1
|
Yu B, Zhu Y, Zhang F, Sun D, Xu R, Wang C, Pang K. A Miniaturized In Vivo Fluorescence Microscopy Method for Monitoring Circulating Tumor Cells in Freely Moving Animals. JOURNAL OF BIOPHOTONICS 2025; 18:e202400496. [PMID: 39716436 DOI: 10.1002/jbio.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Metastasis is the leading cause of death in tumor patients, with circulating tumor cells (CTCs) serving as key biomarkers for tumor progression, metastasis, and recurrence. CTC quantity is closely linked to tumor dynamics, which are influenced by biological rhythms. Studying CTC distribution under various physiological conditions provides insights into metastasis mechanisms. However, due to the low abundance of CTCs, detection accuracy is limited, especially with small blood samples, making continuous data collection challenging. To address this, we developed a dual-channel miniaturized in vivo fluorescence microscopy system for real-time monitoring of CTCs in experimental animals. This system, which can be fixed to the head or back, enables dynamic, quantitative analysis of CTCs in the circulatory system. It offers a valuable tool for investigating tumor metastasis rhythms, drug evaluation, and prognostic assessment in freely moving animals, advancing research in metastasis mechanisms and cancer treatment.
Collapse
Affiliation(s)
- Bingchen Yu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yuxi Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Fan Zhang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Da Sun
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Rui Xu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Chenzheng Wang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Kai Pang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
2
|
Pace J, Lee JJ, Srinivasarao M, Kallepu S, Low PS, Niedre M. In Vivo Labeling and Detection of Circulating Tumor Cells in Mice Using OTL38. Mol Imaging Biol 2024; 26:603-615. [PMID: 38594545 PMCID: PMC11281960 DOI: 10.1007/s11307-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE We recently developed an optical instrument to non-invasively detect fluorescently labeled circulating tumor cells (CTCs) in mice called 'Diffuse in vivo Flow Cytometry' (DiFC). OTL38 is a folate receptor (FR) targeted near-infrared (NIR) contrast agent that is FDA approved for use in fluorescence guided surgery of ovarian and lung cancer. In this work, we investigated the use OTL38 for in vivo labeling and detection of FR + CTCs with DiFC. PROCEDURES We tested OTL38 labeling of FR + cancer cell lines (IGROV-1 and L1210A) as well as FR- MM.1S cells in suspensions of Human Peripheral Blood Mononuclear cells (PBMCs) in vitro. We also tested OTL38 labeling and NIR-DIFC detection of FR + L1210A cells in blood circulation in nude mice in vivo. RESULTS 62% of IGROV-1 and 83% of L1210A were labeled above non-specific background levels in suspensions of PBMCs in vitro compared to only 2% of FR- MM.1S cells. L1210A cells could be labeled with OTL38 directly in circulation in vivo and externally detected using NIR-DiFC in mice with low false positive detection rates. CONCLUSIONS This work shows the feasibility of labeling CTCs in vivo with OTL38 and detection with DiFC. Although further refinement of the DiFC instrument and signal processing algorithms and testing with other animal models is needed, this work may eventually pave the way for human use of DiFC.
Collapse
Affiliation(s)
- Joshua Pace
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Jane J Lee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 047906, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Pulikkot S, Paul S, Hall A, Gardner B, Liu W, Hu L, Vella AT, Chen Y, Fan Z. Monitoring Circulating Myeloid Cells in Peritonitis with an In Vivo Imaging Flow Cytometer. Biomolecules 2024; 14:886. [PMID: 39199274 PMCID: PMC11351726 DOI: 10.3390/biom14080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Peritonitis is a common and life-threatening inflammatory disease. Myeloid cells are elevated in the peripheral blood and contribute to peritonitis, but their circulating dynamics are not clear. In vivo flow cytometry (IVFC) is a noninvasive technique for monitoring the dynamics of circulating cells in live animals. It has been extensively used to detect circulating tumor cells, but rarely for monitoring immune cells. Here, we describe a method adapting an intravital microscope for IVFC so that we can monitor LysM-EGFP-labeled circulating myeloid cells in a tumor necrosis factor (TNF) α-induced peritonitis mouse model. Using this IVFC method, we quantified the blood flow velocity and cell concentration in circulation. We observed a significant increase in LysM-EGFP+ cells in circulation after TNFα intraperitoneal (i.p.) injection, which reached a plateau in ~20 min. Conventional cytometry analysis showed that most LysM-EGFP+ cells were neutrophils. Increasing blood neutrophils were accompanied by neutrophil recruitment to the peritoneal cavity and neutrophil emigration from the bone marrow. We then monitored neutrophil CD64 expression in vivo and found a significant increase in TNFα-induced peritonitis. We also found that CD18 blockade doubled the circulating neutrophil number in TNFα-induced peritonitis, suggesting that CD18 is critical for neutrophil recruitment in peritonitis. Overall, we demonstrate that IVFC techniques are useful for studying the circulating dynamics of immune cells during inflammatory diseases.
Collapse
Affiliation(s)
- Sunitha Pulikkot
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Souvik Paul
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Alexxus Hall
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Brianna Gardner
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Wei Liu
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| |
Collapse
|
4
|
Lin W, Wang P, Qi Y, Zhao Y, Wei X. Progress and challenges of in vivo flow cytometry and its applications in circulating cells of eyes. Cytometry A 2024; 105:437-445. [PMID: 38549391 DOI: 10.1002/cyto.a.24837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 06/15/2024]
Abstract
Circulating inflammatory cells in eyes have emerged as early indicators of numerous major diseases, yet the monitoring of these cells remains an underdeveloped field. In vivo flow cytometry (IVFC), a noninvasive technique, offers the promise of real-time, dynamic quantification of circulating cells. However, IVFC has not seen extensive applications in the detection of circulating cells in eyes, possibly due to the eye's unique physiological structure and fundus imaging limitations. This study reviews the current research progress in retinal flow cytometry and other fundus examination techniques, such as adaptive optics, ultra-widefield retinal imaging, multispectral imaging, and optical coherence tomography, to propose novel ideas for circulating cell monitoring.
Collapse
Affiliation(s)
- Wei Lin
- Department of Public Scientific Research Platform, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Peng Wang
- Department of Public Scientific Research Platform, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingxin Qi
- Department of Public Scientific Research Platform, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yanlong Zhao
- Department of Public Scientific Research Platform, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
- Biomedical Engineering Department, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Vora N, Shekar P, Hanulia T, Esmail M, Patra A, Georgakoudi I. Deep learning-enabled detection of rare circulating tumor cell clusters in whole blood using label-free, flow cytometry. LAB ON A CHIP 2024; 24:2237-2252. [PMID: 38456773 PMCID: PMC11019838 DOI: 10.1039/d3lc00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL)-based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events per min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Using transfer learning, we additionally validate DL-based BSFC on blood samples from different species and cancer cell types. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.
Collapse
Affiliation(s)
- Nilay Vora
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Prashant Shekar
- Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Taras Hanulia
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
- Institute of Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Michael Esmail
- Tufts Comparative Medicine Services, Tufts University, Medford, MA, 02155, USA
| | - Abani Patra
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
6
|
Grishin OV, Shushunova NA, Bratashov DN, Prikhozhdenko ES, Verkhovskii RA, Kozlova AA, Abdurashitov AS, Sindeeva OA, Karavaev AS, Kulminskiy DD, Shashkov EV, Inozemtseva OA, Tuchin VV. Effect of pulsed laser parameters on photoacoustic flow cytometry efficiency in vitro and in vivo. Cytometry A 2023; 103:868-880. [PMID: 37455600 DOI: 10.1002/cyto.a.24778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Photoacoustic flow cytometry is one of the most effective approaches to detect "alien" objects in the bloodstream, including circulating tumor cells, blood clots, parasites, and emboli. However, the possibility of detecting high-amplitude signals from these objects against the background of blood depends on the parameters of the laser pulse. So, the dependencies of photoacoustic signals amplitude and number on laser pulse energy (5-150 μJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5, 10 kHz) for the melanoma cells were investigated. First, the PA responses of a melanoma cell suspension in vitro were measured to directly assess the efficiency of converting laser light into an acoustic signal. After it, the same dependence with the developed murine model based on constant rate melanoma cell injection into the animal blood flow was tested. Both in vivo and in vitro experiments show that signal generation efficiency increases with laser pulse energy above 15 μJ. Shorter pulses, especially 1 ns, provide more efficient signal generation as well as higher pulse rates. A higher pulse rate also provides more efficient signal generation, but also leads to overheating of the skin. The results show the limits where the photoacoustic flow cytometry system can be effectively used for the detection of circulating tumor cells in undiluted blood both for in vitro experiments and for in vivo murine models.
