1
|
Friedman R, Yelin D. Spectrally encoded flow cytometry using few-mode fiber collection. BIOMEDICAL OPTICS EXPRESS 2025; 16:177-185. [PMID: 39816146 PMCID: PMC11729279 DOI: 10.1364/boe.544465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
In fiber-based confocal microscopy, using two separate fibers for illumination and collection enables the use of a few-mode fiber to achieve an effect similar to opening the pinhole in a conventional confocal microscope. In some Fourier-domain applications, however, or when a spectral measurement is involved, the coherent light detection would lead to noticeable spectral modulation artifacts that result from differential mode delay, an effect caused by the multimode propagation in the collection fiber. After eliminating these artifacts by using mode-dependent polarization control, we demonstrate effective spectrally encoded imaging with improved signal efficiency and lower speckle noise, and only a minor, negligible reduction in lateral and axial resolutions.
Collapse
Affiliation(s)
- Reut Friedman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dvir Yelin
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Zhang J, Qiao W, Jin R, Li H, Gong H, Chen SC, Luo Q, Yuan J. Optical sectioning methods in three-dimensional bioimaging. LIGHT, SCIENCE & APPLICATIONS 2025; 14:11. [PMID: 39741128 DOI: 10.1038/s41377-024-01677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 01/02/2025]
Abstract
In recent advancements in life sciences, optical microscopy has played a crucial role in acquiring high-quality three-dimensional structural and functional information. However, the quality of 3D images is often compromised due to the intense scattering effect in biological tissues, compounded by several issues such as limited spatiotemporal resolution, low signal-to-noise ratio, inadequate depth of penetration, and high phototoxicity. Although various optical sectioning techniques have been developed to address these challenges, each method adheres to distinct imaging principles for specific applications. As a result, the effective selection of suitable optical sectioning techniques across diverse imaging scenarios has become crucial yet challenging. This paper comprehensively overviews existing optical sectioning techniques and selection guidance under different imaging scenarios. Specifically, we categorize the microscope design based on the spatial relationship between the illumination and detection axis, i.e., on-axis and off-axis. This classification provides a unique perspective to compare the implementation and performances of various optical sectioning approaches. Lastly, we integrate selected optical sectioning methods on a custom-built off-axis imaging system and present a unique perspective for the future development of optical sectioning techniques.
Collapse
Affiliation(s)
- Jing Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Innovation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qiao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Innovation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Jin
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Innovation Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjin Li
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, N.T, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Innovation Institute, Huazhong University of Science and Technology, Wuhan, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| | - Shih-Chi Chen
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, N.T, Hong Kong, China.
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- MoE Key Laboratory for Biomedical Photonics, Innovation Institute, Huazhong University of Science and Technology, Wuhan, China.
- HUST-Suzhou Institute for Brainsmatics, Suzhou, China.
- School of Biomedical Engineering, Hainan University, Haikou, China.
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- MoE Key Laboratory for Biomedical Photonics, Innovation Institute, Huazhong University of Science and Technology, Wuhan, China.
- HUST-Suzhou Institute for Brainsmatics, Suzhou, China.
| |
Collapse
|
3
|
Kume D, Kozawa Y, Kawakami R, Ishii H, Watakabe Y, Uesugi Y, Imamura T, Nemoto T, Sato S. Graded arc beam in light needle microscopy for axially resolved, rapid volumetric imaging without nonlinear processes. OPTICS EXPRESS 2024; 32:7289-7306. [PMID: 38439413 DOI: 10.1364/oe.516437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
High-speed three-dimensional (3D) imaging is essential for revealing the structure and functions of biological specimens. Confocal laser scanning microscopy has been widely employed for this purpose. However, it requires a time-consuming image-stacking procedure. As a solution, we previously developed light needle microscopy using a Bessel beam with a wavefront-engineered approach [Biomed. Opt. Express13, 1702 (2022)10.1364/BOE.449329]. However, this method applies only to multiphoton excitation microscopy because of the requirement to reduce the sidelobes of the Bessel beam. Here, we introduce a beam that produces a needle spot while eluding the intractable artifacts due to the sidelobes. This beam can be adopted even in one-photon excitation fluorescence 3D imaging. The proposed method can achieve real-time, rapid 3D observation of 200-nm particles in water at a rate of over 50 volumes per second. In addition, fine structures, such as the spines of neurons in fixed mouse brain tissue, can be visualized in 3D from a single raster scan of the needle spot. The proposed method can be applied to various modalities in biological imaging, enabling rapid 3D image acquisition.
Collapse
|
4
|
Guo Y, Wang L, Luo Z, Zhu Y, Gao X, Weng X, Wang Y, Yan W, Qu J. Dynamic Volumetric Imaging of Mouse Cerebral Blood Vessels In Vivo with an Ultralong Anti-Diffracting Beam. Molecules 2023; 28:4936. [PMID: 37446598 DOI: 10.3390/molecules28134936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Volumetric imaging of a mouse brain in vivo with one-photon and two-photon ultralong anti-diffracting (UAD) beam illumination was performed. The three-dimensional (3D) structure of blood vessels in the mouse brain were mapped to a two-dimensional (2D) image. The speed of volumetric imaging was significantly improved due to the long focal length of the UAD beam. Comparing one-photon and two-photon UAD beam volumetric imaging, we found that the imaging depth of two-photon volumetric imaging (80 μm) is better than that of one-photon volumetric imaging (60 μm), and the signal-to-background ratio (SBR) of two-photon volumetric imaging is two times that of one-photon volumetric imaging. Therefore, we used two-photon UAD volumetric imaging to perform dynamic volumetric imaging of mouse brain blood vessels in vivo, and obtained the blood flow velocity.
Collapse
Affiliation(s)
- Yong Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Luwei Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Ziyi Luo
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yinru Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xinwei Gao
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Wei Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Santos J, Rodrigo PJ, Petersen PM, Pedersen C. Confocal LiDAR for remote high-resolution imaging of auto-fluorescence in aquatic media. Sci Rep 2023; 13:4807. [PMID: 36959390 PMCID: PMC10036608 DOI: 10.1038/s41598-023-32036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
Spatially resolved in situ monitoring of plankton can provide insights on the impacts of climate change on aquatic ecosystems due to their vital role in the biological carbon pump. However, high-resolution underwater imaging is technically complex and restricted to small close-range volumes with current techniques. Here, we report a novel inelastic scanning confocal light detection and ranging (LiDAR) system for remote underwater volumetric imaging of fluorescent objects. A continuous wave excitation beam is combined with a pinhole in a conjugated detection plane to reject out-of-focus scattering and accomplish near-diffraction limited probe volumes. The combination of bi-directional scanning with remote focusing enables the acquisition of three-dimensional data. We experimentally determine the point spread and axial weighting functions, and demonstrate selective volumetric imaging of obstructed layers through spatial filtering. Finally, we spatially resolve in vivo autofluorescence from sub-millimeter Acocyclops royi copepods to demonstrate the applicability of our novel instrument in non-intrusive morphological and spectroscopic studies of aquatic fauna. The proposed system constitutes a unique tool e.g. for profiling chlorophyll distributions and for quantitative studies of zooplankton with reduced interference from intervening scatterers in the water column that degrade the the performance of conventional imaging systems currently in place.
