1
|
Photoacoustic Imaging in Biomedicine and Life Sciences. Life (Basel) 2022; 12:life12040588. [PMID: 35455079 PMCID: PMC9028050 DOI: 10.3390/life12040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022] Open
Abstract
Photo-acoustic imaging, also known as opto-acoustic imaging, has become a widely popular modality for biomedical applications. This hybrid technique possesses the advantages of high optical contrast and high ultrasonic resolution. Due to the distinct optical absorption properties of tissue compartments and main chromophores, photo-acoustics is able to non-invasively observe structural and functional variations within biological tissues including oxygenation and deoxygenation, blood vessels and spatial melanin distribution. The detection of acoustic waves produced by a pulsed laser source yields a high scaling range, from organ level photo-acoustic tomography to sub-cellular or even molecular imaging. This review discusses significant novel technical solutions utilising photo-acoustics and their applications in the fields of biomedicine and life sciences.
Collapse
|
2
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
3
|
Song J, Zeng N, Guo W, Guo J, Ma H. Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. BIOMEDICAL OPTICS EXPRESS 2021; 12:4821-4836. [PMID: 34513227 PMCID: PMC8407829 DOI: 10.1364/boe.426653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 05/09/2023]
Abstract
We propose a continuous Stokes imaging system with a refresh rate of several seconds, instead of a traditional Mueller measurement setup, to quickly track the microstructural changes of tissues during the optical clearing process. The effectiveness of this fast Stokes imaging applied in monitoring the dynamic process is first validated by three designed experiments with a polarization state that changes continuously and rapidly, and is further confirmed by gradual changes in polarization image contrast and resolution with clearing. By comparison with experiments from different tissue samples with the same agent, the fast Stokes response curve can improve the analysis ability of photon polarization behavior connected with the complicated changes of tissue characteristics.
Collapse
Affiliation(s)
- Jiawei Song
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Tsinghua University, Department of Physics, 1 Tsinghua Yuan, Beijing 100084, China
| | - Nan Zeng
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Wei Guo
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Tsinghua University, Department of Biomedical Engineering, 1 Tsinghua Yuan, Beijing 100084, China
| | - Jun Guo
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hui Ma
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Tsinghua University, Department of Physics, 1 Tsinghua Yuan, Beijing 100084, China
- Center for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518071, China
| |
Collapse
|
4
|
Du J, Yang S, Qiao Y, Lu H, Dong H. Recent progress in near-infrared photoacoustic imaging. Biosens Bioelectron 2021; 191:113478. [PMID: 34246125 DOI: 10.1016/j.bios.2021.113478] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/01/2023]
Abstract
The emergence of the photoacoustic imaging (PAI) expands the application of biomolecules bioimaging in cells, various tissues, and living body to monitor multiple physiological processes in complex internal environments. The PAI possesses intriguing properties such as non-invasive, highly selective excitation, and weak signal attenuation. Especially, the near-infrared (NIR) PAI displays low optical absorption and scattering, good temporal or spatial resolution and deep penetration, holds great potential in biomedical applications. We briefly compare different imaging modalities to provide a comprehensive understanding of their characteristics and related applications, highlighting the feature of the PAI. The principle of PAI is then delineated and the emerging NIR-PAI is discussed. We then focus on elaboration of the recent achievement of typical NIR-PAI contrast and their biomedical applications, especially the strategies used to improve contrast rational design and PAI performance are summarized. The PAI-related multimodal imaging approaches for improving imaging accuracy are also covered in the review. Finally, the challenges and prospective are pointed out for attracting more researchers to accelerate the development of PAI.
Collapse
Affiliation(s)
- Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Shuangshuang Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China; Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China.
| |
Collapse
|
5
|
Wang Y, Xi L. Chronic cranial window for photoacoustic imaging: a mini review. Vis Comput Ind Biomed Art 2021; 4:15. [PMID: 34037873 PMCID: PMC8155166 DOI: 10.1186/s42492-021-00081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
Photoacoustic (PA) microscopy is being increasingly used to visualize the microcirculation of the brain cortex at the micron level in living rodents. By combining it with long-term cranial window techniques, vasculature can be monitored over a period of days extending to months through a field of view. To fulfill the requirements of long-term in vivo PA imaging, the cranial window must involve a simple and rapid surgical procedure, biological compatibility, and sufficient optical-acoustic transparency, which are major challenges. Recently, several cranial window techniques have been reported for longitudinal PA imaging. Here, the development of chronic cranial windows for PA imaging is reviewed and its technical details are discussed, including window installation, imaging quality, and longitudinal stability.
Collapse
Affiliation(s)
- Yongchao Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Liu Y, Zhu D, Xu J, Wang Y, Feng W, Chen D, Li Y, Liu H, Guo X, Qiu H, Gu Y. Penetration-enhanced optical coherence tomography angiography with optical clearing agent for clinical evaluation of human skin. Photodiagnosis Photodyn Ther 2020; 30:101734. [PMID: 32171879 DOI: 10.1016/j.pdpdt.2020.101734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Optical coherence tomography angiography (OCTA) is an emerging imaging technique which shows its advantages over visualizing microcirculation with free label. However, its shortcomings in imaging depth limit its development in dermatological field. Nowadays, the newly optical clearing agent (OCA) designed for skin optical imaging demonstrates its potential. In our study, whether this OCA can improve the imaging ability of OCTA in healthy human skin and whether the combination of them is beneficial to compare the lesions and the contralateral normal skins in the patients with port wine stains (PWS) have been investigated. METHODS Five healthy volunteers and 3 PWS patients were recruited in this study. In terms of healthy people, the opisthenar area which has same structure information as facial skin was taken for investigating the OCA's ability of enhancing OCTA imaging depth on healthy human skin, besides, in order to verifying whether the exists of skin corneum interfere OCA's function, we compared the effect of only using OCA with that of comprehensive using pre-processing skin and OCA. There are one physical removing corneum method by using medical tape to strip opisthenar skin for over 20-time and one chemical way through applying exfoliating cream. For PWS patient, the combining using OCA and OCTA was applied at the lesion area and the contralateral normal area for the purpose of verifying their ability to provide the information of vessels. RESULTS This novel OCA had excellent efficacy to increase the penetration depth of human opisthenar skin for the OCTA imaging by approximately 0.16 ± 0.03 mm. Pre-processing of stratum corneum with an exfoliating cream or medical tape stripping did not further benefit the penetrating efficacy of the OCA. Moreover, according to a comprehensive analysis of the OCTA images enhanced by the OCA, the PWS lesions usually have larger density and diameter of the vessels which located in deep layers (beyond 0.21 mm) than the contralateral normal skin. CONCLUSIONS The OCTA imaging depth and contrast were significantly improved by the OCA. The OCA application is a simple and efficient clinical procedure for OCTA enhancement. Moreover, it demonstrated great clinical value to compare the normal skin and the PWS lesions in the patients by the enhanced OCTA imaging.
