1
|
Hu S, Ji J, Chen X, Tong R. Dielectrophoresis: Measurement technologies and auxiliary sensing applications. Electrophoresis 2024; 45:1574-1596. [PMID: 38738705 DOI: 10.1002/elps.202300299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Dielectrophoresis (DEP), which arises from the interaction between dielectric particles and an aqueous solution in a nonuniform electric field, contributes to the manipulation of nano and microparticles in many fields, including colloid physics, analytical chemistry, molecular biology, clinical medicine, and pharmaceutics. The measurement of the DEP force could provide a more complete solution for verifying current classical DEP theories. This review reports various imaging, fluidic, optical, and mechanical approaches for measuring the DEP forces at different amplitudes and frequencies. The integration of DEP technology into sensors enables fast response, high sensitivity, precise discrimination, and label-free detection of proteins, bacteria, colloidal particles, and cells. Therefore, this review provides an in-depth overview of DEP-based fabrication and measurements. Depending on the measurement requirements, DEP manipulation can be classified into assistance and integration approaches to improve sensor performance. To this end, an overview is dedicated to developing the concept of trapping-on-sensing, improving its structure and performance, and realizing fully DEP-assisted lab-on-a-chip systems.
Collapse
Affiliation(s)
- Sheng Hu
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, P. R. China
| | - Junyou Ji
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
| | - Xiaoming Chen
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, P. R. China
| | - Ruijie Tong
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, P. R. China
| |
Collapse
|
2
|
Zavatski S, Martin OJF. Visual and Quantitative Analysis of the Trapping Volume in Dielectrophoresis of Nanoparticles. NANO LETTERS 2024; 24:10305-10312. [PMID: 39133749 PMCID: PMC11342383 DOI: 10.1021/acs.nanolett.4c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Nanoparticle manipulation requires careful analysis of the forces at play. Unfortunately, traditional force measurement techniques based on the particle velocity do not provide sufficient resolution, while balancing approaches involving counteracting forces are often cumbersome. Here, we demonstrate that a nanoparticle dielectrophoretic response can be quantitatively studied by a straightforward visual delineation of the dielectrophoretic trapping volume. We reveal this volume by detecting the width of the region depleted of gold nanoparticles by the dielectrophoretic force. Comparison of the measured widths for various nanoparticle sizes with numerical simulations obtained by solving the particle-conservation equation shows excellent agreement, thus providing access to the particle physical properties, such as polarizability and size. These findings can be further extended to investigate various types of nano-objects, including bio- and molecular aggregates, and offer a robust characterization tool that can enhance the control of matter at the nanoscale.
Collapse
Affiliation(s)
- Siarhei Zavatski
- Nanophotonics and Metrology
Laboratory (NAM), Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology
Laboratory (NAM), Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Yang M, Liu J, Huang W, Chang J, Yang S, Shen H, Liu X, Gong H, Luo Q, Yang X. Picosecond laser capture microdissection based on edge catapulting combined with dielectrophoretic force. BIOMEDICAL OPTICS EXPRESS 2024; 15:3950-3961. [PMID: 38867793 PMCID: PMC11166434 DOI: 10.1364/boe.525630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
The spatial omics information analysis of heterogeneous cells or cell populations is of great importance for biomedical research. Herein, we proposed a picosecond laser capture microdissection boosted by edge catapulting combined with dielectrophoretic force (ps-LMED) that enables fast and non-invasive acquisition of uncontaminated cells and cell populations for downstream molecular assays. The target cells were positioned under a microscope and separated by a focused picosecond pulsed laser. The system employed the plasma expansion force during cutting to lift the target and captured it under dielectrophoretic force from the charged collection cap eventually. The principle of our system has been validated by both theoretical analysis and practical experiments. The results indicated that our system can collect samples ranging from a single cell with a diameter of a few microns to large tissues with a volume of 532,500 µm3 at the moment finishing the cutting, without further operations. The cutting experiments of living cells and ribonucleic acid (RNA) and protein omics analysis results of collected targets demonstrated the advantage of non-destructiveness to the samples and feasibility in omics applications.