Collapse
Affiliation(s)
- Joaquim Santos
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Peter John Rodrigo
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Paul Michael Petersen
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Christian Pedersen
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
6
|
Fridman L, Yelin D. Pinhole shifting for reducing speckle contrast in reflectance confocal microscopy. OPTICS LETTERS 2022; 47:5735-5738. [PMID: 37219316 DOI: 10.1364/ol.471545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/17/2022] [Indexed: 05/24/2023]
Abstract
The high speckle contrast in reflectance confocal microscopy is perhaps the most limiting factor on this imaging modality, particularly in high scattering samples such as biological tissues. In this Letter, we propose and numerically analyze a method for speckle reduction that uses simple lateral shifting of the confocal pinhole in several directions, which results in reduced speckle contrast and only a moderate penalty in both lateral and axial resolutions. By simulating free-space electromagnetic wave propagation through a high-numerical-aperture (NA) confocal imaging system, and assuming only single-scattering events, we characterize the 3D point-spread function (PSF) that results from full-aperture pinhole shifting. Simple summation of four different pinhole-shifted images resulted in a 36% reduction in speckle contrast, with reductions of only 17% and 60% in the lateral and axial resolutions, respectively. This method could be particularly useful in noninvasive microscopy for clinical diagnosis, where fluorescence labeling is impractical and high image quality is imperative for achieving accurate diagnosis.
Collapse
|
7
|
Kozawa Y, Nakamura T, Uesugi Y, Sato S. Wavefront engineered light needle microscopy for axially resolved rapid volumetric imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:1702-1717. [PMID: 35415006 PMCID: PMC8973193 DOI: 10.1364/boe.449329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Increasing the acquisition speed of three-dimensional volumetric images is important-particularly in biological imaging-to unveil the structural dynamics and functionalities of specimens in detail. In conventional laser scanning fluorescence microscopy, volumetric images are constructed from optical sectioning images sequentially acquired by changing the observation plane, limiting the acquisition speed. Here, we present a novel method to realize volumetric imaging from two-dimensional raster scanning of a light needle spot without sectioning, even in the traditional framework of laser scanning microscopy. Information from multiple axial planes is simultaneously captured using wavefront engineering for fluorescence signals, allowing us to readily survey the entire depth range while maintaining spatial resolution. This technique is applied to real-time and video-rate three-dimensional tracking of micrometer-sized particles, as well as the prompt visualization of thick fixed biological specimens, offering substantially faster volumetric imaging.
Collapse
Affiliation(s)
- Yuichi Kozawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoya Nakamura
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuuki Uesugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shunichi Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Saavedra G, Gimeno-Gómez A, Martínez-Corral M, Sola J, Sánchez-Ortiga E. Three-dimensional imaging through patterned type-1 microscopy. OPTICS EXPRESS 2022; 30:511-521. [PMID: 35201227 DOI: 10.1364/oe.443895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
We report a scanning non-confocal fluorescence microscopy scheme that provides images with optical sectioning and with a lateral resolution that surpasses by a factor of two the diffraction resolution limit. This technique is based on the type-1 microscopy concept combined with patterned illumination. The method does not require the application of phase-shifting or post-processing algorithms and provides artifact-free superresolved 3D images. We have validated the theory by means of experimental data.
Collapse
|
9
|
Liu JJ. Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-53. [PMID: 34414878 DOI: 10.1017/s1431927621012125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precision machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic-resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications.
Collapse
Affiliation(s)
- Jingyue Jimmy Liu
- Department of Physics, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
10
|
Zhou Y, Hong M. Realization of noncontact confocal optical microsphere imaging microscope. Microsc Res Tech 2021; 84:2381-2387. [PMID: 33880844 DOI: 10.1002/jemt.23793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/10/2022]
Abstract
A novel noncontact confocal optical microsphere imaging microscope (COMIM) is proposed to achieve high contrast optical nano-imaging at a high scanning speed. The developed setup obtains images with significantly higher contrast when compared with conventional bright-field microsphere nano-imaging, as well as with a commercial confocal laser scanning microscope (CLSM). With the image-by-image scanning scheme, COMIM takes only 11% time to complete a three-dimensional (3D) scanning image than using a commercial CLSM, while still offers an outstanding resolving power for the nano-features on the sample.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Minghui Hong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Lu R, Aguilera N, Liu T, Liu J, Giannini JP, Li J, Bower AJ, Dubra A, Tam J. In-vivo sub-diffraction adaptive optics imaging of photoreceptors in the human eye with annular pupil illumination and sub-Airy detection. OPTICA 2021; 8:333-343. [PMID: 34504903 PMCID: PMC8425240 DOI: 10.1364/optica.414206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/08/2021] [Indexed: 05/18/2023]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) allows non-invasive visualization of the living human eye at the microscopic scale; but even with correction of the ocular wavefront aberrations over a large pupil, the smallest cells in the photoreceptor mosaic cannot always be resolved. Here, we synergistically combine annular pupil illumination with sub-Airy disk confocal detection to demonstrate a 33% improvement in transverse resolution (from 2.36 to 1.58 μm) and a 13% axial resolution enhancement (from 37 to 32 μm), an important step towards the study of the complete photoreceptor mosaic in heath and disease. Interestingly, annular pupil illumination also enhanced the visualization of the photoreceptor mosaic in non-confocal detection schemes such as split detection AOSLO, providing a strategy for enhanced multimodal imaging of the cone and rod photoreceptor mosaic.
Collapse
Affiliation(s)
- Rongwen Lu
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jianfei Liu
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John P. Giannini
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew J. Bower
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California 94305, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
12
|
Luo T, Warner RL, Sapoznik KA, Walker BR, Burns SA. Template free eye motion correction for scanning systems. OPTICS LETTERS 2021; 46:753-756. [PMID: 33577506 PMCID: PMC8447858 DOI: 10.1364/ol.415285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 05/18/2023]
Abstract
Scanning imaging systems are susceptible to image warping in the presence of target motion occurring within the time required to acquire an individual image frame. In this Letter, we introduce the use of a dual raster scanning approach to correct for motion distortion without the need for prior knowledge of the undistorted image. In the dual scanning approach, the target is imaged simultaneously with two imaging beams from the same imaging system. The two imaging beams share a common pupil but have a spatial shift between the beams on the imaging plane. The spatial shift can be used to measure high speed events, because it measures an identical region at two different times within the time required for acquisition of a single frame. In addition, it provides accurate spatial information, since two different regions on the target are imaged simultaneously, providing an undistorted estimate of the spatial relation between regions. These spatial and temporal relations accurately measure target motion. Data from adaptive optics scanning laser ophthalmoscope (AOSLO) imaging of the human retina are used to demonstrate this technique. We apply the technique to correct the shearing of retinal images produced by eye motion. Three control subjects were measured while imaging different retinal layers and retinal locations to qualify the effectiveness of the algorithm. Since the time shift between channels is readily adjustable, this method can be tuned to match different imaging situations. The major requirement is the need to separate the two images; in our case, we used different near infrared spectral regions and dichroic filters.
Collapse
Affiliation(s)
- Ting Luo
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Raymond L. Warner
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Kaitlyn A Sapoznik
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Brittany R. Walker
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| | - Stephen A. Burns
- Optometry School, Indiana University Bloomington, 800 Atwater Ave., Bloomington, IN 47045
| |
Collapse
|
13
|
An Off-Axis Differential Method for Improvement of a Femtosecond Laser Differential Chromatic Confocal Probe. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents an off-axis differential method for the improvement of a femtosecond laser differential chromatic confocal probe having a dual-detector configuration. In the proposed off-axis differential method employing a pair of single-mode fiber detectors, a major modification is made to the conventional differential setup in such a way that the fiber detector in the reference detector is located at the focal plane of a collecting lens but with a certain amount of off-axis detector shift, while the fiber detector in the measurement detector is located on the rear focal plane without the off-axis detector shift; this setup is different from the conventional one where the difference between the two confocal detectors is provided by giving a defocus to one of the fiber detectors. The newly proposed off-axis differential method enables the differential chromatic confocal setup to obtain the normalized chromatic confocal output with a better signal-to-noise ratio and approaches a Z-directional measurement range of approximately 46 μm, as well as a measurement resolution of 20 nm, while simplifying the optical alignments in the differential chromatic confocal setup, as well as the signal processing through eliminating the complicated arithmetic operations in the determination of the peak wavelength. Numerical calculations based on a theoretical equation and experiments are carried out to verify the feasibility of the proposed off-axis differential method for the differential chromatic confocal probe with a mode-locked femtosecond laser source.
