1
|
Wang M, Fang Z, Zhang H, Lin J, Zhou J, Huang T, Zhu Y, Li C, Yu S, Fu B, Qiao L, Cheng Y. Recent Progresses on Hybrid Lithium Niobate External Cavity Semiconductor Lasers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4453. [PMID: 39336195 PMCID: PMC11432941 DOI: 10.3390/ma17184453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Thin film lithium niobate (TFLN) has become a promising material platform for large scale photonic integrated circuits (PICs). As an indispensable component in PICs, on-chip electrically tunable narrow-linewidth lasers have attracted widespread attention in recent years due to their significant applications in high-speed optical communication, coherent detection, precision metrology, laser cooling, coherent transmission systems, light detection and ranging (LiDAR). However, research on electrically driven, high-power, and narrow-linewidth laser sources on TFLN platforms is still in its infancy. This review summarizes the recent progress on the narrow-linewidth compact laser sources boosted by hybrid TFLN/III-V semiconductor integration techniques, which will offer an alternative solution for on-chip high performance lasers for the future TFLN PIC industry and cutting-edge sciences. The review begins with a brief introduction of the current status of compact external cavity semiconductor lasers (ECSLs) and recently developed TFLN photonics. The following section presents various ECSLs based on TFLN photonic chips with different photonic structures to construct external cavity for on-chip optical feedback. Some conclusions and future perspectives are provided.
Collapse
Grants
- 2022YFA1205100, 2019YFA0705000, 2022YFA1404600 National Key R&D Program of China
- N.A. Fundamental Research Funds for the Central Universities
- 12104159, 12334014, 12192251, 12174113, 12174107, 11933005, 12134001, 12274130, 12274133 National Natural Science Foundation of China
- 2021ZD0301403 Innovation Program for Quantum Science and Technology
- 2019SHZDZX01 Shanghai Municipal Science and Technology Major Project
- 2023nmc005 Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University
Collapse
Affiliation(s)
- Min Wang
- The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhiwei Fang
- The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Haisu Zhang
- The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jintian Lin
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxia Zhou
- The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ting Huang
- The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yiran Zhu
- The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Chuntao Li
- The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Shupeng Yu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Fu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Lingling Qiao
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Ya Cheng
- The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
- Hefei National Laboratory, Shanghai 230088, China
| |
Collapse
|
2
|
Gao L, Liang Y, Song L, Yin D, Qi J, Chen J, Liu Z, Yu J, Liu J, Zhang H, Fang Z, Qi H, Cheng Y. Thin-film lithium niobate electro-optic isolator fabricated by photolithography assisted chemo-mechanical etching. OPTICS LETTERS 2024; 49:614-617. [PMID: 38300072 DOI: 10.1364/ol.512220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
We report an electro-optic isolator fabricated on thin-film lithium niobate by photolithography-assisted chemo-mechanical etching that shows an isolation of 39.50 dB and an overall fiber-to-fiber loss of 2.6 dB.
Collapse
|
3
|
Zhang Z, Li S, Gao R, Zhang H, Lin J, Fang Z, Wu R, Wang M, Wang Z, Hang Y, Cheng Y. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain. OPTICS LETTERS 2023; 48:4344-4347. [PMID: 37582028 DOI: 10.1364/ol.497543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
A photonic integrated waveguide amplifier fabricated on erbium-ytterbium (Er-Yb) codoped thin-film lithium niobate (TFLN) has been investigated in this work. A small-signal internal net gain of 27 dB is achieved at a signal wavelength of 1532 nm in the fabricated Er-Yb TFLN waveguide amplifier pumped by a diode laser at ≈980 nm. Experimental characterizations reveal the suitability of waveguide fabrication by the photolithography-assisted chemo-mechanical etching (PLACE) technique and also the gain in an Yb-sensitized-Er material. The demonstrated high-gain chip-scale TFLN amplifier is promising for interfacing with established lithium niobate integrated devices, greatly extending the spectrum of TFLN photonic applications.