Collapse
Affiliation(s)
- Minjun Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinxin Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenhui Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jin Chang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang Yang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huali Shen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaohui Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Qingming Luo
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| |
Collapse
|
4
|
Li G, Ding Z, Wang M, Zhao Z, Xie S, Liu F. Accurate Micromanipulation of Optically Induced Dielectrophoresis Based on a Data-Driven Kinematic Model. MICROMACHINES 2022; 13:mi13070985. [PMID: 35888802 PMCID: PMC9322627 DOI: 10.3390/mi13070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022]
Abstract
The precise control method plays a crucial role in improving the accuracy and efficiency of the micromanipulation of optically induced dielectrophoresis (ODEP). However, the unmeasurable nature of the ODEP force is a great challenge for the precise automatic manipulation of ODEP. Here, we propose a data-driven kinematic model to build an automatic control system for the precise manipulation of ODEP. The kinematic model is established by collecting the input displacement of the optical pattern and the output displacements of the manipulated object. Then, the control system based on the model was designed, and its feasibility and control precise were validated by numerical simulations and actual experiments on microsphere manipulation. In addition, the applications of ODEP manipulation in two typical scenarios further demonstrated the feasibility of the designed control system. This work proposes a new method to realize the precise manipulation of ODEP technology by establishing a kinematic model and a control system for micromanipulation, and it also provides a general approach for the improvement of the manipulation accuracy of other optoelectronic tweezers.
Collapse
Affiliation(s)
- Gongxin Li
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China; (Z.D.); (M.W.); (Z.Z.); (F.L.)
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Correspondence:
| | - Zhanqiao Ding
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China; (Z.D.); (M.W.); (Z.Z.); (F.L.)
| | - Mindong Wang
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China; (Z.D.); (M.W.); (Z.Z.); (F.L.)
| | - Zhonggai Zhao
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China; (Z.D.); (M.W.); (Z.Z.); (F.L.)
| | - Shuangxi Xie
- School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Fei Liu
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China; (Z.D.); (M.W.); (Z.Z.); (F.L.)
| |
Collapse
|
5
|
Sasanpour M, Azadbakht A, Mollaei P, Reihani SNS. Proper measurement of pure dielectrophoresis force acting on a RBC using optical tweezers. BIOMEDICAL OPTICS EXPRESS 2019; 10:5639-5649. [PMID: 31799036 PMCID: PMC6865112 DOI: 10.1364/boe.10.005639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The force experienced by a neutral dielectric object in the presence of a spatially non-uniform electric field is referred to as dielectrophoresis (DEP). The proper quantification of DEP force in the single-cell level could be of great importance for the design of high-efficiency micro-fluidic systems for the separation of biological cells. In this report we show how optical tweezers can be properly utilized for proper quantification of DEP force experienced by a human RBC. By tuning the temporal frequency of the applied electric field and also performing control experiments and comparing our experimental results with that of theoretically calculated, we show that the measured force is a pure DEP force. Our results show that in the frequency range of 0.1-3 M H z the DEP force acting on RBC is frequency independent.
Collapse
|
6
|
Temperature-driven volume phase transition of a single stimuli-responsive microgel particle using optical tweezers. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3952-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Choi S, Lee G, Park IS, Son M, Kim W, Lee H, Lee SY, Na S, Yoon DS, Bashir R, Park J, Lee SW. Detection of Silver Ions Using Dielectrophoretic Tweezers-Based Force Spectroscopy. Anal Chem 2016; 88:10867-10875. [DOI: 10.1021/acs.analchem.6b00107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seungyeop Choi
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Gyudo Lee
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
- School
of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - In Soo Park
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Myeonggu Son
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Woong Kim
- Department
of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Hyungbeen Lee
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sei-Young Lee
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sungsoo Na
- Department
of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dae Sung Yoon
- Department
of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Rashid Bashir
- Department
of Bioengineering, University Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jinsung Park
- Department
of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Sang Woo Lee
- Department
of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
8
|
Pesce G, Rusciano G, Zito G, Sasso A. Simultaneous measurements of electrophoretic and dielectrophoretic forces using optical tweezers. OPTICS EXPRESS 2015; 23:9363-9368. [PMID: 25968766 DOI: 10.1364/oe.23.009363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein, charged microbeads handled with optical tweezers are used as a sensitive probe for simultaneous measurements of electrophoretic and dielectrophoretic forces. We first determine the electric charge carried by a single bead by keeping it in a predictable uniform electric field produced by two parallel planar electrodes, then, we examine same bead's response in proximity to a tip electrode. In this case, besides electric forces, the bead simultaneously experiences non-negligible dielectrophoretic forces produced by the strong electric field gradient. The stochastic and deterministic motions of the trapped bead are theoretically and experimentally analysed in terms of the autocorrelation function. By fitting the experimental data, we are able to extract simultaneously the spatial distribution of electrophoretic and dielectrophoretic forces around the tip. Our approach can be used for determining actual, total force components in the presence of high-curvature electrodes or metal scanning probe tips.