Collapse
Affiliation(s)
- Oleg V Grishin
- Science Medical Center, Saratov State University, Saratov, Russia
| | | | | | | | | | | | - Arkady S Abdurashitov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga A Sindeeva
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anatoly S Karavaev
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio-Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
- Department of Innovative Cardiological Information Technology, Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia
| | - Danil D Kulminskiy
- Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of the Institute of Radio-Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, Sochi, Russia
| | - Evgeny V Shashkov
- Pico-Femtoseconds Laser Laboratory, Photoelectronics Department, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | | | - Valery V Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
- Bach Institute of Biochemistry, FRC "Fundamentals of Biotechnology of the Russian Academy of Sciences", Moscow, Russia
| |
Collapse
|
7
|
Pang K, Dong S, Zhu Y, Zhu X, Zhou Q, Gu B, Jin W, Zhang R, Fu Y, Yu B, Sun D, Duanmu Z, Wei X. Advanced flow cytometry for biomedical applications. JOURNAL OF BIOPHOTONICS 2023; 16:e202300135. [PMID: 37263969 DOI: 10.1002/jbio.202300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.
Collapse
Affiliation(s)
- Kai Pang
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Sihan Dong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuxi Zhu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xi Zhu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quanyu Zhou
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Jin
- International Cancer Institute, Peking University, Beijing, China
| | - Rui Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuting Fu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Bingchen Yu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Da Sun
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xunbin Wei
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
8
|
Vora N, Shekar P, Esmail M, Patra A, Georgakoudi I. Deep Learning-Enabled, Detection of Rare Circulating Tumor Cell Clusters in Whole Blood Using Label-free, Flow Cytometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551485. [PMID: 37577660 PMCID: PMC10418242 DOI: 10.1101/2023.08.01.551485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL) -based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events/min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.
Collapse
Affiliation(s)
- Nilay Vora
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Prashant Shekar
- Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Michael Esmail
- Tufts Comparative Medicine Services, Tufts University, Medford, MA, 02155, USA
- # Current Affiliation: University of Massachusetts Amherst Animal Care Services, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Abani Patra
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
- Department of Mathematics, Tufts University, Medford, MA 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
9
|
Liu Z, Zhang Y, Zhao D, Chen Y, Meng Q, Zhang X, Jia Z, Cui J, Wang X. Application of Flow Cytometry in the Diagnosis of Bovine Epidemic Disease. Viruses 2023; 15:1378. [PMID: 37376677 DOI: 10.3390/v15061378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
As science and technology continue to advance, the use of flow cytometry is becoming more widespread. It can provide important information about cells in the body by detecting and analysing them, thereby providing a reliable basis for disease diagnosis. In the diagnosis of bovine epidemic diseases, flow cytometry can be used to detect bovine viral diarrhoea, bovine leukaemia, bovine brucellosis, bovine tuberculosis, and other diseases. This paper describes the structure of a flow cytometer (liquid flow system, optical detection system, data storage and analysis system) and its working principles for rapid quantitative analysis and sorting of single cells or biological particles. Additionally, the research progress of flow cytometry in the diagnosis of bovine epidemic diseases was reviewed in order to provide a reference for future research and application of flow cytometry in the diagnosis of bovine epidemic diseases.
Collapse
Affiliation(s)
- Zhilin Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuliang Zhang
- Tongliao City Animal Quarantine Technical Service Centre, Tongliao 028000, China
| | - Donghui Zhao
- Tongliao City Animal Quarantine Technical Service Centre, Tongliao 028000, China
| | - Yunjiao Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qinglei Meng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xin Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zelin Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiayu Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
10
|
Zhao X, Ding L, Yan J, Xu J, He H. Constructing an In Vitro and In Vivo Flow Cytometry by Fast Line Scanning of Confocal Microscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:3305. [PMID: 36992015 PMCID: PMC10059927 DOI: 10.3390/s23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Composed of a fluidic and an optical system, flow cytometry has been widely used for biosensing. The fluidic flow enables its automatic high-throughput sample loading and sorting while the optical system works for molecular detection by fluorescence for micron-level cells and particles. This technology is quite powerful and highly developed; however, it requires a sample in the form of a suspension and thus only works in vitro. In this study, we report a simple scheme to construct a flow cytometry based on a confocal microscope without any modifications. We demonstrate that line scanning of microscopy can effectively excite fluorescence of flowing microbeads or cells in a capillary tube in vitro and in blood vessels of live mice in vivo. This method can resolve microbeads at several microns and the results are comparable to a classic flow cytometer. The absolute diameter of flowing samples can be indicated directly. The sampling limitations and variations of this method is carefully analyzed. This scheme can be easily accomplished by any commercial confocal microscope systems, expands the function of them, and is of promising potential for simultaneous confocal microscopy and in vivo detection of cells in blood vessels of live animals by a single system.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (X.Z.)
| | - Leqi Ding
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (L.D.)
| | - Jingsheng Yan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (L.D.)
| | - Jin Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (X.Z.)
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (X.Z.)
| |
Collapse
|
11
|
Guo L, Liu C, Qi M, Cheng L, Wang L, Li C, Dong B. Recent progress of nanostructure-based enrichment of circulating tumor cells and downstream analysis. LAB ON A CHIP 2023; 23:1493-1523. [PMID: 36776104 DOI: 10.1039/d2lc00890d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The isolation and detection of circulating tumor cells (CTCs) play an important role in early cancer diagnosis and prognosis, providing easy access to identify metastatic cells before clinically detectable metastases. In the past 20 years, according to the heterogeneous expression of CTCs on the surface and their special physical properties (size, morphology, electricity, etc.), a series of in vitro enrichment methods of CTCs have been developed based on microfluidic chip technology, nanomaterials and various nanostructures. In recent years, the in vivo detection of CTCs has attracted considerable attention. Photoacoustic flow cytometry and fluorescence flow cytometry were used to detect CTCs in a noninvasive manner. In addition, flexible magnetic wire and indwelling intravascular non-circulating CTCs isolation system were developed for in vivo CTCs study. In the aspect of downstream analysis, gene analysis and drug sensitivity tests of enriched CTCs were developed based on various existing molecular analysis techniques. All of these studies constitute a complete study of CTCs. Although the existing reviews mainly focus on one aspect of capturing CTCs study, a review that includes the in vivo and in vitro capture and downstream analysis study of CTCs is highly needed. This review focuses on not only the classic work and latest research progress in in vitro capture but also includes the in vivo capture and downstream analysis, discussing the advantages and significance of the different research methods and providing new ideas for solving the heterogeneity and rarity of CTCs.
