1
|
Housset M, Filion D, Cortes N, Vali H, Mandato CA, Casanova C, Cayouette M. Identification of a non-canonical planar cell polarity pathway triggered by light in the developing mouse retina. Dev Cell 2024:S1534-5807(24)00631-2. [PMID: 39561777 DOI: 10.1016/j.devcel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
The coordinated spatial arrangement of organelles within a tissue plane, known as planar cell polarity (PCP), is critical for organ development and function. Gradients of morphogens and their receptors typically set-up PCP, but whether non-molecular cues, akin to phototropism in plants, also play a part remains unknown. Here, we report that basal bodies of newborn photoreceptor cells in the mouse retina are positioned centrally on the apical surface but then move laterally during the first postnatal week, generating cell-intrinsic asymmetry in the retinal plane. After 1 week, when the eyes open, basal bodies of cone cilia, but not rods, become coordinated across the plane to face the center of the retina. We further show that light is essential for cone PCP, triggering a cascade in which cone transducin interacts with the G-protein-signaling modulator protein 2 (GPSM2) to establish PCP. This work identifies a non-canonical PCP pathway initiated by light.
Collapse
Affiliation(s)
- Michael Housset
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.
| | - Dominic Filion
- Microscopy Core Facility, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Nelson Cortes
- School of Optometry, Université de Montréal, CP 6128 succursale centre-ville, Montreal, QC H3C 3J7, Canada
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0C7, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Christian Casanova
- School of Optometry, Université de Montréal, CP 6128 succursale centre-ville, Montreal, QC H3C 3J7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
2
|
Kim TH, Ma G, Son T, Yao X. Functional Optical Coherence Tomography for Intrinsic Signal Optoretinography: Recent Developments and Deployment Challenges. Front Med (Lausanne) 2022; 9:864824. [PMID: 35445037 PMCID: PMC9013890 DOI: 10.3389/fmed.2022.864824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intrinsic optical signal (IOS) imaging of the retina, also termed as optoretinogram or optoretinography (ORG), promises a non-invasive method for the objective assessment of retinal function. By providing the unparalleled capability to differentiate individual retinal layers, functional optical coherence tomography (OCT) has been actively investigated for intrinsic signal ORG measurements. However, clinical deployment of functional OCT for quantitative ORG is still challenging due to the lack of a standardized imaging protocol and the complication of IOS sources and mechanisms. This article aims to summarize recent developments of functional OCT for ORG measurement, OCT intensity- and phase-based IOS processing. Technical challenges and perspectives of quantitative IOS analysis and ORG interpretations are discussed.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Guangying Ma
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Taeyoon Son
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Xincheng Yao
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Vohnsen B. Geometrical scaling of the developing eye and photoreceptors and a possible relation to emmetropization and myopia. Vision Res 2021; 189:46-53. [PMID: 34619411 DOI: 10.1016/j.visres.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
In this study the role of vergence in relation to age-dependent scaling of eye and photoreceptor parameters is studied. The underlying hypothesis is that the size and packing of outer segments is matched to the pupil size outdoors in photopic conditions. Vergence is analysed in relation to the angular spectrum of waves being incident using age-dependent data from the literature for the actual geometry and density of photoreceptor cones and rods. This approach is used to derive simple relations for the angular confinement of light along outer segments. Only with a small photopic pupil can leakage and crosstalk for both central and peripheral photoreceptors be entirely ruled out due to the finite length of the outer segments. A limiting 3 mm pupil size is found for children in the school age. Larger pupils will increase the likelihood of leakage and crosstalk that may therefore impact on emmetropization. This study has introduced a new paradigm in myopia research by considering vergence across the 3-D retina as being matched to the angular spectrum of waves being incident from the eye pupil. Emmetropization suggests a delicate balance between photoreceptor outer segment length and density in relation to pupil size. Only when balanced will leakage and crosstalk between adjacent outer segments be effectively suppressed thereby ensuring the highest possible light capture efficiency by visual pigments in the outer segments whether an image is formed on the retina or not.