Collapse
|
9
|
Abstract
There is a growing interest in protein dielectrophoresis (DEP) for biotechnological and pharmaceutical applications. However, the DEP behavior of proteins is still not well understood which is important for successful protein manipulation. In this paper, we elucidate the information gained in dielectric spectroscopy (DS) and electrochemical impedance spectroscopy (EIS) and how these techniques may be of importance for future protein DEP manipulation. EIS and DS can be used to determine the dielectric properties of proteins predicting their DEP behavior. Basic principles of EIS and DS are discussed and related to protein DEP through examples from previous studies. Challenges of performing DS measurements as well as potential designs to incorporate EIS and DS measurements in DEP experiments are also discussed.
Collapse
Affiliation(s)
| | - Alexandra Ros
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
10
|
Honegger T, Peyrade D. Dielectrophoretic properties of engineered protein patterned colloidal particles. BIOMICROFLUIDICS 2012; 6:44115. [PMID: 24339848 PMCID: PMC3555509 DOI: 10.1063/1.4771544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/27/2012] [Indexed: 05/23/2023]
Abstract
This work determines the dielectrophoretic response of surface modified polystyrene and silica colloidal particles by experimentally measuring their Clausius-Mossotti factors. Commercial charged particles, fabricated ones coated with fibronectin, and Janus particles that have been grafted with fibronectin on one side only were investigated. We show that the dielectrophoretic response of such particles can be controlled by the modification of the chemistry or the anisotropy of their surface. Moreover, by modelling the polarizabilities of those particles, the dielectric parameters of the particles and the grafted layer of protein can be measured.
Collapse
Affiliation(s)
- T Honegger
- LTM, CNRS-UJF, CEA-LETI, 17 av. des Martyrs, 38054 Grenoble, France
| | | |
Collapse
|
11
|
Park H, Wei MT, Ou-Yang HD. Dielectrophoresis force spectroscopy for colloidal clusters. Electrophoresis 2012; 33:2491-7. [PMID: 22899256 DOI: 10.1002/elps.201100643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optical trapping-based force spectroscopy was used to measure the frequency-dependent DEP forces and DEP crossover frequencies of colloidal polymethyl methacrylate spheres and clusters. A single sphere or cluster, held by an optical tweezer, was positioned near the center of a pair of gold-film electrodes where alternating current elecroosmosis flow was negligible. Use of amplitude modulation and phase-sensitive lock-in detection for accurate measurement of the DEP force yielded new insight into dielectric relaxation mechanisms near the crossover frequencies. On one hand, the size dependence of the DEP force near the crossover frequencies indicates that the dominant polarization mechanism is a volume effect. On the other hand, the power-law dependence of the crossover frequency on the particle radius with an exponent of -2 indicates the dielectric relaxation is more likely because of ionic diffusion across the particle surface, suggesting the dominant polarization mechanism may be a surface polarization effect. Better theories are needed to explain the experiment. Nevertheless, the strong size dependence of the crossover frequencies suggests the use of DEP for size sorting of micron-sized particles.
Collapse
Affiliation(s)
- Hyunjoo Park
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
| | | | | |
Collapse
|