Collapse
Affiliation(s)
- Lihua Guo
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| | - Chang Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.
| | - Liang Cheng
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
12
|
Railean V, Buszewski B. Flow Cytometry - Sophisticated Tool for Basic Research or/and Routine Diagnosis; Impact of the Complementarity in Both Pre- as Well as Clinical Studies. Crit Rev Anal Chem 2022; 54:2087-2109. [PMID: 36576036 DOI: 10.1080/10408347.2022.2154596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flow cytometry is a sophisticated technology used widely in both basic research and as a routine tool in clinical diagnosis. The technology has progressed from single parameter detection in the 1970s and 1980s to high end multicolor analysis, with currently 30 parameters detected simultaneously, allowing the identification and purification of rare subpopulations of cells of interest. Flow cytometry continues to evolve and expand to facilitate the investigation of new diagnostic and therapeutic avenues. The present review gives an overview of basic theory and instrumentation, presents and compares the advantages and disadvantages of conventional, spectral and imaging flow cytometry as well as mass cytometry. Current methodologies and applications in both research, pre- and clinical settings are discussed, as well as potential limitations and future evolution. This finding encourages the reader to promote such relationship between basic science, diagnosis and multidisciplinary approach since the standard methods have limitations (e.g., in differentiating the cells after staining). Moreover, such path inspires future cytometry specialists develop new/alternative frontiers between pre- and clinical diagnosis and be more flexible in designing the study for both human as well as veterinary medicine.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
13
|
Pace J, Ivich F, Marple E, Niedre M. Near-infrared diffuse in vivo flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220101GR. [PMID: 36114606 PMCID: PMC9478904 DOI: 10.1117/1.jbo.27.9.097002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Significance Diffuse in vivo flow cytometry (DiFC) is an emerging technique for enumerating rare fluorescently labeled circulating cells noninvasively in the bloodstream. Thus far, we have reported red and blue-green versions of DiFC. Use of near-infrared (NIR) fluorescent light would in principle allow use of DiFC in deeper tissues and would be compatible with emerging NIR fluorescence molecular contrast agents. Aim We describe the design of a NIR-DiFC instrument and demonstrate its use in optical flow phantoms in vitro and in mice in vivo. Approach We developed an improved optical fiber probe design for efficient collection of fluorescence from individual circulating cells and efficient rejection of instrument autofluorescence. We built a NIR-DiFC instrument. We tested this with NIR fluorescent microspheres and cell lines labeled with OTL38 fluorescence contrast agent in a flow phantom model. We also tested NIR-DiFC in nude mice injected intravenously with OTL38-labeled L1210A cells. Results NIR-DiFC allowed detection of circulating tumor cells (CTCs) in flow phantoms with mean signal-to-noise ratios (SNRs) of 19 to 32 dB. In mice, fluorescently labeled CTCs were detectable with mean SNR of 26 dB. NIR-DiFC also exhibited orders significantly lower autofluorescence and false-alarm rates than blue-green DiFC. Conclusions NIR-DiFC allows use of emerging NIR contrast agents. Our work could pave the way for future use of NIR-DiFC in humans.
Collapse
Affiliation(s)
- Joshua Pace
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Fernando Ivich
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Eric Marple
- EmVision LLC, Loxahatchee, Florida, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Fridman L, Yelin D. Measuring the red blood cell shape in capillary flow using spectrally encoded flow cytometry. BIOMEDICAL OPTICS EXPRESS 2022; 13:4583-4591. [PMID: 36187245 PMCID: PMC9484409 DOI: 10.1364/boe.464875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 05/31/2023]
Abstract
Red blood cells in small capillaries exhibit a wide variety of deformations that reflect their true physiological conditions at these important locations. By applying a technique for the high-speed microscopy of flowing cells, termed spectrally encoded flow cytometry (SEFC), we image the light reflected from the red blood cells in human capillaries, and propose an analytical slipper-like model for the cell morphology that can reproduce the experimental in vivo images. The results of this work would be useful for studying the unique flow conditions in these vessels, and for extracting useful clinical parameters that reflect the true physiology of the blood cells in situ.
Collapse
|
15
|
Vora N, Shekhar P, Esmail M, Patra A, Georgakoudi I. Label-free flow cytometry of rare circulating tumor cell clusters in whole blood. Sci Rep 2022; 12:10721. [PMID: 35750889 PMCID: PMC9232518 DOI: 10.1038/s41598-022-14003-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Circulating tumor cell clusters (CTCCs) are rare cellular events found in the blood stream of metastatic tumor patients. Despite their scarcity, they represent an increased risk for metastasis. Label-free detection methods of these events remain primarily limited to in vitro microfluidic platforms. Here, we expand on the use of confocal backscatter and fluorescence flow cytometry (BSFC) for label-free detection of CTCCs in whole blood using machine learning for peak detection/classification. BSFC uses a custom-built flow cytometer with three excitation wavelengths (405 nm, 488 nm, and 633 nm) and five detectors to detect CTCCs in whole blood based on corresponding scattering and fluorescence signals. In this study, detection of CTCC-associated GFP fluorescence is used as the ground truth to assess the accuracy of endogenous back-scattered light-based CTCC detection in whole blood. Using a machine learning model for peak detection/classification, we demonstrated that the combined use of backscattered signals at the three wavelengths enable detection of ~ 93% of all CTCCs larger than two cells with a purity of > 82% and an overall accuracy of > 95%. The high level of performance established through BSFC and machine learning demonstrates the potential for label-free detection and monitoring of CTCCs in whole blood. Further developments of label-free BSFC to enhance throughput could lead to important applications in the isolation of CTCCs in whole blood with minimal disruption and ultimately their detection in vivo.
Collapse
Affiliation(s)
- Nilay Vora
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Prashant Shekhar
- Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Michael Esmail
- Tufts Comparative Medicine Services, Tufts University, Medford, MA, 02155, USA
| | - Abani Patra
- Department of Computer Science, Tufts University, Medford, MA, 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
16
|
Niedre M. Prospects for Fluorescence Molecular In Vivo Liquid Biopsy of Circulating Tumor Cells in Humans. FRONTIERS IN PHOTONICS 2022; 3:910035. [PMID: 39508030 PMCID: PMC11540420 DOI: 10.3389/fphot.2022.910035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Our team recently developed "Diffuse in vivo Flow Cytometry" (DiFC) for detection and enumeration rare circulating tumor cells (CTCs) in mice with highly-scattered fluorescent light. We have used DiFC to study dissemination of CTCs in a number of mouse models of metastasis with fluorescent protein expressing cells. Because DiFC uses diffuse light and interrogates large blood vessels in relatively deep tissue, in principle it could be translated to larger limbs, species, and even humans clinically. In this perspective, we discuss the technical challenges of human translation of DiFC in the context of the current state of the technology, as well as potential strategies for labeling of CTCs with targeted fluorescent molecular probes. We also discuss potential advantages and disadvantages of DiFC as a clinical tool. In principle, DiFC could represent a powerful complementary technique (to liquid biopsy blood draws) for accurate and sensitive measurement of changes in CTC numbers over time.
Collapse
Affiliation(s)
- Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
17
|
Patil RA, Srinivasarao M, Amiji MM, Low PS, Niedre M. Fluorescence Labeling of Circulating Tumor Cells with a Folate Receptor-Targeted Molecular Probe for Diffuse In Vivo Flow Cytometry. Mol Imaging Biol 2021; 22:1280-1289. [PMID: 32519245 DOI: 10.1007/s11307-020-01505-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE We recently developed a new instrument called "diffuse in vivo flow cytometry" (DiFC) for enumeration of rare fluorescently labeled circulating tumor cells (CTCs) in small animals without drawing blood samples. Until now, we have used cell lines that express fluorescent proteins or were pre-labeled with a fluorescent dye ex vivo. In this work, we investigated the use of a folate receptor (FR)-targeted fluorescence molecular probe for in vivo labeling of FR+ CTCs for DiFC. PROCEDURES We used EC-17, a FITC-folic acid conjugate that has been used in clinical trials for fluorescence-guided surgery. We studied the affinity of EC-17 for FR+ L1210A and KB cancer cells. We also tested FR- MM.1S cells. We tested the labeling specificity in cells in culture in vitro and in whole blood. We also studied the detectability of labeled cells in mice in vivo with DiFC. RESULTS EC-17 showed a high affinity for FR+ L1210A and KB cells in vitro. In whole blood, 85.4 % of L1210A and 80.9 % of KB cells were labeled above non-specific background with EC-17, and negligible binding to FR- MM.1S cells was observed. In addition, EC-17-labeled CTCs were readily detectable in circulation in mice with DiFC. CONCLUSIONS This work demonstrates the feasibility of labeling CTCs with a cell-surface receptor-targeted probe for DiFC, greatly expanding the potential utility of the method for pre-clinical animal models. Because DiFC uses diffuse light, this method could be also used to enumerate CTCs in larger animal models and potentially even in humans.