Collapse
Affiliation(s)
- Brian Vohnsen
- Advanced Optical Imaging Group, School of Physics, University College Dublin, Ireland.
| |
Collapse
|
4
|
Gao S, Li Y, Bissig D, Cohen ED, Podolsky RH, Childers KL, Vernon G, Chen S, Berkowitz BA, Qian H. Functional regulation of an outer retina hyporeflective band on optical coherence tomography images. Sci Rep 2021; 11:10260. [PMID: 33986362 PMCID: PMC8119672 DOI: 10.1038/s41598-021-89599-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human and animal retinal optical coherence tomography (OCT) images show a hyporeflective band (HB) between the photoreceptor tip and retinal pigment epithelium layers whose mechanisms are unclear. In mice, HB magnitude and the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness appear to be dependent on light exposure, which is known to alter photoreceptor mitochondria respiration. Here, we test the hypothesis that these two OCT biomarkers are linked to metabolic activity of the retina. Acetazolamide, which acidifies the subretinal space, had no significant impact on HB magnitude but produced ELM-RPE thinning. Mitochondrial stimulation with 2,4-dinitrophenol reduced both HB magnitude and ELM-RPE thickness in parallel, and also reduced F-actin expression in the same retinal region, but without altering ERG responses. For mice strains with relatively lower (C57BL/6J) or higher (129S6/ev) rod mitochondrial efficacy, light-induced changes in HB magnitude and ELM-RPE thickness were correlated. Humans, analyzed from published data captured with a different protocol, showed a similar light-dark change pattern in HB magnitude as in the mice. Our results indicate that mitochondrial respiration underlies changes in HB magnitude upstream of the pH-sensitive ELM-RPE thickness response. These two distinct OCT biomarkers could be useful indices for non-invasively evaluating photoreceptor mitochondrial metabolic activity.
Collapse
Affiliation(s)
- Shasha Gao
- Department of Ophthalmology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Bissig
- Department of Neurology, University of California Davis, Sacramento, CA, USA
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA
| | | | - Gregory Vernon
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sonia Chen
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Ma G, Son T, Kim TH, Yao X. In vivo optoretinography of phototransduction activation and energy metabolism in retinal photoreceptors. JOURNAL OF BIOPHOTONICS 2021; 14:e202000462. [PMID: 33547871 PMCID: PMC8240094 DOI: 10.1002/jbio.202000462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 05/05/2023]
Abstract
The objective of this study is to verify the anatomic correlate of the second (2nd) outer retina band in optical coherence tomography (OCT), and to demonstrate the potential of using intrinsic optical signal (IOS) imaging for concurrent optoretinography (ORG) of phototransduction activation and energy metabolism in stimulus activated retinal photoreceptors. A custom-designed OCT was employed for depth-resolved IOS imaging in mouse retina activated by a visible light flicker stimulation. The spatiotemporal properties of the IOS changes at the photoreceptor outer segment (OS) and inner segment (IS) were quantitatively evaluated. Rapid IOS change was observed at the OS almost right away, and the IOS at the IS was relatively slow. Comparative analysis indicates that the OS-IOS reflects transient OS deformation caused by the phototransduction activation, and IS-IOS might reflect the energy metabolism caused by mitochondria activation in retinal photoreceptors. The consistency of the distribution of the IS-IOS and the 2nd OCT band supports the IS ellipsoid (ISe), which has abundant mitochondria, as the signal source of the 2nd OCT band of the outer retina.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
- Correspondence: Xincheng Yao, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Kim TH, Wang B, Lu Y, Son T, Yao X. Functional optical coherence tomography enables in vivo optoretinography of photoreceptor dysfunction due to retinal degeneration. BIOMEDICAL OPTICS EXPRESS 2020; 11:5306-5320. [PMID: 33014616 PMCID: PMC7510876 DOI: 10.1364/boe.399334] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 05/16/2023]
Abstract