Collapse
|
14
|
Kozawa Y, Sakashita R, Uesugi Y, Sato S. Imaging with a longitudinal electric field in confocal laser scanning microscopy to enhance spatial resolution. OPTICS EXPRESS 2020; 28:18418-18430. [PMID: 32680040 DOI: 10.1364/oe.396778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The longitudinal electric field produced by focusing a radially polarized beam is applied in confocal laser scanning microscopy by introducing a higher-order transverse mode, combined with a technique of polarization conversion for signal detection. This technique improves signal detection corresponding to the longitudinally polarized field under a small confocal pinhole, enabling full utilization of the small focal spot characteristic of the longitudinal field. Detailed numerical and experimental studies demonstrate the enhanced spatial resolution in confocal imaging that detects a scattering signal using a higher-order radially polarized beam. Our method can be widely applied in various imaging techniques that detect coherent signals such as second-harmonic generation microscopy.
Collapse
|
15
|
Caponi S, Fioretto D, Mattarelli M. On the actual spatial resolution of Brillouin Imaging. OPTICS LETTERS 2020; 45:1063-1066. [PMID: 32108770 DOI: 10.1364/ol.385072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Brillouin imaging is an emerging optical elastography technique that is able to generate maps of the mechanical properties at microscale with great potential in biophysical and biomedical fields. A key parameter is its spatial resolution, which is usually identified with that of the confocal microscope coupled to the Brillouin interferometer. Conversely, here we demonstrate that the mean free path of acoustic phonons plays a major role in defining the resolution, especially for high numerical aperture confocal setups. Surprisingly, the resolution of elastography maps may even deteriorate when decreasing the scattering volume.
Collapse
|
16
|
Sheppard CJR, Castello M, Tortarolo G, Deguchi T, Koho SV, Vicidomini G, Diaspro A. Pixel reassignment in image scanning microscopy: a re-evaluation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:154-162. [PMID: 32118893 DOI: 10.1364/josaa.37.000154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/29/2019] [Indexed: 05/23/2023]
Abstract
Image scanning microscopy is a technique based on confocal microscopy, in which the confocal pinhole is replaced by a detector array, and the resulting image is reconstructed, usually by the process of pixel reassignment. The detector array collects most of the fluorescent light, so the signal-to-noise ratio is much improved compared with confocal microscopy with a small pinhole, while the resolution is improved compared with conventional (wide-field) microscopy. In previous studies, it has usually been assumed that pixels should be reassigned by a constant factor, to a point midway between the illumination and detection spots. Here it is shown that the peak intensity of the effective point spread function (PSF) can be further increased by 4% by a new choice of the pixel reassignment factor. For an array of two Airy units, the peak of the effective PSF is 1.90 times that of a conventional microscope, and the transverse resolution is 1.53 times better. It is confirmed that image scanning microscopy gives optical sectioning strength identical to that of a confocal microscope with a pinhole equal to the size of the detector array. However, it is shown that image scanning microscopy exhibits axial resolution superior to a confocal microscope with a pinhole the same size as the detector array. For a two-Airy-unit array, the axial resolution is 1.34 times better than in a conventional microscope for the standard reassignment factor, and 1.28 times better for the new reassignment factor. The axial resolution of a confocal microscope with a two-Airy-unit pinhole is only 1.04 times better than conventional microscopy. We also examine the signal-to-noise ratio of a point object in a uniform background (called the detectability), and show that it is 1.6 times higher than in a confocal microscope.
Collapse
|
17
|
Characterization and Correction of the Geometric Errors using a Confocal Microscope for Extended Topography Measurement, Part II: Experimental Study and Uncertainty Evaluation. ELECTRONICS 2019. [DOI: 10.3390/electronics8111217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents the experimental implementations of the mathematical models and algorithms developed in Part I. Two experiments are carried out. The first experiment determines the correction coefficients of the mathematical model. The dot grid target is measured, and the measurement data are processed by our developed and validated algorithms introduced in Part I. The values of the coefficients are indicated and analyzed. Uncertainties are evaluated using the Monte Carlo method. The second experiment measures a different area of the dot grid target. The measurement results are corrected according to the coefficients determined in the first experiment. The mean residual between the measured points and their corresponding certified values reduced 29.6% after the correction. The sum of squared errors reduced 47.7%. The methods and the algorithms for raw data processing, such as data partition, fittings of dots’ centers, K-means clustering, etc., are the same for the two experiments. The experimental results demonstrate that our method for the correction of the errors produced by the movement of the lateral stage of a confocal microscope is meaningful and practicable.
Collapse
|
18
|
Kozawa Y, Sato S. Light needle microscopy with spatially transposed detection for axially resolved volumetric imaging. Sci Rep 2019; 9:11687. [PMID: 31406209 PMCID: PMC6690918 DOI: 10.1038/s41598-019-48265-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/01/2019] [Indexed: 11/14/2022] Open
Abstract
The demand for rapid three-dimensional volumetric imaging is increasing in various fields, including life science. Laser scanning fluorescence microscopy has been widely employed for this purpose; however, a volumetric image is constructed by two-dimensional image stacking with a varying observation plane, ultimately limiting the acquisition speed. Here we propose a method enabling axially resolved volumetric imaging without a moving observation plane in the framework of laser scanning microscopy. A scanning light needle spot with an extended focal depth provides excitation, which normally produces a deep focus image with a loss of depth information. In our method, the depth information is retrieved from transposed lateral information on an array detector by utilising non-diffracting and self-bending characteristics imposed on fluorescent signals. This technique, implemented in two-photon microscopy, achieves truly volumetric images constructed from a single raster scan of a light needle, which has the capability to significantly reduce the acquisition time.
Collapse
Affiliation(s)
- Yuichi Kozawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Shunichi Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
19
|
DuBose TB, LaRocca F, Farsiu S, Izatt JA. Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy. NATURE PHOTONICS 2019; 13:257-262. [PMID: 31728154 PMCID: PMC6854902 DOI: 10.1038/s41566-019-0369-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/28/2019] [Indexed: 05/12/2023]
Abstract
Super-resolution optical microscopy techniques have enabled the discovery and visualization of numerous phenomena in physics, chemistry and biology1-3. However, the highest resolution super-resolution techniques depend on nonlinear fluorescence phenomena and are thus inaccessible to the myriad applications that require reflective imaging4,5. One promising super-resolution technique is optical reassignment6, which so far has only shown potential for fluorescence imaging at low speeds. Here, we present novel advances in optical reassignment to adapt it for any scanning microscopy, including reflective imaging, and enable an order of magnitude faster image acquisition than previous optical reassignment techniques. We utilized these advances to implement optically reassigned scanning laser ophthalmoscopy, an in vivo super-resolution human retinal imaging device not reliant on confocal gating. Using this instrument, we achieved high-resolution imaging of living human retinal cone photoreceptor cells (determined by minimum foveal eccentricity) without adaptive optics or chemical dilation of the eye7.
Collapse
Affiliation(s)
- Theodore B. DuBose
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Francesco LaRocca
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
20
|
Chen C, Wang J, Leach R, Lu W, Liu X, Jiang XJ. Corrected parabolic fitting for height extraction in confocal microscopy. OPTICS EXPRESS 2019; 27:3682-3697. [PMID: 30732384 DOI: 10.1364/oe.27.003682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Accurate and reliable peak extraction of axial response signals plays a critical role in confocal microscopy. For axial response signal processing, nonlinear fitting algorithms, such as parabolic, Gaussian or sinc2 fitting may cause significant systematic peak extraction errors. Also, existing error compensation methods require a priori knowledge of the full-width-at-half-maximum of the axial response signal, which can be difficult to obtain in practice. In this paper, we propose a generalised error compensation method for peak extraction from axial response signals. This full-width-at-half-maximum-independent method is based on a corrected parabolic fitting algorithm. With the corrected parabolic fitting algorithm, the systematic error of a parabolic fitting is characterised using a differential equation, following which, the error is estimated and compensated by solving this equation with a first-order approximation. We demonstrate, by Monte Carlo simulations and experiments with various axial response signals with symmetrical and asymmetrical forms, that the corrected parabolic fitting algorithm has significant improvements over existing algorithms in terms of peak extraction accuracy and precision.