Collapse
Affiliation(s)
- Yidi Liu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Dan Zhu
- Huazhong University of Science and Technology, Key Laboratory of Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Wuhan, 430033, China
| | - Jingjiang Xu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, 528000, China
| | - Ying Wang
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Wei Feng
- Central People's Hospital of Zhanjiang, Zhanjiang, 524000, China
| | - Defu Chen
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Yunqi Li
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Haolin Liu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Xianghuan Guo
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Ying Gu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China; Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
7
|
|
8
|
Sdobnov AY, Lademann J, Darvin ME, Tuchin VV. Methods for Optical Skin Clearing in Molecular Optical Imaging in Dermatology. BIOCHEMISTRY (MOSCOW) 2019; 84:S144-S158. [PMID: 31213200 DOI: 10.1134/s0006297919140098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This short review describes recent progress in using optical clearing (OC) technique in skin studies. Optical clearing is an efficient tool for enhancing the probing depth and data quality in multiphoton microscopy and Raman spectroscopy. Here, we discuss the main mechanisms of OC, its safety, advantages, and limitations. The data on the OC effect on the skin water content are presented. It was demonstrated that 70% glycerol and 100% OmnipaqueTM 300 reduce the water content in the skin. Both OC agents (OCAs) significantly affect the strongly bound and weakly bound water. However, OmnipaqueTM 300 causes considerably less skin dehydration than glycerol. In addition, the results of examination of the OC effect on autofluorescence in two-photon excitation and background fluorescence in Raman scattering at different skin depths are presented. It is shown that OmnipaqueTM 300 is a promising OCA due to its ability to reduce background fluorescence in the upper skin layers. The possibility of multimodal imaging combining optical methods and OC technique is discussed.
Collapse
Affiliation(s)
- A Yu Sdobnov
- Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, 90570, Finland. .,Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia
| | - J Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - M E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - V V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia.,Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, 410028, Russia.,Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
9
|
Feng W, Shi R, Zhang C, Liu S, Yu T, Zhu D. Visualization of skin microvascular dysfunction of type 1 diabetic mice using in vivo skin optical clearing method. JOURNAL OF BIOMEDICAL OPTICS 2018. [PMID: 30120827 DOI: 10.1117/12.2288265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To realize visualization of the skin microvascular dysfunction of type 1 diabetic mice, we combined laser speckle contrast imaging and hyperspectral imaging to simultaneously monitor the noradrenaline (NE)-induced responses of vascular blood flow and blood oxygen with the development of diabetes through optical clearing skin window. The main results showed that venous and arterious blood flow decreased without recovery after injection of NE; furthermore, the decrease of arterious blood oxygen induced by NE greatly weakened, especially for 2- and 4-week diabetic mice. This change in vasoconstricting effect of NE was related to the expression of α1-adrenergic receptor. This study demonstrated that skin microvascular function was a potential research biomarker for early warning in the occurrence and development of diabetes. The in vivo skin optical clearing method provides a feasible solution to realize visualization of cutaneous microvessels for monitoring microvascular reactivity under pathological conditions. In addition, visual monitoring of skin microvascular function response has guiding significance for early diagnosis of diabetes and clinical research.
Collapse
Affiliation(s)
- Wei Feng
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britto, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovat, China
| | - Rui Shi
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britto, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovat, China
| | - Chao Zhang
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britto, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovat, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britto, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovat, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britto, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovat, China
| | - Dan Zhu
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britto, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovat, China
| |
Collapse
|
10
|
Feng W, Shi R, Zhang C, Liu S, Yu T, Zhu D. Visualization of skin microvascular dysfunction of type 1 diabetic mice using in vivo skin optical clearing method. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-9. [PMID: 30120827 PMCID: PMC6975238 DOI: 10.1117/1.jbo.24.3.031003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/10/2018] [Indexed: 05/20/2023]
Abstract
To realize visualization of the skin microvascular dysfunction of type 1 diabetic mice, we combined laser speckle contrast imaging and hyperspectral imaging to simultaneously monitor the noradrenaline (NE)-induced responses of vascular blood flow and blood oxygen with the development of diabetes through optical clearing skin window. The main results showed that venous and arterious blood flow decreased without recovery after injection of NE; furthermore, the decrease of arterious blood oxygen induced by NE greatly weakened, especially for 2- and 4-week diabetic mice. This change in vasoconstricting effect of NE was related to the expression of α1-adrenergic receptor. This study demonstrated that skin microvascular function was a potential research biomarker for early warning in the occurrence and development of diabetes. The in vivo skin optical clearing method provides a feasible solution to realize visualization of cutaneous microvessels for monitoring microvascular reactivity under pathological conditions. In addition, visual monitoring of skin microvascular function response has guiding significance for early diagnosis of diabetes and clinical research.
Collapse
Affiliation(s)
- Wei Feng
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovation Center for Biomedical Engineering, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Rui Shi
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovation Center for Biomedical Engineering, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Chao Zhang
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovation Center for Biomedical Engineering, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovation Center for Biomedical Engineering, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovation Center for Biomedical Engineering, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Dan Zhu
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, School of Engineering Sciences, Collaborative Innovation Center for Biomedical Engineering, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| |
Collapse
|
11
|
Bashkatov AN, Berezin KV, Dvoretskiy KN, Chernavina ML, Genina EA, Genin VD, Kochubey VI, Lazareva EN, Pravdin AB, Shvachkina ME, Timoshina PA, Tuchina DK, Yakovlev DD, Yakovlev DA, Yanina IY, Zhernovaya OS, Tuchin VV. Measurement of tissue optical properties in the context of tissue optical clearing. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-31. [PMID: 30141286 DOI: 10.1117/1.jbo.23.9.091416] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/30/2018] [Indexed: 05/05/2023]
Abstract
Nowadays, dynamically developing optical (photonic) technologies play an ever-increasing role in medicine. Their adequate and effective implementation in diagnostics, surgery, and therapy needs reliable data on optical properties of human tissues, including skin. This paper presents an overview of recent results on the measurements and control of tissue optical properties. The issues reported comprise a brief review of optical properties of biological tissues and efficacy of optical clearing (OC) method in application to monitoring of diabetic complications and visualization of blood vessels and microcirculation using a number of optical imaging technologies, including spectroscopic, optical coherence tomography, and polarization- and speckle-based ones. Molecular modeling of immersion OC of skin and specific technique of OC of adipose tissue by its heating and photodynamic treatment are also discussed.