Stimulus-evoked intrinsic optical signal (IOS), which occurs almost immediately after the onset of retinal stimulus has been observed in retinal photoreceptors, promises to be a unique biomarker for objective optoretinography (ORG) of photoreceptor function. We report here the first-time in vivo ORG detection of photoreceptor dysfunction due to retinal degeneration. A custom-designed optical coherence tomography (OCT) was employed for longitudinal ORG monitoring of photoreceptor-IOS distortions in retinal degeneration mice. Depth-resolved OCT analysis confirmed the outer segment (OS) as the physical source of the photoreceptor-IOS. Comparative ERG measurement verified the phototransduction activation as the physiological correlator of the photoreceptor-IOS. Histological examination revealed disorganized OS discs, i.e. the pathological origin of the photoreceptor-IOS distortion.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Yao X, Kim TH. Fast intrinsic optical signal correlates with activation phase of phototransduction in retinal photoreceptors. Exp Biol Med (Maywood) 2020; 245:1087-1095. [PMID: 32558598 PMCID: PMC7400727 DOI: 10.1177/1535370220935406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT As the center of phototransduction, retinal photoreceptors are responsible for capturing and converting photon energy to bioelectric signals for following visual information processing in the retina. This article summarizes experimental observation and discusses biophysical mechanism of fast photoreceptor-intrinsic optical signal (IOS) correlated with early phase of phototransduction. Quantitative imaging of fast photoreceptor-IOS may provide objective optoretinography to advance the study and diagnosis of age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and other eye diseases that can cause photoreceptor dysfunctions.
Collapse
Affiliation(s)
- Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
8
|
Qaysi S, Valente D, Vohnsen B. Differential detection of retinal directionality. BIOMEDICAL OPTICS EXPRESS 2018; 9:6318-6330. [PMID: 31065431 PMCID: PMC6490981 DOI: 10.1364/boe.9.006318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 05/06/2023]
Abstract
An adaptive optics fundus camera has been developed that uses simultaneous capture of multiple images via adjacent pupil sectors to provide directional sensitivity. In the chosen realization, a shallow refractive pyramid prism is used to subdivide backscattered light from the retina into four solid angles. Parafoveal fundus images have been captured for the eyes of three healthy subjects and directional scattering has been determined using horizontal and vertical differentials. The results for the photoreceptor cones, blood vessels, and the optic disc are discussed. In the case of cones, the observations are compared with numerical simulations based on a simplistic light-scattering model. Ultimately, the method may have diagnostic potential for diseases that perturb the microscopic structure of the retina.
Collapse
Affiliation(s)
- Salihah Qaysi
- Advanced Optical Imaging Group, School of Physics, University College Dublin, Dublin 4, Ireland
| | - Denise Valente
- Vision Science and Advanced Retinal Imaging Laboratory, University of California-Davis, Sacramento, CA, USA
| | - Brian Vohnsen
- Advanced Optical Imaging Group, School of Physics, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
9
|
Son T, Alam M, Toslak D, Wang B, Lu Y, Yao X. Functional optical coherence tomography of neurovascular coupling interactions in the retina. JOURNAL OF BIOPHOTONICS 2018; 11:e201800089. [PMID: 29770594 PMCID: PMC6239985 DOI: 10.1002/jbio.201800089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/15/2018] [Indexed: 05/19/2023]
Abstract
Quantitative evaluation of retinal neurovascular coupling is essential for a better understanding of visual function and early detection of eye diseases. However, there is no established method to monitor coherent interactions between stimulus-evoked neural activity and hemodynamic responses at high resolution. Here, we report a multimodal functional optical coherence tomography (OCT) imaging methodology to enable concurrent intrinsic optical signal (IOS) imaging of stimulus-evoked neural activity and hemodynamic responses at capillary resolution. OCT angiography guided IOS analysis was used to separate neural-IOS and hemodynamic-IOS changes in the same retinal image sequence. Frequency flicker stimuli evoked neural-IOS changes in the outer retina; that is, photoreceptor layer, first and then in the inner retina, including outer plexus layer (OPL), inner plexiform layer (IPL), and ganglion cell layer (GCL), which were followed by hemodynamic-IOS changes primarily in the inner retina; that is, OPL, IPL, and GCL. Different time courses and signal magnitudes of hemodynamic-IOS responses were observed in blood vessels with various diameters.