Collapse
Affiliation(s)
- Roshani A Patil
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Abstract
In vivo flow cytometry (IVFC) was first designed to detect circulating cells in a mouse ear. It allows real-time monitoring of cells in peripheral blood with no need to draw blood. The IVFC field has made great progress during the last decade with the development of fluorescence, photoacoustic, and multiphoton microscopy. Moreover, the application of IVFC is no longer restricted to circulating cells. IVFC based on fluorescence and photoacoustic are most widely applied in biomedical research. Methods based on fluorescence are often used for object monitoring in superficial vessels, while methods based on photoacoustics have an advantage of label-free monitoring in deep vessels. In this chapter, we introduce technical points and key applications of IVFC. We focus on the principles, labeling strategies, sensitivity, and biomedical applications of the technology. In addition, we summarize this chapter and discuss important research directions of IVFC in the future.
Collapse
|
19
|
Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X. In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells. LIGHT, SCIENCE & APPLICATIONS 2021; 10:110. [PMID: 34045431 PMCID: PMC8160330 DOI: 10.1038/s41377-021-00542-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 05/13/2023]
Abstract
Circulating tumor cells (CTCs) is an established biomarker of cancer metastasis. The circulation dynamics of CTCs are important for understanding the mechanisms underlying tumor cell dissemination. Although studies have revealed that the circadian rhythm may disrupt the growth of tumors, it is generally unclear whether the circadian rhythm controls the release of CTCs. In clinical examinations, the current in vitro methods for detecting CTCs in blood samples are based on a fundamental assumption that CTC counts in the peripheral blood do not change significantly over time, which is being challenged by recent studies. Since it is not practical to draw blood from patients repeatedly, a feasible strategy to investigate the circadian rhythm of CTCs is to monitor them by in vivo detection methods. Fluorescence in vivo flow cytometry (IVFC) is a powerful optical technique that is able to detect fluorescent circulating cells directly in living animals in a noninvasive manner over a long period of time. In this study, we applied fluorescence IVFC to monitor CTCs noninvasively in an orthotopic mouse model of human prostate cancer. We observed that CTCs exhibited stochastic bursts over cancer progression. The probability of the bursting activity was higher at early stages than at late stages. We longitudinally monitored CTCs over a 24-h period, and our results revealed striking daily oscillations in CTC counts that peaked at the onset of the night (active phase for rodents), suggesting that the release of CTCs might be regulated by the circadian rhythm.
Collapse
Affiliation(s)
- Xi Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, Peking University, 100871, Beijing, China.
- School of Life Sciences, Peking University, 100871, Beijing, China.
| | - Yuting Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Fuli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Nan Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Kai Pang
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, 100192, Beijing, China
| | - Chengying Xie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Xiaofu Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Meilu Tian
- Biomedical Engineering Department, Peking University, 100081, Beijing, China
| | - Hao He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
- Biomedical Engineering Department, Peking University, 100081, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142, Beijing, China.
| |
Collapse
|
20
|
Weng X, Wei D, Zhu X, Tao L, Guo J, Pang K, Yang Z, Wei X. Real-time monitoring of single circulating tumor cells with a fluorescently labeled deoxy-glucose by in vivo flow cytometry. Cytometry A 2021; 99:586-592. [PMID: 33797159 DOI: 10.1002/cyto.a.24344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/11/2022]
Abstract
Circulating tumor cells (CTCs) play an essential role in metastasis and serve as an important prognostic biomarker. The technology of CTC labeling and detection in vivo can greatly improve the research of cancer metastasis and therapy. However, there is no in vivo technology to detect CTCs in clinic. In this study, we demonstrate that 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG), a 2-deoxy-glucose analog, can work in vivo to indicate CTCs and metastases fluorescently by direct intravenous injection. During the development of an implanted tumor in mice, the spontaneous CTCs released from the primary tumor into blood vessels can be labeled by 2-NBDG due to the abnormal metabolism of CTCs. The green fluorescence of 2-NBDG from CTCs is then noninvasively detected by an in vivo flow cytometry system. Due to the high uptake of glucose by tumor cells, the CTCs in mice can maintain a high 2-NBDG level and thus be distinguished by 2-NBDG fluorescence in vivo efficiently, enabling tumor detection in vivo like positron emission tomography (PET) but at the single-cell resolution. Our results suggest 2-NBDG, a glucose analog with high biosafety, holds promising potential in clinical applications, similar to the widely-used contrast medium 2-F18 -fluorodeoxyglucose in PET.
Collapse
Affiliation(s)
- Xiaofu Weng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wei
- Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, School of Information Engineering, Zhejiang Ocean University, Zhejiang, China
| | - Xi Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lechan Tao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, China
| | - Kai Pang
- School of Instrument Science and Opto Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Zhangru Yang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xunbin Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Biomedical Engineering Department, Peking University, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
21
|
In Vivo Lymphatic Circulating Tumor Cells and Progression of Metastatic Disease. Cancers (Basel) 2020; 12:cancers12102866. [PMID: 33028044 PMCID: PMC7650582 DOI: 10.3390/cancers12102866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Deadly metastases occur when tumor cells are shed from primary tumor into lymph and blood that circulate in distinct networks of vessels and disseminate circulating tumor cells (CTCs) through the body. Therefore, detection of CTCs at potentially treatable early disease stage might improve patient survival. However, most efforts have been made to test CTCs in blood only. Here, we explored the clinically relevant photoacoustic and fluorescent flow cytometry for early in vivo detection of lymphatic CTCs using metastatic melanoma and breast cancer mouse models. We demonstrated the presence of detectable lymphatic CTCs at pre-metastatic disease, estimated correlation between CTCs, primary tumor, and metastasis, and observed parallel CTC dissemination by blood and lymph. Our findings suggest the use of lymphatic CTC testing in vivo as a new indicator of metastasis initiation, and combined assessment of two body fluids as a more promising diagnostic platform compared to existing mono-detection of blood CTCs. Abstract The dissemination of circulating tumor cells (CTCs) by lymph fluid is one of the key events in the development of tumor metastasis. However, little progress has been made in studying lymphatic CTCs (L-CTCs). Here, we demonstrate the detection of L-CTCs in preclinical mouse models of melanoma and breast cancer using in vivo high-sensitivity photoacoustic and fluorescent flow cytometry. We discovered that L-CTCs are be detected in pre-metastatic disease stage. The smallest primary tumor that shed L-CTCs was measured as 0.094mm×0.094mm, its volume was calculated as 0.0004 mm3; and its productivity was estimated as 1 L-CTC per 30 minutes. As the disease progressed, primary tumors continued releasing L-CTCs with certain individual dynamics. The integrated assessment of lymph and blood underlined the parallel dissemination of CTCs at all disease stages. However, the analysis of links between L-CTC counts, blood CTC (B-CTC) counts, primary tumor size and metastasis did not reveal statistically significant correlations, likely due to L-CTC heterogeneity. Altogether, our results showed the feasibility of our diagnostic platform using photoacoustic flow cytometry for preclinical L-CTC research with translational potential. Our findings also demonstrated new insights into lymphatic system involvement in CTC dissemination. They help to lay the scientific foundation for the consideration of L-CTCs as prognostic markers of metastasis and to emphasize the integrative assessment of lymph and blood.
Collapse
|
22
|
Tian C, Xu X, Wang Y, Li D, Lu H, Yang Z. Development and Clinical Prospects of Techniques to Separate Circulating Tumor Cells from Peripheral Blood. Cancer Manag Res 2020; 12:7263-7275. [PMID: 32884342 PMCID: PMC7434565 DOI: 10.2147/cmar.s248380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Detection of circulating tumor cells (CTC) is an important liquid biopsy technique that has advanced considerably in recent years. To further advance the development of technology for curing cancer, several CTC technologies have been proposed by various research groups. Despite their potential role in early cancer diagnosis and prognosis, CTC methods are currently used for research purposes only, and very few methods have been accepted for clinical applications because of difficulties, including CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Although current CTC technologies have not been truly implemented, they possess high potential as future clinical diagnostic techniques for individualized cancer. Here, we review current developments in CTC separation technology. We also explore new CTC detection methods based on telomerase and nanomaterials, such as in vivo flow cytometry. In addition, we discuss the difficulties that must be overcome before CTC can be applied in clinical settings.
