone (SCOM) and an aseismic photoacoustic cell is proposed and demonstrated. The SCOM has a high sensitivity of over 96.25 rad/Pa with sensitivity fluctuation less than ± 1.56 dB between 5 Hz and 250 Hz. Besides, the minimal detectable pressure (MDP) of the sensor is 0.55 μPa·Hz-1/2 at 200 Hz, which indicates that the fabricated sensor has high sensitivity and low noise level. Six different gases of CO2, CO, CH4, C2H6, C2H4, C2H2 are detected at the frequency of 10 Hz, whose detection limits (3σ) are 62.66 ppb, 929.11 ppb, 1494.97 ppb, 212.94 ppb, 1153.36 ppb and 417.61 ppb, respectively. The system achieves high sensitivity and low detection limits for trace gas detection. In addition, the system exhibits seismic performance with suppressing vibration noise by 4.5 times, and achieves long-term stable operation. The proposed non-resonant all-optical PAS multi-component gas detection system exhibits the advantages of anti-vibration performance, low gas consumption and long term stability, which provides a solution for working in complex environments with inherently safe.
Collapse
Affiliation(s)
- Lujun Fu
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Ping Lu
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
- Wuhan OV Optical Networking Technology Co., Ltd., Wuhan 430073, China
| | - Yufeng Pan
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Zhong
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chaotan Sima
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
- Wuhan OV Optical Networking Technology Co., Ltd., Wuhan 430073, China
| | - Qiang Wu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom
| | - Jiangshan Zhang
- Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingzhi Cui
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Deming Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center for Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| |
Collapse
|
11
|
Starecki T, Pietrzak MH, Ścisłowski MK. Properties of a Symmetrical Photoacoustic Helmholtz Cell Operating with Imbalanced Counterphase Light Stimulation. SENSORS (BASEL, SWITZERLAND) 2023; 23:7150. [PMID: 37631687 PMCID: PMC10457826 DOI: 10.3390/s23167150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The output signal from a photoacoustic cell based on a symmetrical Helmholtz resonator structure can be substantially increased if a counterphase light stimulation is applied to the cell cavities. However even slight differences in the intensity of the light beams irradiating the cavities may affect the frequency response of the cell and the output signal level. This paper shows the influence of the imbalanced light irradiation on the properties of such a cell. It was found that even at relatively high irradiation mismatch, and even with the photoacoustic signal detection implemented with a single microphone, the influence of the irradiation imbalance on the frequency response of the cell around the resonance frequency is not critical. In the case of differential detection of the photoacoustic signal, the imbalance of the light irradiation does not affect the frequency response of the cell, but only the output signal level.
Collapse
Affiliation(s)
- Tomasz Starecki
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Michał Henryk Pietrzak
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
- XIV LO im. Stanisława Staszica, Nowowiejska 37A, 02-010 Warsaw, Poland
| | - Marcin Kamil Ścisłowski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- XLVIII LO im. Edwarda Dembowskiego, Barska 32, 02-315 Warsaw, Poland
| |
Collapse
|