Collapse
Affiliation(s)
- Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Minhaj Alam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Devrim Toslak
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Yao X, Son T, Kim TH, Lu Y. Functional optical coherence tomography of retinal photoreceptors. Exp Biol Med (Maywood) 2018; 243:1256-1264. [PMID: 30482040 DOI: 10.1177/1535370218816517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Retinal photoreceptors are the primary target of age-related macular degeneration (AMD) which is the leading cause of severe vision loss and legal blindness. An objective method for functional assessment of photoreceptor physiology can benefit early detection and better treatment evaluation of AMD and other eye diseases that are known to cause photoreceptor dysfunctions. This article summarizes in vitro study of IOS mechanisms and in vivo demonstration of IOS imaging of intact animals. Further development of the functional IOS imaging may provide a revolutionary solution to achieve objective assessment of human photoreceptors.
Collapse
Affiliation(s)
- Xincheng Yao
- 1 Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.,2 Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Taeyoon Son
- 1 Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tae-Hoon Kim
- 1 Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yiming Lu
- 1 Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
11
|
Lu Y, Liu C, Yao X. In vivo super-resolution imaging of transient retinal phototropism evoked by oblique light stimulation. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-4. [PMID: 29752801 PMCID: PMC5946809 DOI: 10.1117/1.jbo.23.5.050502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/19/2018] [Indexed: 05/28/2023]
Abstract
Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for objective assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its subcellular signal magnitude and fast time course. We report here a virtually structured detection-based super-resolution ophthalmoscope to achieve subcellular spatial resolution and millisecond temporal resolution for in vivo imaging of TRP. Spatiotemporal properties of in vivo TRP were characterized corresponding to variable light intensity stimuli, confirming that TRP is tightly correlated with early stages of phototransduction.
Collapse
Affiliation(s)
- Yiming Lu
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Changgeng Liu
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States
| |
Collapse
|
12
|
Lu Y, Liu C, Yao X. In vivo observation of transient photoreceptor movement correlated with oblique light stimulation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10497:104971M. [PMID: 29950751 PMCID: PMC6016829 DOI: 10.1117/12.2287262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for high resolution assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its fast time course and sub-cellular signal magnitude. By developing a line-scanning and virtually structured detection based super-resolution ophthalmoscope, we report here in vivo observation of TRP in frog retina. In vivo characterization of TRP time course and magnitude were implemented by using variable light stimulus intensities.
Collapse
Affiliation(s)
- Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Changgeng Liu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Thapa D, Wang B, Lu Y, Son T, Yao X. Enhancement of intrinsic optical signal recording with split spectrum optical coherence tomography. JOURNAL OF MODERN OPTICS 2017; 64:1800-1807. [PMID: 29129961 PMCID: PMC5679439 DOI: 10.1080/09500340.2017.1318966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Functional optical coherence tomography (OCT) of stimulus-evoked intrinsic optical signal (IOS) promises to be a new methodology for high-resolution mapping of retinal neural dysfunctions. However, its practical applications for non-invasive examination of retinal function have been hindered by the low signal-to-noise ratio (SNR) and small magnitude of IOSs. Split spectrum amplitude-decorrelation has been demonstrated to improve the image quality of OCT angiography. In this study, we exploited split spectrum strategy to improve the sensitivity of IOS recording. The full OCT spectrum was split into multiple spectral bands and IOSs from each sub-band were calculated separately and then combined to generate a single IOS image sequence. The algorithm was tested on in vivo images of frog retinas. It significantly improved both IOS magnitude and SNR, which are essential for practical applications of functional IOS imaging.