Collapse
Affiliation(s)
- Alexey N Bashkatov
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Kirill V Berezin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Konstantin N Dvoretskiy
- Saratov State Medical University, Subdivision of Medical and Biological Physics, Saratov, Russia
| | - Maria L Chernavina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Elina A Genina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Vadim D Genin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Vyacheslav I Kochubey
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Ekaterina N Lazareva
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Immanuel Kant Baltic Federal University, Center for Functionalized Magnetic Materials, Kaliningrad, Russia
| | - Alexander B Pravdin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Marina E Shvachkina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Polina A Timoshina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Daria K Tuchina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry D Yakovlev
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Dmitry A Yakovlev
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Irina Yu Yanina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Olga S Zhernovaya
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Valery V Tuchin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
12
|
Sun RW, Tuchin VV, Zharov VP, Galanzha EI, Richter GT. Current status, pitfalls and future directions in the diagnosis and therapy of lymphatic malformation. JOURNAL OF BIOPHOTONICS 2018; 11:e201700124. [PMID: 28851128 PMCID: PMC11184539 DOI: 10.1002/jbio.201700124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/31/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Lymphatic malformations are complex congenital vascular lesions composed of dilated, abnormal lymphatic channels of varying size that can result in significant esthetic and physical impairment due to relentless growth. Lymphatic malformations comprised of micro-lymphatic channels (microcystic) integrate and infiltrate normal soft tissue, leading to a locally invasive mass. Ultrasonography and magnetic resonance imaging assist in the diagnosis but are unable to detect microvasculature present in microcystic lymphatic malformations. In this review, we examine existing tools and elaborate on alternative diagnostic methods in assessing lymphatic malformations. In particular, photoacoustics, low-toxicity nanoparticles and optical clearing can overcome existing challenges in the examination of lymphatic channels in vivo. In combination with photothermal scanning and flow cytometry, Photoacoustic techniques may provide a versatile tool for lymphatic-related clinical applications, potentially leading to a single diagnostic and therapeutic platform to overcome limitations in current imaging techniques and permit targeted theranostics of microcystic lymphatic malformations.
Collapse
Affiliation(s)
- Ravi W. Sun
- Department of Otolaryngology–Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children’s Hospital, Little Rock, Arkansas
| | - Valery V. Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov National Research State University, Saratov, Russia
- Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, Russia
- Laboratory of Femtomedicine, ITMO University, St. Petersburg, Russia
| | - Vladimir P. Zharov
- Department of Otolaryngology–Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ekaterina I. Galanzha
- Department of Otolaryngology–Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Laboratory of Lymphatic Research, Diagnosis and Therapy (LLDT), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Gresham T. Richter
- Department of Otolaryngology–Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children’s Hospital, Little Rock, Arkansas
| |
Collapse
|
13
|
Shi R, Feng W, Zhang C, Yu T, Fan Z, Liu Z, Zhang Z, Zhu D. In vivo imaging the motility of monocyte/macrophage during inflammation in diabetic mice. JOURNAL OF BIOPHOTONICS 2018; 11:e201700205. [PMID: 29236358 DOI: 10.1002/jbio.201700205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/11/2017] [Indexed: 05/28/2023]
Abstract
Diabetes, as a chronic metabolic disease, can impair the immune function of monocytes/macrophages (MMs). However, it is unclear how MM immune response to inflammation with the development of diabetes, and whether immune response around the inflammatory foci depends on the depth in tissue. Footpad provides a classical physiological site for monitoring cellular behavior during inflammation, but limited to the superficial dermis due to the strong scattering of footpad. Herein, we used confocal microscopy to monitor the motility of MMs in deeper tissue around inflammatory foci with the development of type 1 diabetic (T1D) mice through a switchable footpad skin optical clearing window. Delayed-type hypersensitivity (DTH) model was elicited on the footpad of T1D. Results demonstrated that progressive T1D led to the gradually potentiated MM recruitment and increased expression of monocyte chemoattractant protein-1 during DTH, but MM migration displacement, motion velocity and motility coefficient were significantly attenuated. Besides, MMs from the deeper dermis had a much larger migration displacement than those from superficial dermis at early stages of DTH but an opposite tendency at late stages for non-T1D, while progressive T1D obscured this difference gradually. This study will be helpful for investigating the influences of progressive metabolic diseases on immune response. MM motion trajectory at depth of superficial dermis and the deeper dermis at AOVA (heat-aggregated ovalbumin)-4 hours and AOVA-72 hours on non-T1D (A) and T1D-4 weeks (B). Mean motility coefficient (C) at the 2 depths. Data were pooled from 6 mice per group. *P < .05 and **P < .01 compared among different T1D disease durations. #P < .05 compared between different depths.
Collapse
Affiliation(s)
- Rui Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhan Fan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Mahmoodkalayeh S, Jooya HZ, Hariri A, Zhou Y, Xu Q, Ansari MA, Avanaki MRN. Low Temperature-Mediated Enhancement of Photoacoustic Imaging Depth. Sci Rep 2018; 8:4873. [PMID: 29559653 PMCID: PMC5861112 DOI: 10.1038/s41598-018-22898-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
We study the temperature dependence of the underlying mechanisms related to the signal strength and imaging depth in photoacoustic imaging. The presented theoretical and experimental results indicate that imaging depth can be improved by lowering the temperature of the intermediate medium that the laser passes through to reach the imaging target. We discuss the temperature dependency of optical and acoustic properties of the intermediate medium and their changes due to cooling. We demonstrate that the SNR improvement of the photoacoustic signal is mainly due to the reduction of Grüneisen parameter of the intermediate medium which leads to a lower level of background noise. These findings may open new possibilities toward the application of biomedical laser refrigeration.