Collapse
|
21
|
A Method for Expansion of Z-Directional Measurement Range in a Mode-Locked Femtosecond Laser Chromatic Confocal Probe. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method is proposed to expand the Z-directional measurement range of a fiber-based dual-detector chromatic confocal probe with a mode-locked femtosecond laser source. In the dual-detector chromatic confocal probe, the Z-directional displacement of a measurement target is derived from the peak wavelength in the normalized intensity ratio from the two light intensities obtained by the two identical fiber detectors. In this paper, a new method utilizing the main-lobe and side-lobes of axial responses acquired from both the normalized intensity ratio Ia and the invert normalized intensity ratio In, which is the inverse of Ia, is proposed to obtain the seamless relationship between the peak wavelength and the Z-directional displacement of a measurement target. Theoretical calculations and experimental investigation are carried out to demonstrate the feasibility of the proposed measurement range expansion method.
Collapse
|
22
|
Liu T, Rajadhyaksha M, Dickensheets DL. MEMS-in-the-lens architecture for a miniature high-NA laser scanning microscope. LIGHT, SCIENCE & APPLICATIONS 2019; 8:59. [PMID: 31263558 PMCID: PMC6592906 DOI: 10.1038/s41377-019-0167-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 05/16/2023]
Abstract
Laser scanning microscopes can be miniaturized for in vivo imaging by substituting optical microelectromechanical system (MEMS) devices in place of larger components. The emergence of multifunctional active optical devices can support further miniaturization beyond direct component replacement because those active devices enable diffraction-limited performance using simpler optical system designs. In this paper, we propose a catadioptric microscope objective lens that features an integrated MEMS device for performing biaxial scanning, axial focus adjustment, and control of spherical aberration. The MEMS-in-the-lens architecture incorporates a reflective MEMS scanner between a low-numerical-aperture back lens group and an aplanatic hyperhemisphere front refractive element to support high-numerical-aperture imaging. We implemented this new optical system using a recently developed hybrid polymer/silicon MEMS three-dimensional scan mirror that features an annular aperture that allows it to be coaxially aligned within the objective lens without the need for a beam splitter. The optical performance of the active catadioptric system is simulated and imaging of hard targets and human cheek cells is demonstrated with a confocal microscope that is based on the new objective lens design.
Collapse
Affiliation(s)
- Tianbo Liu
- Electrical and Computer Engineering Department, Montana State University, Bozeman, MT 59715 USA
| | - Milind Rajadhyaksha
- Dermatology Department, Memorial Sloan Kettering Cancer Center, New York, NY 10022 USA
| | - David L. Dickensheets
- Electrical and Computer Engineering Department, Montana State University, Bozeman, MT 59715 USA
| |
Collapse
|
23
|
Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. Adaptive optics imaging of the human retina. Prog Retin Eye Res 2019; 68:1-30. [PMID: 30165239 PMCID: PMC6347528 DOI: 10.1016/j.preteyeres.2018.08.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
Adaptive Optics (AO) retinal imaging has provided revolutionary tools to scientists and clinicians for studying retinal structure and function in the living eye. From animal models to clinical patients, AO imaging is changing the way scientists are approaching the study of the retina. By providing cellular and subcellular details without the need for histology, it is now possible to perform large scale studies as well as to understand how an individual retina changes over time. Because AO retinal imaging is non-invasive and when performed with near-IR wavelengths both safe and easily tolerated by patients, it holds promise for being incorporated into clinical trials providing cell specific approaches to monitoring diseases and therapeutic interventions. AO is being used to enhance the ability of OCT, fluorescence imaging, and reflectance imaging. By incorporating imaging that is sensitive to differences in the scattering properties of retinal tissue, it is especially sensitive to disease, which can drastically impact retinal tissue properties. This review examines human AO retinal imaging with a concentration on the use of the Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO). It first covers the background and the overall approaches to human AO retinal imaging, and the technology involved, and then concentrates on using AO retinal imaging to study the structure and function of the retina.
Collapse
Affiliation(s)
- Stephen A Burns
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States.
| | - Ann E Elsner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Kaitlyn A Sapoznik
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Raymond L Warner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Thomas J Gast
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
24
|
Mozaffari S, Jaedicke V, LaRocca F, Tiruveedhula P, Roorda A. Versatile multi-detector scheme for adaptive optics scanning laser ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:5477-5488. [PMID: 30460141 PMCID: PMC6238903 DOI: 10.1364/boe.9.005477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a powerful tool for imaging the retina at high spatial and temporal resolution. In this paper, we present a multi-detector scheme for AOSLO which has two main configurations: pixel reassignment and offset aperture imaging. In this detection scheme, the single element detector of the standard AOSLO is replaced by a fiber bundle which couples the detected light into multiple detectors. The pixel reassignment configuration enables high resolution imaging with an increased light collection. The increase in signal-to-noise ratio (SNR) from this configuration can improve the accuracy of motion registration techniques. The offset aperture imaging configuration enhances the detection of multiply scattered light, which improves the contrast of retinal vasculature and inner retinal layers similar to methods such as nonconfocal split-detector imaging and multi-offset aperture imaging.
Collapse
Affiliation(s)
- Sanam Mozaffari
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
- Contributed equally to this work
| | - Volker Jaedicke
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
- Contributed equally to this work
| | - Francesco LaRocca
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
| | - Pavan Tiruveedhula
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California Berkeley, Berkeley, CA,
USA
| |
Collapse
|
25
|
Chen C, Wang J, Liu X, Lu W, Zhu H, Jiang XJ. Influence of sample surface height for evaluation of peak extraction algorithms in confocal microscopy. APPLIED OPTICS 2018; 57:6516-6526. [PMID: 30117890 DOI: 10.1364/ao.57.006516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The axial resolution of confocal microscopy is not only dependent on optical characteristics but also on the utilized peak extraction algorithms. In previous evaluations of peak extraction algorithms, sample surface height is generally assumed to be zero, and only sampling-noise-induced peak extraction uncertainty was analyzed. Here we propose a sample surface-height-dependent (SHD) evaluation model that takes the combined considerations of sample surface height and noise for comparisons of algorithms' performances. Monte Carlo simulations were first conducted on the centroid algorithm and several nonlinear fitting algorithms such as the parabola fitting algorithm, Gaussian fitting algorithm, and sinc2 fitting algorithm. Subsequently, the evaluation indicators, including mean peak extraction error and mean uncertainty were suggested for the algorithms' performance ranking. Finally, experimental verifications of the SHD model were carried out using a fiber-based chromatic confocal system. From our simulations and experiments, we demonstrate that sample surface height is a critical influencing factor in peak extraction computation in terms of both the accuracy and standard deviations. Compared to the conventional standard uncertainty evaluation model, our SHD model can provide a more comprehensive characterization of peak extraction algorithms' performance and offer a more flexible and consistent reference for algorithm selection.