Collapse
Affiliation(s)
- Damber Thapa
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Son T, Wang B, Lu Y, Chen Y, Cao D, Yao X. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10045. [PMID: 29225397 DOI: 10.1117/12.2252480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multi-modal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.
Collapse
Affiliation(s)
- Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yanjun Chen
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Lu Y, Wang B, Yao X. Comparative investigation of stimulus-evoked rod outer segment movement and retinal electrophysiological activity. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10068. [PMID: 28867866 DOI: 10.1117/12.2249548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Transient retinal phototropism (TRP) has been observed in rod photoreceptors activated by oblique visible light flashes. Time-lapse confocal microscopy and optical coherence tomography (OCT) revealed rod outer segment (ROS) movements as the physical source of TRP. However, the physiological source of TRP is still not well understood. In this study, concurrent TRP and electroretinogram (ERG) measurements disclosed a remarkably earlier onset time of the ROS movements (≤10 ms) than that (∼38 ms) of the ERG a-wave. Furthermore, low sodium treatment reversibly blocked the photoreceptor ERG a-wave, which is known to reflect hyperpolarization of retinal photoreceptors, but preserved the TRP associated rod OS movements well. Our experimental results and theoretical analysis suggested that the physiological source of TRP might be attributed to early stages of phototransduction, before the hyperpolarization of retinal photoreceptors.
Collapse
Affiliation(s)
- Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Lu Y, Wang B, Pepperberg DR, Yao X. Stimulus-evoked outer segment changes occur before the hyperpolarization of retinal photoreceptors. BIOMEDICAL OPTICS EXPRESS 2017; 8:38-47. [PMID: 28101399 PMCID: PMC5231306 DOI: 10.1364/boe.8.000038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 05/22/2023]
Abstract
Transient retinal phototropism (TRP) has been predominantly observed in rod photoreceptors activated by oblique visible light stimulation. Dynamic confocal microscopy and optical coherence tomography (OCT) have revealed rod outer segment (ROS) movement as the physical source of TRP. However, the physiological source of ROS movement is still not well understood. In this study, concurrent near-infrared imaging of TRP and electroretinogram (ERG) measurement of retinal electrophysiology revealed that ROS movement occurs before the onset of the ERG a-wave, which is known to reflect the hyperpolarization of retinal photoreceptors. Moreover, substitution of normal superfusing medium with low-sodium medium reversibly blocked the photoreceptor ERG a-wave, but largely preserved the stimulus-evoked ROS movements. Our experimental results and theoretical analysis indicate that early, disc-based stages of the phototransduction cascade, which occur before the hyperpolarization of retinal photoreceptors, contribute to the TRP associated ROS movement.
Collapse
Affiliation(s)
- Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David R. Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Liu C, Zhi Y, Wang B, Thapa D, Chen Y, Alam M, Lu Y, Yao X. In vivo super-resolution retinal imaging through virtually structured detection. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:120502. [PMID: 27992630 PMCID: PMC5167560 DOI: 10.1117/1.jbo.21.12.120502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/28/2016] [Indexed: 06/01/2023]
Abstract
High resolution is important for sensitive detection of subtle distortions of retinal morphology at an early stage of eye diseases. We demonstrate virtually structured detection (VSD) as a feasible method to achieve in vivo super-resolution ophthalmoscopy. A line-scanning strategy was employed to achieve a super-resolution imaging speed up to 127 ?? frames / s with a frame size of 512 × 512 ?? pixels . The proof-of-concept experiment was performed on anesthetized frogs. VSD-based super-resolution images reveal individual photoreceptors and nerve fiber bundles unambiguously. Both image contrast and signal-to-noise ratio are significantly improved due to the VSD implementation.