Collapse
Affiliation(s)
- Sadreddin Mahmoodkalayeh
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Physics, Shahid Beheshti University, Tehran, Iran.,Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hossein Z Jooya
- Harvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA, USA
| | - Ali Hariri
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Yang Zhou
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Mohammad A Ansari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad R N Avanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA. .,Department of Dermatology, Wayne State University School of Medicine, Detroit, Michigan, USA. .,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA.
| |
Collapse
|
15
|
Dictionary learning-based reverberation removal enables depth-resolved photoacoustic microscopy of cortical microvasculature in the mouse brain. Sci Rep 2018; 8:985. [PMID: 29343801 PMCID: PMC5772684 DOI: 10.1038/s41598-017-18860-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/15/2017] [Indexed: 11/12/2022] Open
Abstract
Photoacoustic microscopy (PAM) capitalizes on the optical absorption of blood hemoglobin to enable label-free high-contrast imaging of the cerebral microvasculature in vivo. Although time-resolved ultrasonic detection equips PAM with depth-sectioning capability, most of the data at depths are often obscured by acoustic reverberant artifacts from superficial cortical layers and thus unusable. In this paper, we present a first-of-a-kind dictionary learning algorithm to remove the reverberant signal while preserving underlying microvascular anatomy. This algorithm was validated in vitro, using dyed beads embedded in an optically transparent polydimethylsiloxane phantom. Subsequently, we demonstrated in the live mouse brain that the algorithm can suppress reverberant artifacts by 21.0 ± 5.4 dB, enabling depth-resolved PAM up to 500 µm from the brain surface.
Collapse
|
16
|
Shi R, Feng W, Zhang C, Zhang Z, Zhu D. FSOCA-induced switchable footpad skin optical clearing window for blood flow and cell imaging in vivo. JOURNAL OF BIOPHOTONICS 2017; 10:1647-1656. [PMID: 28516571 DOI: 10.1002/jbio.201700052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 05/28/2023]
Abstract
The mouse footpad for its feature of hairlessness provides an available window for imaging vascular and cellular structure and function in vivo. Unfortunately, the strong scattering of its skin limits the penetration of light and reduces the imaging contrast and depth. Herein, an innovative footpad skin optical clearing agent (FSOCA) was developed to make the footpad skin transparent quickly by topical application. The results demonstrate that FSOCA treatment not only allowed the cutaneous blood vessels and blood flow distribution to be monitored by laser speckle contrast imaging technique with higher contrast, but also permitted the fluorescent cells to be imaged by laser scanning confocal microscopy with higher fluorescence signal intensity and larger imaging depth. In addition, the physiological saline-treatment could make the footpad skin recover to the initial turbid status, and reclearing would not induce any adverse effects on the distributions and morphologies of blood vessels and cells, which demonstrated a safe and switchable window for biomedical imaging. This switchable footpad skin optical clearing window will be significant for studying blood flow dynamics and cellular immune function in vivo in some vascular and immunological diseases. Picture: Repeated cell imaging in vivo before (a) and after (b) FSOCA treatment. (c) Merged images of 4 h (cyan border) or 72 h (magenta border) over 0 h. (d) Zoom of ROI in 4 h (yellow rectangle) or 72 h (red rectangle).
Collapse
Affiliation(s)
- Rui Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| | - Wei Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| | - Chao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics, HUST, Ministry of Education, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
- Hubei Bioinformatics and Bioimaging Key Laboratory, Department of Biomedical Engineering, HUST, 1037 Luoyu Road, Wuhan, 430074, Hubei, P. R. China
| |
Collapse
|
17
|
Motionless volumetric photoacoustic microscopy with spatially invariant resolution. Nat Commun 2017; 8:780. [PMID: 28974681 PMCID: PMC5626698 DOI: 10.1038/s41467-017-00856-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/01/2017] [Indexed: 01/20/2023] Open
Abstract
Photoacoustic microscopy (PAM) is uniquely positioned for biomedical applications because of its ability to visualize optical absorption contrast in vivo in three dimensions. Here we propose motionless volumetric spatially invariant resolution photoacoustic microscopy (SIR-PAM). To realize motionless volumetric imaging, SIR-PAM combines two-dimensional Fourier-spectrum optical excitation with single-element depth-resolved photoacoustic detection. To achieve spatially invariant lateral resolution, propagation-invariant sinusoidal fringes are generated by a digital micromirror device. Further, SIR-PAM achieves 1.5 times finer lateral resolution than conventional PAM. The superior performance was demonstrated in imaging both inanimate objects and animals in vivo with a resolution-invariant axial range of 1.8 mm, 33 times the depth of field of the conventional PAM counterpart. Our work opens new perspectives for PAM in biomedical sciences. Photoacoustic microscopy allows for label-free 3D in vivo imaging by detecting the acoustic response of a photoexcited material. Here, Yang et. al use a digital-micromirror-device based structured illumination scheme to both improve resolution and greatly increase the depth of field, enabling 3D volumetric imaging.
Collapse
|
18
|
Shi R, Guo L, Zhang C, Feng W, Li P, Ding Z, Zhu D. A useful way to develop effective in vivo skin optical clearing agents. JOURNAL OF BIOPHOTONICS 2017; 10:887-895. [PMID: 28009130 DOI: 10.1002/jbio.201600221] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/27/2016] [Accepted: 11/29/2016] [Indexed: 05/11/2023]
Abstract
Skin optical clearing has shown tremendous potential in improving various optical imaging performances, but there is some certain blindness in screening out high-efficiency in vivo optical clearing methods. In this work, three optical clearing agents: sucrose (Suc), fructose (Fruc) and PEG-400 (PEG), and two chemical penetration enhancers: propylene glycol (PG) and thiazone (Thiaz) were used. PEG was firstly mixed with the two penetration enhancers, respectively, and then mixed with Fruc and Suc, respectively, to obtain six kinds of skin optical clearing agents (SOCAs). Optical coherence tomography angiography was applied to monitor SOCAs-induced changes in imaging performances, skin optical properties, refractive index mismatching extent, and permeability rate. Experimental results demonstrated that PEG+Thiaz+Suc has the optimal capacity in enhancing the imaging performances, decreasing the scattering and the refractive index mismatching since Thiaz is superior to PG, and Suc is superior to Fruc. This study indicates that the optimal SOCA can be obtained directly by means of additionally adding or replacing the similar category substance in preexisting SOCAs with some more effective reagents. It not only provides an optimal SOCA, but also provides a useful way to develop more effective SOCAs. Cross-section skin structural texture (a), reconstructed blood flow distribution information (b), before or after treated with different SOCAs.