Collapse
|
26
|
Huang K, Qin F, Liu H, Ye H, Qiu CW, Hong M, Luk'yanchuk B, Teng J. Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704556. [PMID: 29672949 DOI: 10.1002/adma.201704556] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/17/2017] [Indexed: 05/09/2023]
Abstract
Traditional objective lenses in modern microscopy, based on the refraction of light, are restricted by the Rayleigh diffraction limit. The existing methods to overcome this limit can be categorized into near-field (e.g., scanning near-field optical microscopy, superlens, microsphere lens) and far-field (e.g., stimulated emission depletion microscopy, photoactivated localization microscopy, stochastic optical reconstruction microscopy) approaches. However, they either operate in the challenging near-field mode or there is the need to label samples in biology. Recently, through manipulation of the diffraction of light with binary masks or gradient metasurfaces, some miniaturized and planar lenses have been reported with intriguing functionalities such as ultrahigh numerical aperture, large depth of focus, and subdiffraction-limit focusing in far-field, which provides a viable solution for the label-free superresolution imaging. Here, the recent advances in planar diffractive lenses (PDLs) are reviewed from a united theoretical account on diffraction-based focusing optics, and the underlying physics of nanofocusing via constructive or destructive interference is revealed. Various approaches of realizing PDLs are introduced in terms of their unique performances and interpreted by using optical aberration theory. Furthermore, a detailed tutorial about applying these planar lenses in nanoimaging is provided, followed by an outlook regarding future development toward practical applications.
Collapse
Affiliation(s)
- Kun Huang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fei Qin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Huapeng Ye
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Minghui Hong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Boris Luk'yanchuk
- Data Storage Institute, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-01, Singapore, 138634, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| |
Collapse
|
27
|
Sredar N, Fagbemi OE, Dubra A. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy. Transl Vis Sci Technol 2018; 7:17. [PMID: 29629239 PMCID: PMC5886094 DOI: 10.1167/tvst.7.2.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/18/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. Methods The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. Results The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. Conclusions The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Translational Relevance Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.
Collapse
Affiliation(s)
- Nripun Sredar
- Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | | | - Alfredo Dubra
- Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
28
|
El-Haddad MT, Bozic I, Tao YK. Spectrally encoded coherence tomography and reflectometry: Simultaneous en face and cross-sectional imaging at 2 gigapixels per second. JOURNAL OF BIOPHOTONICS 2018; 11:e201700268. [PMID: 29149542 PMCID: PMC5903931 DOI: 10.1002/jbio.201700268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/10/2017] [Indexed: 05/18/2023]
Abstract
Non-invasive biological imaging is crucial for understanding in vivo structure and function. Optical coherence tomography (OCT) and reflectance confocal microscopy are two of the most widely used optical modalities for exogenous contrast-free, high-resolution, three-dimensional imaging in non-fluorescent scattering tissues. However, sample motion remains a critical barrier to raster-scanned acquisition and reconstruction of wide-field anatomically accurate volumetric datasets. We introduce spectrally encoded coherence tomography and reflectometry (SECTR), a high-speed, multimodality system for simultaneous OCT and spectrally encoded reflectance (SER) imaging. SECTR utilizes a robust system design consisting of shared optical relays, scanning mirrors, swept laser and digitizer to achieve the fastest reported in vivo multimodal imaging rate of 2 gigapixels per second. Our optical design and acquisition scheme enable spatiotemporally co-registered acquisition of OCT cross-sections simultaneously with en face SER images for multivolumetric mosaicking. Complementary axial and lateral translation and rotation are extracted from OCT and SER data, respectively, for full volumetric estimation of sample motion with micron spatial and millisecond temporal resolution.
Collapse
Affiliation(s)
- Mohamed T. El-Haddad
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ivan Bozic
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
29
|
Lee D, Gweon DG, Yoo H. Multipoint scanning dual-detection confocal microscopy for fast 3D volumetric measurement. J Microsc 2017; 270:200-209. [PMID: 29251786 DOI: 10.1111/jmi.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/13/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022]
Abstract
We propose a multipoint scanning dual-detection confocal microscopy (MS-DDCM) system for fast 3D volumetric measurements. Unlike conventional confocal microscopy, MS-DDCM can accomplish surface profiling without axial scanning. Also, to rapidly obtain 2D images, the MS-DDCM employs a multipoint scanning technique, with a digital micromirror device used to produce arrays of effective pinholes, which are then scanned. The MS-DDCM is composed of two CCDs: one collects the conjugate images and the other collects nonconjugate images. The ratio of the axial response curves, measured by the two detectors, provides a linear relationship between the height of the sample surface and the ratio of the intensity signals. Furthermore, the difference between the two images results in enhanced contrast. The normalising effect of the MS-DDCM provides accurate sample heights, even when the reflectance distribution of the surface varies. Experimental results confirmed that the MS-DDCM achieved high-speed surface profiling with improved image contrast capability.
Collapse
Affiliation(s)
- D Lee
- Nano Opto-Mechatronics Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Engineering Physics Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA
| | - D-G Gweon
- Nano Opto-Mechatronics Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - H Yoo
- Biomedical Optics and Photomedicine Laboratory, Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
30
|
Olsovsky C, Hinsdale T, Cuenca R, Cheng YSL, Wright JM, Rees TD, Jo JA, Maitland KC. Handheld tunable focus confocal microscope utilizing a double-clad fiber coupler for in vivo imaging of oral epithelium. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:56008. [PMID: 28541447 PMCID: PMC5444308 DOI: 10.1117/1.jbo.22.5.056008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/08/2017] [Indexed: 05/08/2023]
Abstract
A reflectance confocal endomicroscope with double-clad fiber coupler and electrically tunable focus lens is applied to imaging of the oral mucosa. The instrument is designed to be lightweight and robust for clinical use. The tunable lens allows axial scanning through > 250 ?? ? m in the epithelium when the probe tip is placed in contact with tissue. Images are acquired at 6.6 frames per second with a field of view diameter up to 850 ?? ? m . In vivo imaging of a wide range of normal sites in the oral cavity demonstrates the accessibility of the handheld probe. In vivo imaging of clinical lesions diagnosed as inflammation and dysplasia illustrates the ability of reflectance confocal endomicroscopy to image cellular changes associated with pathology.
Collapse
Affiliation(s)
- Cory Olsovsky
- Texas A&M University, Biomedical Engineering Department, College Station, Texas, United States
| | - Taylor Hinsdale
- Texas A&M University, Biomedical Engineering Department, College Station, Texas, United States
| | - Rodrigo Cuenca
- Texas A&M University, Biomedical Engineering Department, College Station, Texas, United States
| | - Yi-Shing Lisa Cheng
- Texas A&M University College of Dentistry, Department of Diagnostic Sciences, Dallas, Texas, United States
| | - John M. Wright
- Texas A&M University College of Dentistry, Department of Diagnostic Sciences, Dallas, Texas, United States
| | - Terry D. Rees
- Texas A&M University College of Dentistry, Department of Periodontics, Dallas, Texas, United States
| | - Javier A. Jo
- Texas A&M University, Biomedical Engineering Department, College Station, Texas, United States
| | - Kristen C. Maitland
- Texas A&M University, Biomedical Engineering Department, College Station, Texas, United States
- Address all correspondence to: Kristen C. Maitland, E-mail:
| |
Collapse
|
31
|
Pircher M, Zawadzki RJ. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2536-2562. [PMID: 28663890 PMCID: PMC5480497 DOI: 10.1364/boe.8.002536] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 05/17/2023]
Abstract
In vivo imaging of the human retina with a resolution that allows visualization of cellular structures has proven to be essential to broaden our knowledge about the physiology of this precious and very complex neural tissue that enables the first steps in vision. Many pathologic changes originate from functional and structural alterations on a cellular scale, long before any degradation in vision can be noted. Therefore, it is important to investigate these tissues with a sufficient level of detail in order to better understand associated disease development or the effects of therapeutic intervention. Optical retinal imaging modalities rely on the optical elements of the eye itself (mainly the cornea and lens) to produce retinal images and are therefore affected by the specific arrangement of these elements and possible imperfections in curvature. Thus, aberrations are introduced to the imaging light and image quality is degraded. To compensate for these aberrations, adaptive optics (AO), a technology initially developed in astronomy, has been utilized. However, the axial sectioning provided by retinal AO-based fundus cameras and scanning laser ophthalmoscope instruments is limited to tens of micrometers because of the rather small available numerical aperture of the eye. To overcome this limitation and thus achieve much higher axial sectioning in the order of 2-5µm, AO has been combined with optical coherence tomography (OCT) into AO-OCT. This enabled for the first time in vivo volumetric retinal imaging with high isotropic resolution. This article summarizes the technical aspects of AO-OCT and provides an overview on its various implementations and some of its clinical applications. In addition, latest developments in the field, such as computational AO-OCT and wavefront sensor less AO-OCT, are covered.