Collapse
Affiliation(s)
- Changgeng Liu
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgen Street, Chicago, Illinois 60607, United States
| | - Yanan Zhi
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgen Street, Chicago, Illinois 60607, United States
| | - Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgen Street, Chicago, Illinois 60607, United States
| | - Damber Thapa
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgen Street, Chicago, Illinois 60607, United States
| | - Yanjun Chen
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgen Street, Chicago, Illinois 60607, United States
| | - Minhaj Alam
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgen Street, Chicago, Illinois 60607, United States
| | - Yiming Lu
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgen Street, Chicago, Illinois 60607, United States
| | - Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgen Street, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, 1905 West Taylor Street, Chicago, Illinois 60612, United States
| |
Collapse
|
18
|
Wang B, Lu Y, Yao X. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:96010. [PMID: 27653936 PMCID: PMC5030472 DOI: 10.1117/1.jbo.21.9.096010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 05/22/2023]
Abstract
Intrinsic optical signal (IOS) imaging promises a noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, it is essential to understand anatomic and physiological sources of retinal IOSs and to establish the relationship between IOS distortions and eye diseases. The purpose of this study was designed to demonstrate the feasibility of <italic<in vivo</italic< IOS imaging of mouse models. A high spatiotemporal resolution spectral domain optical coherence tomography (SD-OCT) was employed for depth-resolved retinal imaging. A custom-designed animal holder equipped with ear bar and bite bar was used to minimize eye movements. Dynamic OCT imaging revealed rapid IOS from the photoreceptor’s outer segment immediately after the stimulation delivery, and slow IOS changes were observed from inner retinal layers. Comparative photoreceptor IOS and electroretinography recordings suggested that the fast photoreceptor IOS may be attributed to the early stage of phototransduction before the hyperpolarization of retinal photoreceptor.
Collapse
Affiliation(s)
- Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgan Street, Chicago, Illinois 60607, United States
| | - Yiming Lu
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgan Street, Chicago, Illinois 60607, United States
| | - Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, 851 South Morgan Street, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, 1855 West Taylor Street, Chicago, Illinois 60612, United States
- Address all correspondence to: Xincheng Yao, E-mail:
| |
Collapse
|
19
|
Son T, Wang B, Thapa D, Lu Y, Chen Y, Cao D, Yao X. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers. BIOMEDICAL OPTICS EXPRESS 2016; 7:3151-62. [PMID: 27570706 PMCID: PMC4986822 DOI: 10.1364/boe.7.003151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 05/05/2023]
Abstract
Blood flow changes are highly related to neural activities in the retina. It has been reported that neural activity increases when flickering light stimulation of the retina is used. It is known that blood flow changes with flickering light stimulation can be altered in patients with vascular disease and that measurement of flicker-induced vasodilatation is an easily applied tool for monitoring functional microvascular alterations. However, details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood due to the limitation of existing techniques. In this study, flickering light stimulation was applied to mouse retinas to investigate stimulus evoked hemodynamic responses in individual retinal layers. A spectral domain optical coherence tomography (OCT) angiography imaging system was developed to provide dynamic mapping of hemodynamic responses in the ganglion cell layer, inner plexiform layer, outer plexiform layer and choroid layer before, during and after flickering light stimulation. Experimental results showed hemodynamic responses with different magnitudes and time courses in individual retinal layers. We anticipate that the dynamic OCT angiography of stimulus evoked hemodynamic responses can greatly foster the study of neurovascular coupling mechanisms in the retina, promising new biomarkers for retinal disease detection and diagnosis.