Collapse
|
4
|
Luo Q, Yang C, Hao Z, Zhang R, Ma R, Zheng D, Liu H, Yu X, Gao F, Bo F, Kong Y, Zhang G, Xu J. On-chip erbium-ytterbium-co-doped lithium niobate microdisk laser with an ultralow threshold. OPTICS LETTERS 2023; 48:3447-3450. [PMID: 37390152 DOI: 10.1364/ol.487683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 07/02/2023]
Abstract
Erbium-ion-doped lithium niobate (LN) microcavity lasers working in the communication band have attracted extensive attention recently. However, their conversion efficiencies and laser thresholds still have significant room to improve. Here, we prepared microdisk cavities based on erbium-ytterbium-co-doped LN thin film by using ultraviolet lithography, argon ion etching, and a chemical-mechanical polishing process. Benefiting from the erbium-ytterbium co-doping-induced gain coefficient improvement, laser emission with an ultralow threshold (∼1 µW) and high conversion efficiency (1.8 × 10-3%) was observed in the fabricated microdisks under a 980-nm-band optical pump. This study provides an effective reference for improving the performance of LN thin-film lasers.
Collapse
|
5
|
Yu S, Fang Z, Wang Z, Zhou Y, Huang Q, Liu J, Wu R, Zhang H, Wang M, Cheng Y. On-chip single-mode thin-film lithium niobate Fabry-Perot resonator laser based on Sagnac loop reflectors. OPTICS LETTERS 2023; 48:2660-2663. [PMID: 37186734 DOI: 10.1364/ol.484387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We demonstrate an on-chip single-mode Er3+-doped thin-film lithium niobate (Er:TFLN) laser which consists of a Fabry-Perot (FP) resonator based on Sagnac loop reflectors (SLRs). The fabricated Er:TFLN laser has a footprint of 6.5 mm × 1.5 mm with a loaded quality (Q) factor of 1.6 × 105 and a free spectral range (FSR) of 63 pm. We generate the single-mode laser at 1544 nm wavelength with a maximum output power of 44.7 µW and a slope efficiency of 0.18%.
Collapse
|
6
|
Zhang Y, Luo Q, Wang S, Zheng D, Liu S, Liu H, Bo F, Kong Y, Xu J. On-chip ytterbium-doped lithium niobate waveguide amplifiers with high net internal gain. OPTICS LETTERS 2023; 48:1810-1813. [PMID: 37221772 DOI: 10.1364/ol.486066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/03/2023] [Indexed: 05/25/2023]
Abstract
Integrated optical systems based on lithium niobate on insulator (LNOI) have shown great potential in recent years. However, the LNOI platform is facing a shortage of active devices. Considering the significant progress made in rare-earth-doped LNOI lasers and amplifiers, the fabrication of on-chip ytterbium-doped LNOI waveguide amplifiers based on electron-beam lithography and inductively coupled plasma reactive ion etching was investigated. The signal amplification at lower pump power (<1 mW) was achieved by the fabricated waveguide amplifiers. A net internal gain of ∼18 dB/cm in the 1064 nm band was also achieved in the waveguide amplifiers under a pump power of 10 mW at 974 nm. This work proposes a new, to the best of our knowledge, active device for the LNOI integrated optical system. It may become an important basic component for lithium niobate thin-film integrated photonics in the future.
Collapse
|
7
|
Zhou J, Huang T, Fang Z, Wu R, Zhou Y, Liu J, Zhang H, Wang Z, Wang M, Cheng Y. Laser diode-pumped compact hybrid lithium niobate microring laser. OPTICS LETTERS 2022; 47:5599-5601. [PMID: 37219280 DOI: 10.1364/ol.474906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 05/24/2023]
Abstract
We demonstrate a compact hybrid lithium niobate microring laser by butt coupling a commercial 980-nm pump laser diode chip with a high-quality Er3+-doped lithium niobate microring chip. Single-mode lasing emission at 1531-nm wavelength from the Er3+-doped lithium niobate microring can be observed with the integrated 980-nm laser pumping. The compact hybrid lithium niobate microring laser occupies the chip size of 3 mm × 4 mm × 0.5 mm. The threshold pumping laser power is 6 mW and the threshold current is 0.5 A (operating voltage 1.64 V) at atmospheric temperature. The spectrum featuring single-mode lasing with small linewidth of 0.05 nm is observed. This work explores a robust hybrid lithium niobate microring laser source which has potential applications in coherent optical communication and precision metrology.