Collapse
Affiliation(s)
- Michael Pircher
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Währinger Gürtel 18-20/4L, 1090 Vienna, Austria
| | - Robert J Zawadzki
- UC Davis RISE Eye-Pod Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI) and Department of Ophthalmology and Vision Science, UC Davis, 4860 Y Street, Ste. 2400, Sacramento, CA 95817, USA
| |
Collapse
|
32
|
Lee DR, Jang S, Lee MW, Yoo H. Compact fiber optic dual-detection confocal displacement sensor. APPLIED OPTICS 2016; 55:7631-7635. [PMID: 27661592 DOI: 10.1364/ao.55.007631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a dual-detection confocal displacement sensor (DDCDS) with a compact fiber-based optical probe. This all-fiber-optic sensor probe is simple and robust, since it only requires simple alignment of a gradient refractive index lens and a double-clad fiber (DCF). The DDCDS is composed of two point detectors, one coupled to a single mode fiber and the other coupled to a multimode fiber, which are used to measure the light intensity from a core and an inner clad of a DCF, respectively. The ratio of the axial response curves, measured by the two detectors, can be used to obtain a linear relationship between the axial position of the object plane and the ratio of the intensity signals. We demonstrate the performance of the proposed method by measuring micromovement and fast vibration.
Collapse
|
33
|
Rothman JS, Kocsis L, Herzog E, Nusser Z, Silver RA. Physical determinants of vesicle mobility and supply at a central synapse. eLife 2016; 5. [PMID: 27542193 PMCID: PMC5025287 DOI: 10.7554/elife.15133] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/14/2016] [Indexed: 12/22/2022] Open
Abstract
Encoding continuous sensory variables requires sustained synaptic signalling. At several sensory synapses, rapid vesicle supply is achieved via highly mobile vesicles and specialized ribbon structures, but how this is achieved at central synapses without ribbons is unclear. Here we examine vesicle mobility at excitatory cerebellar mossy fibre synapses which sustain transmission over a broad frequency bandwidth. Fluorescent recovery after photobleaching in slices from VGLUT1Venus knock-in mice reveal 75% of VGLUT1-containing vesicles have a high mobility, comparable to that at ribbon synapses. Experimentally constrained models establish hydrodynamic interactions and vesicle collisions are major determinants of vesicle mobility in crowded presynaptic terminals. Moreover, models incorporating 3D reconstructions of vesicle clouds near active zones (AZs) predict the measured releasable pool size and replenishment rate from the reserve pool. They also show that while vesicle reloading at AZs is not diffusion-limited at the onset of release, diffusion limits vesicle reloading during sustained high-frequency signalling. DOI:http://dx.doi.org/10.7554/eLife.15133.001
Collapse
Affiliation(s)
- Jason Seth Rothman
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Laszlo Kocsis
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Etienne Herzog
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Team Synapse in Cognition, Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, F-33000, Bordeaux, France
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Robin Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
34
|
Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice. Exp Eye Res 2016; 151:68-74. [PMID: 27519152 DOI: 10.1016/j.exer.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Abstract
In vivo imaging permits longitudinal study of ocular disease processes in the same animal over time. Two different in vivo optical imaging modalities - optical coherence tomography (OCT) and fluorescence - provide important structural and cellular data respectively about disease processes. In this Methods in Eye Research article, we describe and demonstrate the combination of these two modalities producing a truly simultaneous OCT and fluorescence imaging system for imaging of fluorescently labeled animal models. This system uses only a single light source to illuminate both modalities, and both share the same field of view. This allows simultaneous acquisition of OCT and fluorescence images, and the benefits of both techniques are realized without incurring increased costs in variability, light exposure, time, and post-processing effort as would occur when the modalities are used separately. We then utilized this system to demonstrate multi-modal imaging in a progression of samples exhibiting both fluorescence and OCT scattering beginning with resolution targets, ex vivo thy1-YFP labeled neurons in mouse eyes, and finally an in vivo longitudinal time course of GFP labeled myeloid cells in a mouse model of ocular allergy.
Collapse
|
35
|
Jeong HJ, Yoo H, Gweon D. High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens. OPTICS EXPRESS 2016; 24:3806-3816. [PMID: 26907034 DOI: 10.1364/oe.24.003806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a new structure of confocal imaging system based on a direct-view confocal microscope (DVCM) with an electrically tunable lens (ETL). Since it has no mechanical moving parts to scan both the lateral (x-y) and axial (z) directions, the DVCM with an ETL allows for high-speed 3-dimensional (3-D) imaging. Axial response and signal intensity of the DVCM were analyzed theoretically according to the pinhole characteristics. The system was designed to have an isotropic spatial resolution of 20 µm in both lateral and axial direction with a large field of view (FOV) of 10 × 10 mm. The FOV was maintained according to the various focal shifts as a result of an integrated design of an objective lens with the ETL. The developed system was calibrated to have linear focal shift over a range of 9 mm with an applied current to the ETL. The system performance of 3-D volume imaging was demonstrated using standard height specimens and a dental plaster.
Collapse
|
36
|
Zeidan A, Yelin D. Reflectance confocal microscopy of red blood cells: simulation and experiment. BIOMEDICAL OPTICS EXPRESS 2015; 6:4335-43. [PMID: 26600999 PMCID: PMC4646543 DOI: 10.1364/boe.6.004335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 05/12/2023]
Abstract
Measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we have simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the morphological parameters and the resulting characteristic interference patterns of the cell. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry that imaged the cells in a linear flow without artificial staining. By matching the simulated patterns to confocal images of the cells, this method could be used for measuring cell morphology in three dimensions and for studying their physiology.
Collapse
|
37
|
Higgins LM, Zevon M, Ganapathy V, Sheng Y, Tan MC, Riman RE, Roth CM, Moghe PV, Pierce MC. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:110506. [PMID: 26603495 PMCID: PMC4874057 DOI: 10.1117/1.jbo.20.11.110506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/02/2015] [Indexed: 05/21/2023]
Abstract
Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4 : Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic.
Collapse
Affiliation(s)
- Laura M. Higgins
- Rutgers University, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Margot Zevon
- Rutgers University, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Vidya Ganapathy
- Rutgers University, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Yang Sheng
- Singapore University of Technology and Design, Engineering Product Development, 8 Somapah Road 487372, Singapore
| | - Mei Chee Tan
- Singapore University of Technology and Design, Engineering Product Development, 8 Somapah Road 487372, Singapore
| | - Richard E. Riman
- Rutgers University, Department of Materials Science and Engineering, 607 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Charles M. Roth
- Rutgers University, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, New Jersey 08854, United States
- Rutgers University, Department of Chemical and Biochemical Engineering, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Prabhas V. Moghe
- Rutgers University, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, New Jersey 08854, United States
- Rutgers University, Department of Chemical and Biochemical Engineering, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Mark C. Pierce
- Rutgers University, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, New Jersey 08854, United States
- Address all correspondence to: Mark C. Pierce, E-mail:
| |
Collapse
|
38
|
Müllenbroich MC, Silvestri L, Onofri L, Costantini I, Hoff MV, Sacconi L, Iannello G, Pavone FS. Comprehensive optical and data management infrastructure for high-throughput light-sheet microscopy of whole mouse brains. NEUROPHOTONICS 2015; 2:041404. [PMID: 26158018 PMCID: PMC4484248 DOI: 10.1117/1.nph.2.4.041404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/14/2015] [Indexed: 05/08/2023]
Abstract
Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.