Collapse
Affiliation(s)
- Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Damber Thapa
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yanjun Chen
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Zhao X, Thapa D, Wang B, Lu Y, Gai S, Yao X. Stimulus-evoked outer segment changes in rod photoreceptors. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:65006. [PMID: 27334933 PMCID: PMC4917604 DOI: 10.1117/1.jbo.21.6.065006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 05/21/2023]
Abstract
Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Hebei University, College of Physics Science and Technology, Hebei Key Lab of Optic-Electronic Information Materials, Baoding 071002, China
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Damber Thapa
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Yiming Lu
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Shaoyan Gai
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| | - Xincheng Yao
- Hebei University, College of Physics Science and Technology, Hebei Key Lab of Optic-Electronic Information Materials, Baoding 071002, China
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois 60612, United States
- Address all correspondence to: Xincheng Yao, E-mail:
| |
Collapse
|
21
|
Zhao X, Thapa D, Wang B, Gai S, Yao X. Biophysical mechanism of transient retinal phototropism in rod photoreceptors. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9706:97061O. [PMID: 28163347 PMCID: PMC5289741 DOI: 10.1117/12.2209144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Physics Science and Technology, Hebei University, Baoding, China 071002
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
| | - Damber Thapa
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
| | - Shaoyan Gai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL USA 60607
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL USA 60612
| |
Collapse
|
22
|
Wang B, Yao X. In vivo intrinsic optical signal imaging of mouse retinas. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9693:96930H. [PMID: 28163346 PMCID: PMC5289717 DOI: 10.1117/12.2212810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Intrinsic optical signal (IOS) imaging is a promising noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, more IOS studies employing animal models are necessary to establish the relationship between IOS distortions and eye diseases. Ample mouse models are available for investigating the relationship between IOS distortions and eye diseases. However, in vivo IOS imaging of mouse retinas is challenging due to the small ocular lens (compared to frog eyes) and inevitable eye movements. We report here in vivo IOS imaging of mouse retinas using a custom-designed functional OCT. The OCT system provided high resolution (3 μm) and high speed (up to 500 frames/s) imaging of mouse retinas. An animal holder equipped with a custom designed ear bar and bite bar was used to minimize eye movement due to breathing and heartbeats. Residual eye movement in OCT images was further compensated by accurate image registration. Dynamic OCT imaging revealed rapid IOSs from photoreceptor outer segments immediately (<10 ms) after the stimulation delivery, and unambiguous IOS changes were also observed from inner retinal layers with delayed time courses compared to that of photoreceptor IOSs.
Collapse
Affiliation(s)
- Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Yao X, Wang B. Intrinsic optical signal imaging of retinal physiology: a review. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:090901. [PMID: 26405819 PMCID: PMC4689108 DOI: 10.1117/1.jbo.20.9.090901] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 05/09/2023]
Abstract
Intrinsic optical signal (IOS) imaging promises to be a noninvasive method for high-resolution examination of retinal physiology, which can advance the study and diagnosis of eye diseases. While specialized optical instruments are desirable for functional IOS imaging of retinal physiology, in depth understanding of multiple IOS sources in the complex retinal neural network is essential for optimizing instrument designs. We provide a brief overview of IOS studies and relationships in rod outer segment suspensions, isolated retinas, and intact eyes. Recent developments of line-scan confocal and functional optical coherence tomography (OCT) instruments have allowed in vivo IOS mapping of photoreceptor physiology. Further improvements of the line-scan confocal and functional OCT systems may provide a feasible solution to pursue functional IOS mapping of human photoreceptors. Some interesting IOSs have already been detected in inner retinal layers, but better development of the IOS instruments and software algorithms is required to achieve optimal physiological assessment of inner retinal neurons.
Collapse
Affiliation(s)
- Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois 60612, United States
| | - Benquan Wang
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607, United States
| |
Collapse
|
24
|
Zhang Q, Lu R, Wang B, Messinger JD, Curcio CA, Yao X. Functional optical coherence tomography enables in vivo physiological assessment of retinal rod and cone photoreceptors. Sci Rep 2015; 5:9595. [PMID: 25901915 PMCID: PMC4894434 DOI: 10.1038/srep09595] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/05/2015] [Indexed: 11/09/2022] Open
Abstract
Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Rongwen Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Benquan Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeffrey D. Messinger
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
25
|
Abstract
Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches-including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy-have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact-free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina.
Collapse
Affiliation(s)
- Yanan Zhi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|