Collapse
Affiliation(s)
- Cheng Tian
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Xinhua Xu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Yuke Wang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Dailong Li
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Haiyan Lu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Ziwei Yang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| |
Collapse
|
23
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
24
|
Wang F, Wei D, Suo Y, Zhu X, Yuan Y, Gao W, Jiang H, Wei X, Chen T. In vivo flow cytometry combined with intravital microscopy to monitor kinetics of transplanted bone marrow mononuclear cells in peripheral blood and bone marrow. Mol Biol Rep 2019; 47:1-10. [DOI: 10.1007/s11033-019-04608-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022]
|
25
|
Tang M, Xia HF, Xu CM, Feng J, Ren JG, Miao F, Wu M, Wu LL, Pang DW, Chen G, Zhang ZL. Magnetic Chip Based Extracorporeal Circulation: A New Tool for Circulating Tumor Cell in Vivo Detection. Anal Chem 2019; 91:15260-15266. [PMID: 31692331 DOI: 10.1021/acs.analchem.9b04286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vivo detection of circulating tumor cells (CTCs) which inspect all of the circulating blood in body seems to have more advantages on cell capture, especially in earlier cancer diagnosis. Herein, based on in vivo microfluidic chip detection system (IV-chip-system), an extracorporeal circulation was constructed to effectively detect and monitor CTCs in vivo. Combined with microfluidic chip and immunomagnetic nanosphere (IMN), this system not only acts as a window for CTC monitoring but also serves as a collector for further cancer diagnosis and research on CTCs. Compared with the current in vivo detection method, this system can capture and detect CTCs in the bloodstream without any pretreatments, and it also has a higher CTC capture efficiency. It is worth mentioning that this system is stable and biocompatible without any irreversible damage to living animals. Taking use of this system, the mimicked CTC cleanup process in the blood vessel is monitored, which may open new insights in cancer research and early cancer diagnosis.
Collapse
Affiliation(s)
- Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , People's Republic of China
| | - Chun-Miao Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Jiao Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , People's Republic of China
| | - Fan Miao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , People's Republic of China
| | - Min Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Ling-Ling Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , People's Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| |
Collapse
|
26
|
Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, de Zoete MR, Warnock JN, To SDF, York AG, Mack M, Schwartz MA, Dela Cruz CS, Palm NW, Jackson R, Flavell RA. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 2019; 573:69-74. [PMID: 31435009 DOI: 10.1038/s41586-019-1485-8] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
Direct recognition of invading pathogens by innate immune cells is a critical driver of the inflammatory response. However, cells of the innate immune system can also sense their local microenvironment and respond to physiological fluctuations in temperature, pH, oxygen and nutrient availability, which are altered during inflammation. Although cells of the immune system experience force and pressure throughout their life cycle, little is known about how these mechanical processes regulate the immune response. Here we show that cyclical hydrostatic pressure, similar to that experienced by immune cells in the lung, initiates an inflammatory response via the mechanically activated ion channel PIEZO1. Mice lacking PIEZO1 in innate immune cells showed ablated pulmonary inflammation in the context of bacterial infection or fibrotic autoinflammation. Our results reveal an environmental sensory axis that stimulates innate immune cells to mount an inflammatory response, and demonstrate a physiological role for PIEZO1 and mechanosensation in immunity.
Collapse
Affiliation(s)
- Angel G Solis
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Piotr Bielecki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Holly R Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lokesh Sharma
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Sanguk Yun
- Department of Internal Medicine (Cardiology), Yale Cardiovascular Research Center, Yale University, New Haven, CT, USA.,Department of Cell Biology, Yale Cardiovascular Research Center, Yale University, New Haven, CT, USA.,Department of Biomedical Engineering, Yale Cardiovascular Research Center, Yale University, Yale University, New Haven, CT, USA
| | - Marcel R de Zoete
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - James N Warnock
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - S D Filip To
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Autumn G York
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthias Mack
- Department of Internal Medicine II-Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Martin A Schwartz
- Department of Internal Medicine (Cardiology), Yale Cardiovascular Research Center, Yale University, New Haven, CT, USA.,Department of Cell Biology, Yale Cardiovascular Research Center, Yale University, New Haven, CT, USA.,Department of Biomedical Engineering, Yale Cardiovascular Research Center, Yale University, Yale University, New Haven, CT, USA
| | - Charles S Dela Cruz
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruaidhrí Jackson
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Suo Y, Gu Z, Wei X. Advances of In Vivo Flow Cytometry on Cancer Studies. Cytometry A 2019; 97:15-23. [DOI: 10.1002/cyto.a.23851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yuanzhen Suo
- Biomedical Pioneering Innovation CenterPeking University Beijing China
- School of Life SciencesPeking University Beijing China
| | - Zhenqin Gu
- Department of Urology, Xinhua HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xunbin Wei
- Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong University Shanghai China
- School of PhysicsFoshan University Foshan 52800 China
| |
Collapse
|
28
|
Longitudinal monitoring of cancer cell subpopulations in monolayers, 3D spheroids, and xenografts using the photoconvertible dye DiR. Sci Rep 2019; 9:5713. [PMID: 30952965 PMCID: PMC6450962 DOI: 10.1038/s41598-019-42165-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
A central challenge in cancer biology is the identification, longitudinal tracking, and -omics analysis of specific cells in vivo. To this aim, photoconvertible fluorescent dyes are reporters that are characterized by a set of excitation and emission spectra that can be predictably altered, resulting in a distinct optical signature following irradiation with a specific light source. One such dye, DiR, is an infrared fluorescent membrane probe that can irreversibly undergo such a switch. Here, we demonstrate a method using DiR for the spatiotemporal labeling of specific cells in the context of cancer cell monolayer cultures, 3D tumor spheroids, and in vivo melanoma xenograft models to monitor the proliferation of cellular subpopulations of interest over time. Importantly, the photoconversion process is performed in situ, supporting the pursuit of novel avenues of research in molecular pathology.
Collapse
|
29
|
Bioinspired magnetic nanoparticles as multimodal photoacoustic, photothermal and photomechanical contrast agents. Sci Rep 2019; 9:887. [PMID: 30696936 PMCID: PMC6351522 DOI: 10.1038/s41598-018-37353-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/22/2018] [Indexed: 01/19/2023] Open
Abstract
Nanoparticles from magnetotactic bacteria have been used in conventional imaging, drug delivery, and magnetic manipulations. Here, we show that these natural nanoparticles and their bioinspired hybrids with near-infrared gold nanorods and folic acid can serve as molecular high-contrast photoacoustic probes for single-cell diagnostics and as photothermal agents for single-cell therapy using laser-induced vapor nanobubbles and magnetic field as significant signal and therapy amplifiers. These theranostics agents enable the detection and photomechanical killing of triple negative breast cancer cells that are resistant to conventional chemotherapy, with just one or a few low-energy laser pulses. In studies in vivo, we discovered that circulating tumor cells labeled with the nanohybrids generate transient ultrasharp photoacoustic resonances directly in the bloodstream as the basis for new super-resolution photoacoustic flow cytometry in vivo. These properties make natural and bioinspired magnetic nanoparticles promising biocompatible, multimodal, high-contrast, and clinically relevant cellular probes for many in vitro and in vivo biomedical applications.
Collapse
|
30
|
Hu Y, Tang W, Cheng P, Zhou Q, Tian X, Wei X, He H. Monitoring circulating tumor cells in vivo by a confocal microscopy system. Cytometry A 2018; 95:657-663. [DOI: 10.1002/cyto.a.23702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/24/2018] [Accepted: 11/29/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Yuhao Hu
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Wanyi Tang
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Pan Cheng
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Quanyu Zhou
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Xiaoying Tian
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Xunbin Wei
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Hao He
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| |
Collapse
|
31
|
Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN. Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl Med 2018; 7:651-663. [PMID: 30070053 PMCID: PMC6127224 DOI: 10.1002/sctm.18-0024] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
The development of mesenchymal stem cells (MSCs) as cell‐based drug delivery vectors for numerous clinical indications, including cancer, has significant promise. However, a considerable challenge for effective translation of these approaches is the limited tumor tropism and broad biodistribution observed using conventional MSCs, which raises concerns for toxicity to nontarget peripheral tissues (i.e., the bad). Consequently, there are a variety of synthetic engineering platforms in active development to improve tumor‐selective targeting via increased homing efficiency and/or specificity of drug activation, some of which are already being evaluated clinically (i.e., the good). Unfortunately, the lack of robust quantification and widespread adoption of standardized methodologies with high sensitivity and resolution has made accurate comparisons across studies difficult, which has significantly impeded progress (i.e., the ugly). Herein, we provide a concise review of active and passive MSC homing mechanisms and biodistribution postinfusion; in addition to in vivo cell tracking methodologies and strategies to enhance tumor targeting with a focus on MSC‐based drug delivery strategies for cancer therapy. Stem Cells Translational Medicine2018;1–13
Collapse
Affiliation(s)
- Timothy E G Krueger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel L J Thorek
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA
| | - Samuel R Denmeade
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - W Nathaniel Brennen
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Abstract
Metastasis contributes to poor prognosis in many types of cancer and is the leading cause of cancer-related deaths. Tumor cells metastasize to distant sites via the circulatory and lymphatic systems. In this review, we discuss the potential of circulating tumor cells for diagnosis and describe the experimental therapeutics that aim to target these disseminating cancer cells. We discuss the advantages and limitations of such strategies and how they may lead to the development of the next generation of antimetastasis treatments.