Collapse
Affiliation(s)
- M. Caroline Müllenbroich
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
| | - Ludovico Silvestri
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Leonardo Onofri
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University Campus Bio-Medico of Rome, v. Alvaro del Portillo 21, Roma 00128, Italy
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Marcel van’t Hoff
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
| | - Leonardo Sacconi
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Giulio Iannello
- University Campus Bio-Medico of Rome, v. Alvaro del Portillo 21, Roma 00128, Italy
| | - Francesco S. Pavone
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- University of Florence, Department of Physics and Astronomy, Via Sansone 1, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- International Centre for Computational Neurophotonics, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- Address all correspondence to: Francesco S. Pavone, E-mail:
| |
Collapse
|
39
|
Wang Y, Ma Y, Kuang C, Fang Y, Xu Y, Liu X, Ding Z. Dual-mode super-resolution imaging with stimulated emission depletion microscopy and fluorescence emission difference microscopy. APPLIED OPTICS 2015; 54:5425-5431. [PMID: 26192843 DOI: 10.1364/ao.54.005425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dual-mode super-resolution imaging system with two different super-resolution imaging methods, STED and FED, is presented. Electrical shutters controlled by the host computer are introduced to switch the two imaging modes. Principles of both methods are analyzed theoretically, and enhancements in the lateral resolution and SNR are demonstrated theoretically and experimentally. Results show that both imaging methods offered by the proposed system can break the diffraction barrier. Furthermore, the presented system provides a meaningful way to image fluorescent samples by a corresponding imaging mode according to the specific characteristics of samples analyzed for study. For samples that can endure high-power illumination, it is appropriate to use the STED mode to achieve a better resolution, while for samples that are vulnerable to high intensity, the FED method is a better choice because no high-power beam is needed, and the FED method can provide better resolution than STED when no high-power beam is allowed. The flexible switching of the two super-resolution imaging modes can help researchers to make most of the advantages of each imaging method. It is believed that the presented system has the potential to be widely used in future nanoscale investigations.
Collapse
|
40
|
De Montigny E, Madore WJ, Ouellette O, Bernard G, Leduc M, Strupler M, Boudoux C, Godbout N. Double-clad fiber coupler for partially coherent detection. OPTICS EXPRESS 2015; 23:9040-51. [PMID: 25968739 DOI: 10.1364/oe.23.009040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Double-clad fibers (DCF) have many advantages in fibered confocal microscopes as they allow for coherent illumination through their core and partially coherent detection through their inner cladding. We report a double-clad fiber coupler (DCFC) made from small inner cladding DCF that preserves optical sectioning in confocal microscopy while increasing collection efficiency and reducing coherent effects. Due to the small inner cladding, previously demonstrated fabrication methods could not be translated to this coupler's fabrication. To make such a coupler possible, we introduce in this article three new design concepts. The resulting DCFC fabricated using two custom fibers and a modified fusion-tapering technique achieves high multimodal extraction (≥70 %) and high single mode transmission (≥80 %). Its application to reflectance confocal microscopy showed a 30-fold increase in detected signal intensity, a 4-fold speckle contrast reduction with a penalty in axial resolution of a factor 2. This coupler paves the way towards more efficient confocal microscopes for clinical applications.
Collapse
|
41
|
Hwang J, Kim S, Heo J, Lee D, Ryu S, Joo C. Frequency- and spectrally-encoded confocal microscopy. OPTICS EXPRESS 2015; 23:5809-5821. [PMID: 25836810 DOI: 10.1364/oe.23.005809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe a three-dimensional microscopy technique based on spectral and frequency encoding. The method employs a wavelength-swept laser to illuminate a specimen with a spectrally-dispersed line focus that sweeps over the specimen in time. The spatial information along each spectral line is further mapped into different modulation frequencies. Spectrally-resolved detection and subsequent Fourier analysis of the back-scattered light from the specimen therefore enable high-speed, scanner-free imaging of the specimen with a single-element photodetector. High-contrast, three-dimensional imaging capability of this method is demonstrated by presenting images of various materials and biological specimens.
Collapse
|
42
|
Kozawa Y, Sato S. Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam. OPTICS EXPRESS 2015; 23:2076-2084. [PMID: 25836079 DOI: 10.1364/oe.23.002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The spatial resolution characteristics in confocal laser scanning microscopy (LSM) and two-photon LSM utilizing a higher-order radially polarized Laguerre-Gaussian (RP-LG) beam are numerically analyzed. The size of the point spread function (PSF) and its dependence on the confocal pinhole size are compared with practical LSM using a circularly polarized Gaussian beam on the basis of vector diffraction theory. The spatial frequency response in terms of the optical transfer function (OTF) is also evaluated for LSM using the RP-LG beam. The smaller focal spot characteristics of higher-order RP-LG beams contribute to a dramatic enhancement of the lateral spatial resolution in confocal LSM and two-photon LSM.
Collapse
|
43
|
Kozawa Y, Kusama Y, Sato S, Yokoyama H. Super-resolution imaging of lateral distribution for the blue-light emission of an InGaN single-quantum-well structure utilizing the stimulated emission depletion effect. OPTICS EXPRESS 2014; 22:22575-22582. [PMID: 25321726 DOI: 10.1364/oe.22.022575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have observed a remarkable decrease in photoluminescence (PL) from a blue-light emitting InGaN single-quantum-well (SQW) structure under the radiation of a green laser due to the stimulated emission depletion (STED) phenomenon. By extending the observed STED effect, super-resolution imaging of the blue-light emission lateral distribution was demonstrated for the InGaN-SQW structure through co-irradiation using a doughnut-shaped green light beam and a Gaussian-shaped violet excitation light beam. We measured point-spread functions (PSFs) to evaluate the spatial resolution of the system by imaging a small emission area. A lateral PSF size of ~150 nm was confirmed, which was approximately 40% smaller than that without the STED beam. This demonstrates that the STED technique is applicable for PL imaging of semiconductor quantum structures. The present approach may make possible a new strategy for characterizing and investigating the spatial inhomogeneity of emission properties and carrier dynamics in InGaN-based quantum wells, as well as in other semiconductor materials exhibiting quantum confinement effects.
Collapse
|
44
|
Zhao Y, Adie SG, Tu H, Liu Y, Graf BW, Chaney EJ, Marjanovic M, Boppart SA. Optical parametrically gated microscopy in scattering media. OPTICS EXPRESS 2014; 22:22547-60. [PMID: 25321724 PMCID: PMC4247183 DOI: 10.1364/oe.22.022547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 05/25/2023]
Abstract
High-resolution imaging in turbid media has been limited by the intrinsic compromise between the gating efficiency (removal of multiply-scattered light background) and signal strength in the existing optical gating techniques. This leads to shallow depths due to the weak ballistic signal, and/or degraded resolution due to the strong multiply-scattering background--the well-known trade-off between resolution and imaging depth in scattering samples. In this work, we employ a nonlinear optics based optical parametric amplifier (OPA) to address this challenge. We demonstrate that both the imaging depth and the spatial resolution in turbid media can be enhanced simultaneously by the OPA, which provides a high level of signal gain as well as an inherent nonlinear optical gate. This technology shifts the nonlinear interaction to an optical crystal placed in the detection arm (image plane), rather than in the sample, which can be used to exploit the benefits given by the high-order parametric process and the use of an intense laser field. The coherent process makes the OPA potentially useful as a general-purpose optical amplifier applicable to a wide range of optical imaging techniques.