Collapse
Affiliation(s)
- Rui Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, P.R. China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, P.R. China
| | - Li Guo
- Department of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, ZheJiang University, 38 Zheda Road, Hangzhou, 310027, Zhejiang, P.R. China
| | - Chao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, P.R. China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, P.R. China
| | - Wei Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, P.R. China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, P.R. China
| | - Peng Li
- Department of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, ZheJiang University, 38 Zheda Road, Hangzhou, 310027, Zhejiang, P.R. China
| | - Zhihua Ding
- Department of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, ZheJiang University, 38 Zheda Road, Hangzhou, 310027, Zhejiang, P.R. China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, P.R. China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Photonics, Ministry of Education, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, P.R. China
| |
Collapse
|
19
|
Shen Z, Guo X, Zhang Y, Li D, He Y. Enhancement of short coherence digital holographic microscopy by optical clearing. BIOMEDICAL OPTICS EXPRESS 2017; 8:2036-2054. [PMID: 28736654 PMCID: PMC5516810 DOI: 10.1364/boe.8.002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
In this work, we used a short coherence digital holographic microscopy system to demonstrate cross-talk noise suppression and imaging performance enhancement by optical clearing. Performance of the system on both phantom and in vitro porcine skin tissues before and after the treatment of 70% v./v. glycerol-saline solution was investigated. Our results showed that optical clearing effectively inhibits the cross-talk noise and improves the image quality in the deep of the in vitro porcine skin tissues. The imaging depth was increased by about 30% after topical application of the glycerol-saline solution for 30 min.
Collapse
Affiliation(s)
- Zhiyuan Shen
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xiaorui Guo
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yilong Zhang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Dongmei Li
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yonghong He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Feng W, Shi R, Zhang C, Yu T, Zhu D. Lookup-table-based inverse model for mapping oxygen concentration of cutaneous microvessels using hyperspectral imaging. OPTICS EXPRESS 2017; 25:3481-3495. [PMID: 28241562 DOI: 10.1364/oe.25.003481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hyperspectral imaging combining with skin optical clearing technique provides a possible way to non-invasively monitor hemodynamics of cutaneous microvessels. In order to estimate microvascular blood oxygen saturation, in this work, a lookup-table-based inverse model was developed to extract the microvascular optical and physiological properties using hyperspectral analysis. This approach showed a higher fitting degree than currently existing hyperspectral analysis methods (i.e. multiple linear regression and non-negative least square fit) in estimating blood oxygen saturation. Hypoxic stimulation experiment showed that calculated results were in accordance with physiological changes, and the relative changes of estimated oxygen saturation indicated this method appeared to be more sensitive to blood oxygen fluctuation. And a simulated blood model was used for verification here, indicating this method also showed a good accuracy in determining oxygen saturation from the simulated spectra.
Collapse
|
21
|
Liu W, Zhang HF. Photoacoustic imaging of the eye: A mini review. PHOTOACOUSTICS 2016; 4:112-123. [PMID: 27761410 PMCID: PMC5063360 DOI: 10.1016/j.pacs.2016.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 05/04/2023]
Abstract
The eye relies on the synergistic cooperation of many different ocular components, including the cornea, crystalline lens, photoreceptors, and retinal neurons, to precisely sense visual information. Complications with a single ocular component can degrade vision and sometimes cause blindness. Immediate treatment and long-term monitoring are paramount to alleviate symptoms, restore vision, and cure ocular diseases. However, successful treatment requires understanding ocular pathological mechanisms, precisely detecting and monitoring the diseases. The investigation and diagnosis of ocular diseases require advanced medical tools. In this mini review, we discuss non-invasive photoacoustic (PA) imaging as a potential research tool and medical screening device. In the research setting, PA imaging can provide valuable information on the disease progression. In the clinical setting, PA imaging can potentially aid in disease detection and treatment monitoring.
Collapse
Affiliation(s)
- Wenzhong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208,USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208,USA
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611, USA
- Corresponding author at: Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
22
|
Guo L, Shi R, Zhang C, Zhu D, Ding Z, Li P. Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:081202. [PMID: 26950927 DOI: 10.1117/1.jbo.21.8.081202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/31/2015] [Indexed: 05/03/2023]
Abstract
Tissue optical clearing (TOC) is helpful for reducing scattering and enhancing the penetration depth of light, and shows promising potential in optimizing optical imaging performances. A mixture of fructose with PEG-400 and thiazone (FPT) is used as an optical clearing agent in mouse dorsal skin and evaluated with OCT angiography (Angio-OCT) by quantifying optical properties and blood flow imaging simultaneously. It is observed that FPT leads to an improved imaging performance for the deeper tissues. The imaging performance improvement is most likely caused by the FPT-induced dehydration of skin, and the reduction of scattering coefficient (more than ∼ 40.5%) and refractive-index mismatching (more than ∼ 25.3%) in the superficial (epidermal, dermal, and hypodermal) layers. A high correlation (up to ∼ 90%) between the relative changes in refractive-index mismatching and Angio-OCT signal strength is measured. The optical clearing rate is ∼ 5.83 × 10(-5) cm/s. In addition, Angio-OCT demonstrates enhanced performance in imaging cutaneous hemodynamics with satisfactory spatiotemporal resolution and contrast when combined with TOC, which exhibits a powerful practical application in studying microcirculation.
Collapse
Affiliation(s)
- Li Guo
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Rui Shi
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinacHuazhong University of Science and Technology, Department of Biomedic
| | - Chao Zhang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinacHuazhong University of Science and Technology, Department of Biomedic
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinacHuazhong University of Science and Technology, Department of Biomedic
| | - Zhihua Ding
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Peng Li
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
23
|
Yang X, Zhang Y, Zhao K, Zhao Y, Liu Y, Gong H, Luo Q, Zhu D. Skull Optical Clearing Solution for Enhancing Ultrasonic and Photoacoustic Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1903-6. [PMID: 26886977 DOI: 10.1109/tmi.2016.2528284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The performance of photoacoustic microscopy (PAM) degrades due to the turbidity of the skull that introduces attenuation and distortion of both laser and stimulated ultrasound. In this manuscript, we demonstrated that a newly developed skull optical clearing solution (SOCS) could enhance not only the transmittance of light, but also that of ultrasound in the skull in vitro. Thus the photoacoustic signal was effectively elevated, and the relative strength of the artifacts induced by the skull could be suppressed. Furthermore in vivo studies demonstrated that SOCS could drastically enhance the performance of photoacoustic microscopy for cerebral microvasculature imaging.