Collapse
Affiliation(s)
- Eric Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Thong Cao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
33
|
Pang K, Xie C, Yang Z, Suo Y, Zhu X, Wei D, Weng X, Wei X, Gu Z. Monitoring circulating prostate cancer cells by in vivo flow cytometry assesses androgen deprivation therapy on metastasis. Cytometry A 2018; 93:517-524. [PMID: 29683554 DOI: 10.1002/cyto.a.23369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
Abstract
It remains controversial whether surgical castration prolongs survival rate and improves therapy prospects in patients suffering from prostate cancer. We used PC3 cell line to establish prostate tumor models. In vivo flow cytometry and ultrasonic imaging were used to monitor the process of prostate cancer growth, development and metastasis. We found out that the number of circulating tumor cells (CTCs) in orthotopic tumor model was higher than that in subcutaneous tumor model. The CTC number in orthotopic tumor model was due to burst growth, while CTC number in subcutaneous tumor model showed a gradual increase with tumor size. After androgen deprivation therapy (ADT) through testicular extraction, we constructed GFP-PC3 subcutaneous tumor models and orthotopic tumor models. We found dramatically decreased CTC number, relieved symptoms caused by the tumor, and significantly prolonged survival time after testicular extraction in orthotopically transplanted prostate tumor model, while the carcinogenesis process and metastases were little influenced by ADT in subcutaneous tumor model. ADT treatment can restrict tumor growth, decrease the CTC number significantly and inhibit distant invasion through inhibition of tumor proliferation and tumor angiogenesis in orthotopical prostate tumor model. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kai Pang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chengying Xie
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhangru Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.,Radiation Oncology Center, Fudan University Shanghai Cancer Center (FUSCC), Shanghai 200032, China
| | - Yuanzhen Suo
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xi Zhu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaofu Weng
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen 518060, China
| | - Zhengqin Gu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
34
|
Wei D, Pang K, Song Q, Suo Y, He H, Weng X, Gao X, Wei X. Noninvasive monitoring of nanoparticle clearance and aggregation in blood circulation by in vivo flow cytometry. J Control Release 2018; 278:66-73. [PMID: 29625160 DOI: 10.1016/j.jconrel.2018.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Nanoparticles have been widely used in biomedical research as drug carriers or imaging agents for living animals. Blood circulation is crucial for the delivery of nanoparticles, which enter the bloodstream through injection, inhalation, or dermal exposure. However, the clearance kinetics of nanoparticles in blood circulation has been poorly studied, mainly because of the limitations of conventional detection methods, such as insufficient blood sample volumes or low spatial-temporal resolution. In addition, formation of nanoparticle aggregates is a key determinant for biocompatibility and drug delivery efficiency. Aggregation behavior of nanoparticles in blood is studied using dynamic light scattering in serum or serum protein solutions, which is still very different from in vivo condition. In this work, we monitored the dynamics of nanoparticle concentration and formation of nanoparticle aggregates in the bloodstream in live animals using in vivo flow cytometry (IVFC). The results indicated that nanoparticles in smaller size could stay longer in the bloodstream. Polyethylene glycol (PEG)-modification could prolong circulating time and reduce the formation of aggregates in the blood circulation. Our work shows that IVFC can be a powerful tool for pharmacokinetic studies of nanoparticles and other drug carriers, assessing cell-targeting efficiency, as well as potentially measuring cardiac output and hepatic function in vivo.
Collapse
Affiliation(s)
- Dan Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Kai Pang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Yuanzhen Suo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Department of Chemistry and Chemical Biology, Harvard University, Cambridge 02138, USA
| | - Hao He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xiaofu Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen 518060, China.
| |
Collapse
|
35
|
Hartmann C, Patil R, Lin CP, Niedre M. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects. Phys Med Biol 2017; 63:01TR01. [PMID: 29240559 DOI: 10.1088/1361-6560/aa98f9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, 'in vivo flow cytometry' (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.
Collapse
Affiliation(s)
- Carolin Hartmann
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States of America. Institute of Hydrochemistry, Technical University of Munich, Munich, Germany
| | | | | | | |
Collapse
|
36
|
Xie C, Yang Z, Suo Y, Chen Q, Wei D, Weng X, Gu Z, Wei X. Systemically Infused Mesenchymal Stem Cells Show Different Homing Profiles in Healthy and Tumor Mouse Models. Stem Cells Transl Med 2017; 6:1120-1131. [PMID: 28205428 PMCID: PMC5442841 DOI: 10.1002/sctm.16-0204] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) can localize in injured, inflamed, and cancerous tissues after systemic infusion. However, the dynamic homing profile of MSCs in the peripheral blood is not well characterized. Here, using in vivo flow cytometry to noninvasively monitor the dynamics of fluorescence-labeled cells, we found different clearance kinetics of systemically infused MSCs between healthy and tumor mouse models. The circulation times of MSCs in healthy mice and mice with subcutaneous tumors, orthotopically transplanted liver tumors, or metastatic lung tumors were 30, 24, 18, and 12 hours, respectively, suggesting that MSCs actively home to tumor environments. MSCs infiltrated into hepatocellular carcinoma (HCC) sites and preferentially engrafted to micrometastatic regions both in vivo and in vitro. The expression of epidermal growth factor, CXCL9, CCL25, and matrix metalloproteinases-9 by HCC cells differed between primary tumor sites and metastatic regions. By characterizing the homing profiles of systemically perfused MSCs under physiological and cancerous conditions, these findings increase our understanding of the migration of MSCs from the circulation to tumor sites and constitute a basis for developing MSC-based anti-cancer therapeutic strategies. Stem Cells Translational Medicine 2017;6:1120-1131.
Collapse
Affiliation(s)
- Chengying Xie
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Zhangru Yang
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Yuanzhen Suo
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Qianqian Chen
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Dan Wei
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Xiaofu Weng
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| | - Zhengqin Gu
- Department of UrologyXinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092China
| | - Xunbin Wei
- Med‐X Research Institute and School of Biomedical EngineeringShanghaiChina
| |
Collapse
|
37
|
A Noninvasive and Real-Time Method for Circulating Tumor Cell Detection by In Vivo Flow Cytometry. Methods Mol Biol 2017; 1634:247-262. [PMID: 28819857 DOI: 10.1007/978-1-4939-7144-2_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The quantification of circulating tumor cells (CTCs) has been considered a potentially powerful tool in cancer diagnosis and prognosis, as CTCs have been shown to appear very early in cancer development. Great efforts have been made to develop methods that were less invasive and more sensitive to detect CTCs earlier. There is growing evidence that CTC clusters have greater metastatic potential than single CTCs. Therefore, the detection of CTC clusters is also important. This chapter is aimed to introduce a noninvasive technique for CTCs detection named in vivo flow cytometry (IVFC), which has been demonstrated to be capable of monitoring CTCs dynamics continuously. Furthermore, IVFC could be helpful for CTC cluster enumeration.