Collapse
Affiliation(s)
- Youbo Zhao
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Steven G. Adie
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Haohua Tu
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Yuan Liu
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Benedikt W. Graf
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Eric J. Chaney
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Marina Marjanovic
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Stephen A. Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Department of Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| |
Collapse
|
45
|
Sulai YN, Dubra A. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope. BIOMEDICAL OPTICS EXPRESS 2014; 5:3059-73. [PMID: 25401020 PMCID: PMC4230870 DOI: 10.1364/boe.5.003059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 05/02/2023]
Abstract
The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.
Collapse
Affiliation(s)
- Yusufu N. Sulai
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Alfredo Dubra
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53223, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53223, USA
| |
Collapse
|
46
|
Liu C, Marchesini S, Kim MK. Quantitative phase-contrast confocal microscope. OPTICS EXPRESS 2014; 22:17830-17839. [PMID: 25089404 PMCID: PMC4162347 DOI: 10.1364/oe.22.017830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 05/30/2023]
Abstract
We present a quantitative phase-contrast confocal microscope (QPCCM) by combining a line-scanning confocal system with digital holography (DH). This combination can merge the merits of these two different imaging modalities. High-contrast intensity images with low coherent noise, and the optical sectioning capability are made available due to the confocality. Phase profiles of the samples become accessible thanks to DH. QPCCM is able to quantitatively measure the phase variations of optical sections of the opaque samples and has the potential to take high-quality intensity and phase images of non-opaque samples such as many biological samples. Because each line scan is recorded by a hologram that may contain the optical aberrations of the system, it opens avenues for a variety of numerical aberration compensation methods and development of full digital adaptive optics confocal system to emulate current hardware-based adaptive optics system for biomedical imaging, especially ophthalmic imaging. Preliminary experiments with a microscope objective of NA 0.65 and 40 × on opaque samples are presented to demonstrate this idea. The measured lateral and axial resolutions of the intensity images from the current system are ~0.64μm and ~2.70μm respectively. The noise level of the phase profile by QPCCM is ~2.4nm which is better than the result by DH.
Collapse
Affiliation(s)
- Changgeng Liu
- Digital Holography and Microscopy Laboratory, Department of Physics, University of South Florida, Tampa, FL 33620,
USA
| | - Stefano Marchesini
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA
| | - Myung K. Kim
- Digital Holography and Microscopy Laboratory, Department of Physics, University of South Florida, Tampa, FL 33620,
USA
| |
Collapse
|
47
|
Scoles D, Higgins BP, Cooper RF, Dubis AM, Summerfelt P, Weinberg DV, Kim JE, Stepien KE, Carroll J, Dubra A. Microscopic inner retinal hyper-reflective phenotypes in retinal and neurologic disease. Invest Ophthalmol Vis Sci 2014; 55:4015-29. [PMID: 24894394 DOI: 10.1167/iovs.14-14668] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We surveyed inner retinal microscopic features in retinal and neurologic disease using a reflectance confocal adaptive optics scanning light ophthalmoscope (AOSLO). METHODS Inner retinal images from 101 subjects affected by one of 38 retinal or neurologic conditions and 11 subjects with no known eye disease were examined for the presence of hyper-reflective features other than vasculature, retinal nerve fiber layer, and foveal pit reflex. The hyper-reflective features in the AOSLO images were grouped based on size, location, and subjective texture. Clinical imaging, including optical coherence tomography (OCT), scanning laser ophthalmoscopy, and fundus photography was analyzed for comparison. RESULTS Seven categories of hyper-reflective inner retinal structures were identified, namely punctate reflectivity, nummular (disc-shaped) reflectivity, granular membrane, waxy membrane, vessel-associated membrane, microcysts, and striate reflectivity. Punctate and nummular reflectivity also was found commonly in normal volunteers, but the features in the remaining five categories were found only in subjects with retinal or neurologic disease. Some of the features were found to change substantially between follow up imaging months apart. CONCLUSIONS Confocal reflectance AOSLO imaging revealed a diverse spectrum of normal and pathologic hyper-reflective inner and epiretinal features, some of which were previously unreported. Notably, these features were not disease-specific, suggesting that they might correspond to common mechanisms of degeneration or repair in pathologic states. Although prospective studies with larger and better characterized populations, along with imaging of more extensive retinal areas are needed, the hyper-reflective structures reported here could be used as disease biomarkers, provided their specificity is studied further.
Collapse
Affiliation(s)
- Drew Scoles
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Brian P Higgins
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert F Cooper
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States
| | - Adam M Dubis
- Moorfields Eye Hospital, London, United Kingdom Institute of Ophthalmology, University College London, London, United Kingdom
| | - Phyllis Summerfelt
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - David V Weinberg
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Judy E Kim
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Kimberly E Stepien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joseph Carroll
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alfredo Dubra
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
48
|
Wang B, Lu R, Zhang Q, Yao X. Breaking diffraction limit of lateral resolution in optical coherence tomography. Quant Imaging Med Surg 2013; 3:243-8. [PMID: 24273741 DOI: 10.3978/j.issn.2223-4292.2013.10.03] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 10/29/2013] [Indexed: 11/14/2022]
Abstract
Quantitative imaging of biomedical specimens is essential in biomedical study and diagnosis. Given excellent capability in three-dimensional (3D) imaging, optical coherence tomography (OCT) has been extensively used in ophthalmic imaging, vascular medicine, dermatological study, etc. Lateral resolution of the OCT is light diffraction limited, which precludes the feasibility of quantitative assessment of individual cells. In this paper, we demonstrated the feasibility of breaking diffraction-limit in OCT imaging through virtually structured detection (VSD). OCT examination of optical resolution target verified resolution doubling in the VSD based OCT imaging. Super-resolution OCT identification of individual frog photoreceptors was demonstrated to verify the potential of resolution enhancement in retinal imaging. We anticipate that further development of the VSD based OCT promises an easy, low cost strategy to achieve sub-cellular resolution tomography of the retina and other biological systems.
Collapse
Affiliation(s)
- Benquan Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
49
|
Lee DR, Kim YD, Gweon DG, Yoo H. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning. OPTICS EXPRESS 2013; 21:17839-17848. [PMID: 23938657 DOI: 10.1364/oe.21.017839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.
Collapse
Affiliation(s)
- Dong-Ryoung Lee
- Nano Opto-Mechatronics Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
| | | | | | | |
Collapse
|
50
|
LaRocca F, Dhalla AH, Kelly MP, Farsiu S, Izatt JA. Optimization of confocal scanning laser ophthalmoscope design. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:076015. [PMID: 23864013 PMCID: PMC3713285 DOI: 10.1117/1.jbo.18.7.076015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 05/20/2023]
Abstract
Confocal scanning laser ophthalmoscopy (cSLO) enables high-resolution and high-contrast imaging of the retina by employing spatial filtering for scattered light rejection. However, to obtain optimized image quality, one must design the cSLO around scanner technology limitations and minimize the effects of ocular aberrations and imaging artifacts. We describe a cSLO design methodology resulting in a simple, relatively inexpensive, and compact lens-based cSLO design optimized to balance resolution and throughput for a 20-deg field of view (FOV) with minimal imaging artifacts. We tested the imaging capabilities of our cSLO design with an experimental setup from which we obtained fast and high signal-to-noise ratio (SNR) retinal images. At lower FOVs, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles even without the use of adaptive optics. Through an experiment comparing our optimized cSLO design to a commercial cSLO system, we show that our design demonstrates a significant improvement in both image quality and resolution.
Collapse
Affiliation(s)
- Francesco LaRocca
- Duke University, Department of Biomedical Engineering, Durham, North Carolina 27708, USA.
| | | | | | | | | |
Collapse
|