Collapse
|
24
|
Zhou Y, Yao J, Wang LV. Tutorial on photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:61007. [PMID: 27086868 PMCID: PMC4834026 DOI: 10.1117/1.jbo.21.6.061007] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT’s basic principles, major implementations, imaging contrasts, and recent applications.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| |
Collapse
|
25
|
Zhou Y, Li G, Zhu L, Li C, Cornelius LA, Wang LV. Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo. JOURNAL OF BIOPHOTONICS 2015; 8:961-967. [PMID: 25676898 PMCID: PMC4530093 DOI: 10.1002/jbio.201400143] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 05/04/2023]
Abstract
We applied a linear-array-based photoacoustic probe to detect melanin-containing melanoma tumor depth and volume in nude mice in vivo. This system can image melanomas at five frames per second (fps), which is much faster than our previous handheld single transducer system (0.1 fps). We first theoretically show that, in addition to the higher frame rate, almost the entire boundary of the melanoma can be detected by the linear-array-based probe, while only the horizontal boundary could be detected by the previous system. Then we demonstrate the ability of this linear-array-based system in measuring both the depth and volume of melanoma through phantom, ex vivo, and in vivo experiments. The volume detection ability also enables us to accurately calculate the rate of growth of the tumor, which is an important parameter in quantifying the tumor activity. Our results show that this system can be used for clinical melanoma diagnosis and treatment in humans at the bedside. Linear-array-based PA images of melanoma acquired in vivo on day 3 (a) and day 6 (b).
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Guo Li
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Liren Zhu
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Chiye Li
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Lynn A. Cornelius
- Washington University School of Medicine, Division of Dermatology, 660 S. Euclid, Campus Box 8123, St. Louis, Missouri 63110
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
- Correspondence:
| |
Collapse
|
26
|
Shi R, Chen M, Tuchin VV, Zhu D. Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing. BIOMEDICAL OPTICS EXPRESS 2015; 6:1977-89. [PMID: 26114023 PMCID: PMC4473738 DOI: 10.1364/boe.6.001977] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 05/18/2023]
Abstract
Laser speckle contrast imaging (LSCI) shows a great potential for monitoring blood flow, but the spatial resolution suffers from the scattering of tissue. Here, we demonstrate the capability of a combination method of LSCI and skin optical clearing to describe in detail the dynamic response of cutaneous vasculature to vasoactive noradrenaline injection. Moreover, the superior resolution, contrast and sensitivity make it possible to rebuild arteries-veins separation and quantitatively assess the blood flow dynamical changes in terms of flow velocity and vascular diameter at single artery or vein level.
Collapse
Affiliation(s)
- Rui Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contributed equally to this work
| | - Min Chen
- Affiliated Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contributed equally to this work
| | - Valery V. Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov 410012, Russia
- Institute of Precise Mechanics and Control RAS, Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Li J, Minami H, Steward E, Ma T, Mohar D, Robertson C, Shung K, Zhou Q, Patel P, Chen Z. Optimal flushing agents for integrated optical and acoustic imaging systems. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:56005. [PMID: 25985096 PMCID: PMC4435242 DOI: 10.1117/1.jbo.20.5.056005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/20/2015] [Indexed: 05/11/2023]
Abstract
An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging.
Collapse
Affiliation(s)
- Jiawen Li
- University of California, Irvine, Beckman Laser Institute, 1002 Health Sciences Road, Irvine, California 92617, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92697-2700, United States
| | - Hataka Minami
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92697-2700, United States
| | - Earl Steward
- University of California, Irvine, Medical Center, 101 The City Drive South, Orange, California 92868, United States
| | - Teng Ma
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089, United States
| | - Dilbahar Mohar
- University of California, Irvine, Medical Center, 101 The City Drive South, Orange, California 92868, United States
| | - Claire Robertson
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92697-2700, United States
| | - Kirk Shung
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089, United States
| | - Qifa Zhou
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089, United States
| | - Pranav Patel
- University of California, Irvine, Medical Center, 101 The City Drive South, Orange, California 92868, United States
| | - Zhongping Chen
- University of California, Irvine, Beckman Laser Institute, 1002 Health Sciences Road, Irvine, California 92617, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92697-2700, United States
- Address all correspondence to: Zhongping Chen, E-mail:
| |
Collapse
|
28
|
Tang M, Zhou Y, Zhang R, Wang LV. Noninvasive photoacoustic microscopy of methemoglobin in vivo. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:036007. [PMID: 25760655 PMCID: PMC4356553 DOI: 10.1117/1.jbo.20.3.036007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/20/2015] [Indexed: 05/29/2023]
Abstract
Due to the various causes of methemoglobinemia and its potential to be confused with other diseases, in vivo measurements of methemoglobin have significant applications in the clinic. Using photoacoustic microscopy (PAM), we quantified the average and the distributed percentage of methemoglobin both in vitro and in vivo. Based on the absorption spectra of methemoglobin, oxyhemoglobin, and deoxyhemoglobin, three wavelengths were chosen to differentiate methemoglobin from the others. The methemoglobin concentrations calculated from the photoacoustic signals agreed well with the preset concentrations. Then we imaged the methemoglobin percentage in microtubes that mimicked blood vessels. Average percentages calculated for five samples with different methemoglobin concentrations also agreed well with the preset values. Finally, we demonstrated the ability of PAM to detect methemoglobin in vivo in a mouse ear. Our results show that PAM can quantitatively image methemoglobin distribution in vivo.