Collapse
|
38
|
Suo Y, Xie C, Zhu X, Fan Z, Yang Z, He H, Wei X. Proportion of circulating tumor cell clusters increases during cancer metastasis. Cytometry A 2016; 91:250-253. [PMID: 28009470 DOI: 10.1002/cyto.a.23037] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/27/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022]
Abstract
Circulating tumor cell (CTC) clusters are found among CTCs and show significantly greater potential for an important role in cancer metastasis than single CTCs, which have been traditionally believed as the majority of CTCs. The accurate proportion and dynamics of CTC clusters remain unclear due to the fact that CTCs in blood flow are very difficult to detect in vivo and in vitro. CTC clusters are even more difficult to be distinguished from CTCs without perturbation by state-of-the-art detection methods. Here, we demonstrate that by using in vivo flow cytometry (IVFC), we can reliably measure the proportion and dynamics of CTC clusters in two murine tumor models. CTC clusters are easily identified by their unique fluorescent pattern with multiple peaks and wider time duration. We find that the proportion of CTC clusters increases significantly during cancer metastasis in both mouse models, the orthotopic liver cancer and the subcutaneous prostate cancer models. Our results suggest that CTC clusters account for a much larger proportion of CTCs than previously anticipated. Hence this report might provide a new-level of understanding of CTCs during cancer development and progression. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yuanzhen Suo
- Department of Biomedical Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chengying Xie
- Department of Biomedical Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xi Zhu
- Department of Biomedical Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhichao Fan
- Department of Biomedical Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhangru Yang
- Department of Biomedical Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hao He
- Department of Biomedical Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xunbin Wei
- Department of Biomedical Engineering, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
39
|
Yao J, Feng J, Gao X, Wei D, Kang T, Zhu Q, Jiang T, Wei X, Chen J. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer. Biomaterials 2016; 113:1-17. [PMID: 27794222 DOI: 10.1016/j.biomaterials.2016.10.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022]
Abstract
Antiangiogenesis therapy has been served as a potent cancer treatment strategy for decades, yet disrupting neovasculature would provoke tumor cells into invasive growth and result in distal metastasis. The basic cause of cancer metastasis can be traced down to the presence of circulating tumor cells (CTCs) which detach from primary tumor site and act as 'seeds'. Epithelial cell adhesion molecule (EpCAM) is a potential biomarker for selective capture of epithelium-derived CTCs. Here, we integrated tumor neovessles-targetable ligands K237 peptide with Ep23 aptamer against EpCAM into a single drug-loaded nanoplatform using paclitaxel (PTX) as the model drug, aiming at damaging the primary tumor and neutralizing CTCs simultaneously to achieve a synergistic anti-tumor therapeutic effect. Enhanced cellular uptake, cell apoptosis-induction and cell-viability inhibition efficiency of the peptide and aptamer dual-functionalized nanoparticles (dTNP) were observed in both human umbilical vein endothelial cells (HUVEC) and 4T1 cells in vitro. Using cone-and-plate viscometer to create venous flow velocity, dTNP was also found to be able to capture CTCs under shear stress. The CTC-targeting and neutralization effect of dTNP in bloodstream and 4T1-GFP cell-derived lung metastasis mice model was confirmed via in vivo flow cytometry (IVFC), intravital imaging and confocal microscopy analysis. As a result, the orthotropic breast tumor-bearing mice administrated with PTX-loaded dTNP exhibited the optimal therapeutic effect. Taken together, the findings here provided direct evidence that the tumor neovasculature and CTCs dual-targeting drug delivery system could provide a novel modality for the treatment of highly-invasive breast cancer.
Collapse
Affiliation(s)
- Jianhui Yao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Jingxian Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Dan Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, PR China
| | - Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Qianqian Zhu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Tianze Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, PR China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, PR China.
| |
Collapse
|
40
|
Lyons J, Polmear M, Mineva ND, Romagnoli M, Sonenshein GE, Georgakoudi I. Endogenous light scattering as an optical signature of circulating tumor cell clusters. BIOMEDICAL OPTICS EXPRESS 2016; 7:1042-1050. [PMID: 27231606 PMCID: PMC4866447 DOI: 10.1364/boe.7.001042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/13/2016] [Accepted: 02/13/2016] [Indexed: 06/05/2023]
Abstract
Circulating tumor cell clusters (CTCCs) are significantly more likely to form metastases than single tumor cells. We demonstrate the potential of backscatter-based flow cytometry (BSFC) to detect unique light scattering signatures of CTCCs in the blood of mice orthotopically implanted with breast cancer cells and treated with an anti-ADAM8 or a control antibody. Based on scattering detected at 405, 488, and 633 nm from blood samples flowing through microfluidic devices, we identified 14 CTCCs with large scattering peak widths and intensities, whose presence correlated strongly with metastasis. These initial studies demonstrate the potential to detect CTCCs via label-free BSFC.
Collapse
Affiliation(s)
- Joe Lyons
- Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts, 02155, USA
- These authors contributed equally to this work
| | - Michael Polmear
- Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts, 02155, USA
- These authors contributed equally to this work
| | - Nora D. Mineva
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mathilde Romagnoli
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Gail E. Sonenshein
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Irene Georgakoudi
- Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts, 02155, USA
| |
Collapse
|
41
|
He G, Xu D, Qin H, Yang S, Xing D. In vivo cell characteristic extraction and identification by photoacoustic flow cytography. BIOMEDICAL OPTICS EXPRESS 2015; 6:3748-3756. [PMID: 26504626 PMCID: PMC4605035 DOI: 10.1364/boe.6.003748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 05/29/2023]
Abstract
We present a photoacoustic flow cytography with fast cross-sectional (B-scan) imaging to precisely identify specific cells in vivo. The B-scan imaging speed of the system is up to 200 frame/s with a lateral resolution of 1.5 μm, which allows to dynamically image the flowing cells within the microvascular. The shape, size and photoacoustic intensity of the target cells are extracted from streaming images and integrated into a standard pattern to distinguish cell types. Circulating red blood cells and melanoma cells in blood vessels are simultaneously identified on melanoma-bearing mouse model. The results demonstrate that in vivo photoacoustic flow cytography can provide cells characteristics analysis and cell type's visual identification, which will be applied for noninvasively monitoring circulating tumor cells (CTCs) and analyzing hematologic diseases.
Collapse
Affiliation(s)
- Guo He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- These authors contributed equally
| | - Dong Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- These authors contributed equally
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
42
|
Kapnisis KK, Pitsillides CM, Prokopi MS, Lapathitis G, Karaiskos C, Eleftheriou PC, Brott BC, Anderson PG, Lemons JE, Anayiotos AS. In vivomonitoring of the inflammatory response in a stented mouse aorta model. J Biomed Mater Res A 2015; 104:227-38. [DOI: 10.1002/jbm.a.35560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/07/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Konstantinos K. Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering; Cyprus University of Technology; Limassol 3036 Cyprus
| | - Costas M. Pitsillides
- Department of Mechanical Engineering and Materials Science and Engineering; Cyprus University of Technology; Limassol 3036 Cyprus
| | | | - George Lapathitis
- Neurology Clinic E; Cyprus Institute of Neurology and Genetics; Nicosia 2370 Cyprus
| | - Christos Karaiskos
- Neurology Clinic E; Cyprus Institute of Neurology and Genetics; Nicosia 2370 Cyprus
| | - Polyvios C. Eleftheriou
- Department of Mechanical Engineering and Materials Science and Engineering; Cyprus University of Technology; Limassol 3036 Cyprus
| | - Brigitta C. Brott
- Department of Medicine; University of Alabama at Birmingham; Birmingham Alabama 35294-0111
| | - Peter G. Anderson
- Department of Pathology; University of Alabama at Birmingham; Birmingham Alabama 35294-0111
| | - Jack E. Lemons
- Department of Prosthodontics; University of Alabama at Birmingham; Birmingham Alabama 35294-0111
| | - Andreas S. Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering; Cyprus University of Technology; Limassol 3036 Cyprus
| |
Collapse
|
43
|
Choi M, Kwok SJJ, Yun SH. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology (Bethesda) 2015; 30:40-9. [PMID: 25559154 DOI: 10.1152/physiol.00019.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microscopic imaging techniques to visualize cellular behaviors in their natural environment play a pivotal role in biomedical research. Here, we review how recent technical advances in intravital microscopy have enabled unprecedented access to cellular physiology in various organs of mice in normal and diseased states.