Collapse
Affiliation(s)
- Min Tang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Ruiying Zhang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
29
|
Zeng H, Wang J, Ye Q, Deng Z, Mei J, Zhou W, Zhang C, Tian J. Study on the refractive index matching effect of ultrasound on optical clearing of bio-tissues based on the derivative total reflection method. BIOMEDICAL OPTICS EXPRESS 2014; 5:3482-93. [PMID: 25360366 PMCID: PMC4206318 DOI: 10.1364/boe.5.003482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/08/2014] [Accepted: 09/02/2014] [Indexed: 05/18/2023]
Abstract
In recent years, the tissue optical clearing (OC) technique in the biomedicine field has drawn lots of attention. Various physical and chemical methods have been introduced to improve the efficacy of OC. In this study, the effect of the combination of glycerol and ultrasound treatment on OC of in vitro porcine muscle tissues has been investigated. The refractive index (RI) matching mechanism of OC was directly observed based on the derivative total reflection method. A theoretical model was used to simulate the proportion of tissue fluid in the illuminated area. Moreover, the total transmittance spectra have been obtained by a spectrometer over the range from 450 nm to 700 nm. The administration of glycerol and ultrasound has led to an increase of the RI of background medium and a more RI matching environment was achieved. The experimental results support the validity of the ultrasound treatment for OC. The RI matching mechanism has been firstly quantitatively analyzed based on the derivative total reflection method.
Collapse
Affiliation(s)
- Huanhuan Zeng
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of physics and TEDA Applied Physics School, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of physics and TEDA Applied Physics School, Nankai University, Tianjin 300071, China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of physics and TEDA Applied Physics School, Nankai University, Tianjin 300071, China
| | - Zhichao Deng
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of physics and TEDA Applied Physics School, Nankai University, Tianjin 300071, China
| | - Jianchun Mei
- Advanced Technology Institute, Nankai University, Tianjin 300071, China
| | - Wenyuan Zhou
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of physics and TEDA Applied Physics School, Nankai University, Tianjin 300071, China
| | - Chunping Zhang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of physics and TEDA Applied Physics School, Nankai University, Tianjin 300071, China
| | - Jianguo Tian
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of physics and TEDA Applied Physics School, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Zhou Y, Xing W, Maslov KI, Cornelius LA, Wang LV. Handheld photoacoustic microscopy to detect melanoma depth in vivo. OPTICS LETTERS 2014; 39:4731-4. [PMID: 25121860 PMCID: PMC4160823 DOI: 10.1364/ol.39.004731] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We developed handheld photoacoustic microscopy (PAM) to detect melanoma and determine tumor depth in nude mice in vivo. Compared to our previous PAM system for melanoma imaging, a new light delivery mechanism is introduced to improve light penetration. We show that melanomas with 4.1 and 3.7 mm thicknesses can be successfully detected in phantom and in in vivo experiments, respectively. With its deep melanoma imaging ability and handheld design, this system can be tested for clinical melanoma diagnosis, prognosis, and surgical planning for patients at the bedside.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Wenxin Xing
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Konstantin I. Maslov
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| | - Lynn A. Cornelius
- Washington University School of Medicine, Division of Dermatology, 660 S. Euclid, Campus Box 8123, St. Louis, Missouri 63110
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, 1 Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130
| |
Collapse
|
31
|
Deán-Ben XL, Buehler A, Razansky D, Ntziachristos V. Estimation of optoacoustic contrast agent concentration with self-calibration blind logarithmic unmixing. Phys Med Biol 2014; 59:4785-97. [DOI: 10.1088/0031-9155/59/17/4785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Zhou Y, Yi X, Xing W, Hu S, Maslov KI, Wang LV. Microcirculatory changes identified by photoacoustic microscopy in patients with complex regional pain syndrome type I after stellate ganglion blocks. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:086017. [PMID: 25144451 PMCID: PMC4407664 DOI: 10.1117/1.jbo.19.8.086017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/01/2014] [Indexed: 05/04/2023]
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain syndrome that causes intractable pain, disability, and poor quality of life for patients. The etiology and pathophysiology of CRPS are still poorly understood. Due to a lack of proper diagnostic tools, the prognosis of CRPS is primarily based on clinical observation. The objective of this work is to evaluate a new imaging modality, photoacoustic microscopy (PAM), for assisting diagnoses and monitoring the progress and treatment outcome of CRPS. Blood vasculature and oxygen saturation (sO₂) were imaged by PAM from eight adult patients with CRPS-1. Patients' hands and cuticles were imaged both before and after stellate ganglion block (SGB) for comparison. For all patients, both vascular structure and sO₂ could be assessed by PAM. In addition, more vessels and stronger signals were observed after SGB. The results show that PAM can help diagnose and monitor CRPS.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Xiaobin Yi
- Washington University School of Medicine, Department of Anesthesiology/Pain Management, 660 South Euclid Avenue, Campus Box 8054, St. Louis, Missouri 63110, United States
- Address all correspondence to: Xiaobin Yi and Lihong V. Wang, E-mail: and
| | - Wenxin Xing
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Song Hu
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Konstantin I. Maslov
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
- Address all correspondence to: Xiaobin Yi and Lihong V. Wang, E-mail: and
| |
Collapse
|
33
|
Zhou Y, Yao J, Maslov KI, Wang LV. Calibration-free absolute quantification of particle concentration by statistical analyses of photoacoustic signals in vivo. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:37001. [PMID: 24589987 PMCID: PMC3939437 DOI: 10.1117/1.jbo.19.3.037001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/28/2014] [Indexed: 05/06/2023]
Abstract
Currently, laser fluence calibration is typically required for quantitative measurement of particle concentration in photoacoustic imaging. Here, we present a calibration-free method to quantify the absolute particle concentration by statistically analyzing photoacoustic signals. The proposed method is based on the fact that Brownian motion induces particle count fluctuation in the detection volume. If the count of particles in the detection volume is assumed to follow the Poisson distribution, its expected value can be calculated by the photoacoustic signal mean and variance. We first derived a theoretical model for photoacoustic signals. Then, we applied our method to quantitative measurement of different concentrations of various particles, including red blood cells. Finally, we performed in vivo experiments to demonstrate the potential of our method in biological applications. The experimental results agreed well with the predictions from the theoretical model suggesting that our method can be used for noninvasive measurement of absolute particle concentrations in deep tissue without fluence calibration.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
| | - Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
| | - Konstantin I. Maslov
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
34
|
Deng Z, Jing L, Wu N, Lv P, Jiang X, Ren Q, Li C. Viscous optical clearing agent for in vivo optical imaging. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:76019. [PMID: 25069008 DOI: 10.1117/1.jbo.19.7.076019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/09/2014] [Indexed: 05/08/2023]
Abstract
By allowing more photons to reach deeper tissue, the optical clearing agent (OCA) has gained increasing attention in various optical imaging modalities. However, commonly used OCAs have high fluidity, limiting their applications in in vivo studies with oblique, uneven, or moving surfaces. In this work, we reported an OCA with high viscosity. We measured the properties of this viscous OCA, and tested its successful performances in the imaging of a living animal’s skin with two optical imaging modalities: photoacoustic microscopy and optical coherence tomography. Our results demonstrated that the viscous OCA has a great potential in the study of different turbid tissues using various optical imaging modalities.
Collapse
Affiliation(s)
- Zijian Deng
- Peking University, College of Engineering, Department of Biomedical Engineering, No. 5 Yiheyuan Road, Haidian, Beijing 100871, China
| | - Lijia Jing
- Harbin Institute of Technology, School of Life Science and Technology, Harbin 150001, China
| | - Ning Wu
- Peking University, College of Engineering, Department of Biomedical Engineering, No. 5 Yiheyuan Road, Haidian, Beijing 100871, China
| | - Pengyu Lv
- Peking University, College of Engineering, Department of Mechanics and Engineering Science, Beijing 100871, China
| | - Xiaoyun Jiang
- Peking University, College of Engineering, Department of Biomedical Engineering, No. 5 Yiheyuan Road, Haidian, Beijing 100871, China
| | - Qiushi Ren
- Peking University, College of Engineering, Department of Biomedical Engineering, No. 5 Yiheyuan Road, Haidian, Beijing 100871, China
| | - Changhui Li
- Peking University, College of Engineering, Department of Biomedical Engineering, No. 5 Yiheyuan Road, Haidian, Beijing 100871, China
| |
Collapse
|
35
|
Galanzha EI, Zharov VP. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo. Cancers (Basel) 2013; 5:1691-738. [PMID: 24335964 PMCID: PMC3875961 DOI: 10.3390/cancers5041691] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/17/2013] [Accepted: 11/19/2013] [Indexed: 12/23/2022] Open
Abstract
Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1-10 CTC/mL) due to the small volume of blood samples (5-10 mL). Consequently, they can miss up to 103-104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102-103 times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC's capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5-4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-rsesolution PAFC beyond the diffraction and spectral limits.
Collapse
Affiliation(s)
- Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA; E-Mail:
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA; E-Mail:
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 USA
| |
Collapse
|
36
|
Liu Y, Yang X, Zhu D, Shi R, Luo Q. Optical clearing agents improve photoacoustic imaging in the optical diffusive regime. OPTICS LETTERS 2013; 38:4236-9. [PMID: 24321968 DOI: 10.1364/ol.38.004236] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acoustic resolution photoacoustic microscopy (AR-PAM) takes advantage of weak acoustic scattering to image fine structures, such as the subcutaneous microvasculature, providing a spatial resolution on the order of tens of micrometers. However, the amplitude of AR-PAM deteriorates sharply with depth, as a result of light scattering and acoustic attenuation caused by structures such as the skin. Optical clearing techniques can enhance optical transmittance by decreasing the scattering of light through tissues. However, it is unknown whether optical clearing agents (OCAs) can be used to improve AR-PAM. We applied different types of OCAs to rat dorsal skin in an ex vivo study to determine the effects of OCAs on photoacoustic detection. We identified three OCAs that improved the photoacoustic amplitude for further in vivo testing. With the use of an appropriate penetration enhancer, PEG-400 significantly improved the photoacoustic amplitude for detection of deep-sealed blood vessels, while glycerol alone improved the image quality of shallow vessels. In contrast, DMSO application resulted in decreased photoacoustic amplitude in the in vivo trials.
Collapse
|
37
|
Zhou Y, Liang J, Maslov KI, Wang LV. Calibration-free in vivo transverse blood flowmetry based on cross correlation of slow time profiles from photoacoustic microscopy. OPTICS LETTERS 2013; 38:3882-5. [PMID: 24081077 PMCID: PMC3831365 DOI: 10.1364/ol.38.003882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We propose a cross-correlation-based method to measure blood-flow velocity by using photoacoustic microscopy. Unlike in previous autocorrelation-based methods, the measured flow velocity here is independent of particle size. Thus an absolute flow velocity can be obtained without calibration. We first measured the flow velocity ex vivo, using defibrinated bovine blood. Then flow velocities in vessels with different structures in a mouse ear were quantified in vivo. We further measured the flow variation in the same vessel and at a vessel bifurcation. All the experimental results indicate that our method can be used to accurately quantify blood velocity in vivo.
Collapse
|
38
|
Menyaev YA, Nedosekin DA, Sarimollaoglu M, Juratli MA, Galanzha EI, Tuchin VV, Zharov VP. Optical clearing in photoacoustic flow cytometry. BIOMEDICAL OPTICS EXPRESS 2013; 4:3030-41. [PMID: 24409398 PMCID: PMC3862168 DOI: 10.1364/boe.4.003030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 05/03/2023]
Abstract
Clinical applications of photoacoustic (PA) flow cytometry (PAFC) for detection of circulating tumor cells in deep blood vessels are hindered by laser beam scattering, that result in loss of PAFC sensitivity and resolution. We demonstrate biocompatible and rapid optical clearing (OC) of skin to minimize light scattering and thus, increase optical resolution and sensitivity of PAFC. OC effect was achieved in 20 min by sequent skin cleaning, microdermabrasion, and glycerol application enhanced by massage and sonophoresis. Using 0.8 mm mouse skin layer over a blood vessel in vitro phantom we demonstrated 1.6-fold decrease in laser spot blurring accompanied by 1.6-fold increase in PA signal amplitude from blood background. As a result, peak rate for B16F10 melanoma cells in blood flow increased 1.7-fold. By using OC we also demonstrated the feasibility of PA contrast improvement for human hand veins.
Collapse
Affiliation(s)
- Yulian A. Menyaev
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Dmitry A. Nedosekin
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Mustafa Sarimollaoglu
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Mazen A. Juratli
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| | - Valery V. Tuchin
- Saratov State University, 83 Astrakhanskaya St., Saratov, 410012 Russia
- Institute of Precise Mechanics and Control of RAS, 28 Rabochaya St., Saratov, 410028 Russia
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, P.O. BOX 4500, 90014 Finland
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205 USA
| |
Collapse
|