Collapse
Affiliation(s)
- Myunghwan Choi
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Sheldon J J Kwok
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; and Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts
| | - Seok Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts; and Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts
| |
Collapse
|
44
|
Juratli MA, Siegel ER, Nedosekin DA, Sarimollaoglu M, Jamshidi-Parsian A, Cai C, Menyaev YA, Suen JY, Galanzha EI, Zharov VP. In Vivo Long-Term Monitoring of Circulating Tumor Cells Fluctuation during Medical Interventions. PLoS One 2015; 10:e0137613. [PMID: 26367280 PMCID: PMC4569172 DOI: 10.1371/journal.pone.0137613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
The goal of this research was to study the long-term impact of medical interventions on circulating tumor cell (CTC) dynamics. We have explored whether tumor compression, punch biopsy or tumor resection cause dissemination of CTCs into peripheral blood circulation using in vivo fluorescent flow cytometry and breast cancer-bearing mouse model inoculated with MDA-MB-231-Luc2-GFP cells in the mammary gland. Two weeks after tumor inoculation, three groups of mice were the subject of the following interventions: (1) tumor compression for 15 minutes using 400 g weight to approximate the pressure during mammography; (2) punch biopsy; or (3) surgery. The CTC dynamics were determined before, during and six weeks after these interventions. An additional group of tumor-bearing mice was used as control and did not receive an intervention. The CTC dynamics in all mice were monitored weekly for eight weeks after tumor inoculation. We determined that tumor compression did not significantly affect CTC dynamics, either during the procedure itself (P = 0.28), or during the 6-week follow-up. In the punch biopsy group, we observed a significant increase in CTC immediately after the biopsy (P = 0.02), and the rate stayed elevated up to six weeks after the procedure in comparison to the tumor control group. The CTCs in the group of mice that received a tumor resection disappeared immediately after the surgery (P = 0.03). However, CTC recurrence in small numbers was detected during six weeks after the surgery. In the future, to prevent these side effects of medical interventions, the defined dynamics of intervention-induced CTCs may be used as a basis for initiation of aggressive anti-CTC therapy at time-points of increasing CTC number.
Collapse
Affiliation(s)
- Mazen A. Juratli
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- Department of General and Visceral Surgery, University hospital of Frankfurt, Frankfurt am Main, Germany
- * E-mail:
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Dmitry A. Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Azemat Jamshidi-Parsian
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Chengzhong Cai
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Yulian A. Menyaev
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - James Y. Suen
- Department of Otolaryngology - Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ekaterina I. Galanzha
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
| | - Vladimir P. Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, United States of America
- Department of Otolaryngology - Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
45
|
Yan J, Fan Z, Wu X, Xu M, Jiang J, Tan C, Wu W, Wei X, Zhou J. Circulating tumor cells are correlated with disease progression and treatment response in an orthotopic hepatocellular carcinoma model. Cytometry A 2015; 87:1020-8. [PMID: 26355643 DOI: 10.1002/cyto.a.22782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 07/15/2015] [Accepted: 08/23/2015] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor characterized by rapid progression, poor prognosis, and frequent hematogenous metastasis. A minimally invasive diagnostic biomarker that can predict disease progression and treatment response would be of extraordinary benefit. Therefore, we have investigated whether the number of circulating tumor cells (CTCs) is correlated with disease progression and treatment response in HCC. Here we report that the number of CTCs, monitored by in vivo flow cytometry (IVFC), is strongly correlated with disease progression and treatment response in a highly metastatic orthotopic nude mouse model of green fluorescent protein (GFP)-labeled HCC. Sorafenib treatment reduces the number of CTCs significantly. The decreased number of CTCs is consistent with low lung metastasis. This study has demonstrated a considerable clinical value of CTCs as a biomarker in predicting disease progression and monitoring therapeutic efficacy in patients with HCC.
Collapse
Affiliation(s)
- Jun Yan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.,Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Surgery, Fujian Provincial Tumor Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, 350014, People's Republic of China
| | - Zhichao Fan
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiufeng Wu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Surgery, Fujian Provincial Tumor Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, 350014, People's Republic of China
| | - Min Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Jiahao Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Changjun Tan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.,Institutes of Biomedical Science, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Science, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
46
|
Qian W, Zhang Y, Chen W. Capturing Cancer: Emerging Microfluidic Technologies for the Capture and Characterization of Circulating Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3850-72. [PMID: 25993898 DOI: 10.1002/smll.201403658] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/13/2015] [Indexed: 05/04/2023]
Abstract
Circulating tumor cells (CTCs) escape from primary or metastatic lesions and enter into circulation, carrying significant information of cancer progression and metastasis. Capture of CTCs from the bloodstream and the characterization of these cells hold great significance for the detection, characterization, and monitoring of cancer. Despite the urgent need from clinics, it remains a major challenge to capture and retain these rare cells from human blood with high specificity and yield. Recent exciting advances in micro/nanotechnology, microfluidics, and materials science have enable versatile, robust, and efficient cell isolation and processing through the development of new micro/nanoengineered devices and biomaterials. This review provides a summary of recent progress along this direction, with a focus on emerging methods for CTC capture and processing, and their application in cancer research. Furthermore, classical as well as emerging cellular characterization methods are reviewed to reveal the role of CTCs in cancer progression and metastasis, and hypotheses are proposed in regard to the potential emerging research directions most desired in CTC-related cancer research.
Collapse
Affiliation(s)
- Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Yan Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|
47
|
Suo Y, Liu T, Xie C, Wei D, Tan X, Wu L, Wang X, He H, Shi G, Wei X, Shi C. Near infrared in vivo flow cytometry for tracking fluorescent circulating cells. Cytometry A 2015; 87:878-84. [DOI: 10.1002/cyto.a.22711] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanzhen Suo
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Tao Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University; Chongqing 400038 China
| | - Chengying Xie
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Dan Wei
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Xu Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University; Chongqing 400038 China
| | - Liao Wu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University; Chongqing 400038 China
| | - Xiaoling Wang
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Hao He
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Guohua Shi
- Chinese Academy of Sciences, The Key Laboratory on Adaptive Optics; Chengdu 610209 China
- Chinese Academy of Sciences Institute of Optics and Electronics, The Laboratory on Adaptive Optics; Chengdu 610209 China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University; Chongqing 400038 China
| |
Collapse
|
48
|
Strohm EM, Kolios MC. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics. Cytometry A 2015; 87:741-9. [DOI: 10.1002/cyto.a.22698] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/05/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Eric M. Strohm
- Department of Physics; Ryerson University; Toronto Canada
| | | |
Collapse
|
49
|
Seo H, Hwang Y, Choe K, Kim P. In vivo quantitation of injected circulating tumor cells from great saphenous vein based on video-rate confocal microscopy. BIOMEDICAL OPTICS EXPRESS 2015; 6:2158-67. [PMID: 26114035 PMCID: PMC4473750 DOI: 10.1364/boe.6.002158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 05/14/2023]
Abstract
The number of circulating tumor cell (CTC) in the peripheral blood of cancer patients can be a valuable biomarker for cancer diagnosis and treatment monitoring. In this study, we implemented a custom-design video-rate confocal microscopy system in capable of direct visualization of fast flowing CTC at great saphenous vein (GSV) of a live animal model in vivo. Continuous acquisition of video-rate images at GSV revealed the highly dynamic time-dependent changes in the number of intravenously injected circulating tumor cells. By extracting a calibration factor through the hemocytometric analysis of intravenously injected long-circulating red blood cells, we established a novel quantitation method for CTC in whole body blood in vivo.
Collapse
|
50
|
Markovic S, Li S, Niedre M. Performance of computer vision in vivo flow cytometry with low fluorescence contrast. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:035005. [PMID: 25822954 PMCID: PMC4377326 DOI: 10.1117/1.jbo.20.3.035005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/03/2015] [Indexed: 05/05/2023]
Abstract
Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.
Collapse
Affiliation(s)
- Stacey Markovic
- Northeastern University, Department of Electrical and Computer Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Address all correspondence to: Stacey Markovic, E-mail:
| | - Siyuan Li
- Northeastern University, Department of Electrical and Computer Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mark Niedre
- Northeastern University, Department of Electrical and Computer Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|