Collapse
|
8
|
Li M, Chang L, Wu L, Staffa J, Ling J, Javid UA, Xue S, He Y, Lopez-Rios R, Morin TJ, Wang H, Shen B, Zeng S, Zhu L, Vahala KJ, Bowers JE, Lin Q. Integrated Pockels laser. Nat Commun 2022; 13:5344. [PMID: 36097269 PMCID: PMC9467990 DOI: 10.1038/s41467-022-33101-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The development of integrated semiconductor lasers has miniaturized traditional bulky laser systems, enabling a wide range of photonic applications. A progression from pure III-V based lasers to III-V/external cavity structures has harnessed low-loss waveguides in different material systems, leading to significant improvements in laser coherence and stability. Despite these successes, however, key functions remain absent. In this work, we address a critical missing function by integrating the Pockels effect into a semiconductor laser. Using a hybrid integrated III-V/Lithium Niobate structure, we demonstrate several essential capabilities that have not existed in previous integrated lasers. These include a record-high frequency modulation speed of 2 exahertz/s (2.0 × 1018 Hz/s) and fast switching at 50 MHz, both of which are made possible by integration of the electro-optic effect. Moreover, the device co-lases at infrared and visible frequencies via the second-harmonic frequency conversion process, the first such integrated multi-color laser. Combined with its narrow linewidth and wide tunability, this new type of integrated laser holds promise for many applications including LiDAR, microwave photonics, atomic physics, and AR/VR.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Lin Chang
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Lue Wu
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jeremy Staffa
- Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Jingwei Ling
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Usman A Javid
- Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Shixin Xue
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Yang He
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | | | - Theodore J Morin
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Heming Wang
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Boqiang Shen
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Siwei Zeng
- Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC, 29634, USA
| | - Lin Zhu
- Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC, 29634, USA
| | - Kerry J Vahala
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - John E Bowers
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Qiang Lin
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA.
- Institute of Optics, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
9
|
Zhang X, Liu X, Ma R, Chen Z, Yang Z, Han Y, Wang B, Yu S, Wang R, Cai X. Heterogeneously integrated III-V-on-lithium niobate broadband light sources and photodetectors. OPTICS LETTERS 2022; 47:4564-4567. [PMID: 36048705 DOI: 10.1364/ol.468008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Heterogeneous integration of III-V active devices on lithium niobate-on-insulator (LNOI) photonic circuits enable fully integrated transceivers. Here we present the co-integration of InP-based light-emitting diodes (LEDs) and photodetectors on an LNOI photonics platform. Both devices are realized based on the same III-V epitaxial layers stack adhesively bonded on an LNOI waveguide circuit. The light is evanescently coupled between the LNOI and III-V waveguide via a multiple-section adiabatic taper. The waveguide-coupled LEDs have a 3-dB bandwidth of 40 nm. The photodetector features a responsivity of 0.38 A/W in the 1550-nm wavelength range and a dark current of 9 nA at -0.5 V at room temperature.
Collapse
|
10
|
Minet Y, Herr SJ, Breunig I, Zappe H, Buse K. Electro-optically tunable single-frequency lasing from neodymium-doped lithium niobate microresonators. OPTICS EXPRESS 2022; 30:28335-28344. [PMID: 36299031 DOI: 10.1364/oe.463044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/08/2022] [Indexed: 06/16/2023]
Abstract
Tunable light sources are a key enabling technology for many applications such as ranging, spectroscopy, optical coherence tomography, digital imaging and interferometry. For miniaturized laser devices, whispering gallery resonator lasers are a well-suited platform, offering low thresholds and small linewidths, however, many realizations suffer from the lack of reliable tuning. Rare-earth ion-doped lithium niobate offers a way to solve this issue. Here we present a single-frequency laser based on a neodymium-doped lithium niobate whispering gallery mode resonator that is tuned via the linear electro-optic effect. Using a special geometry, we suppress higher-order transverse modes and hence ensure single-mode operation. With an applied voltage of just 68 V, we achieve a tuning range of 3.5 GHz. The lasing frequency can also be modulated with a triangular control signal. The freely running system provides a frequency and power stability of better than Δ ν=20MHz and 6 %, respectively, for a 30-minute period. This concept is suitable for full integration with existing photonic platforms based on lithium niobate.
Collapse
|
11
|
Chen G, Qiao J. Femtosecond-laser-enabled simultaneous figuring and finishing of glass with a subnanometer optical surface. OPTICS LETTERS 2022; 47:3860-3863. [PMID: 35913333 DOI: 10.1364/ol.467413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate simultaneous figuring and surface finishing of glass using a femtosecond laser. For the first time, to the best of our knowledge, we have achieved deterministic material removal with nanometer precision and maintained sub-nanometer surface roughness without inducing any mid-spatial-frequency errors to the initial surface. A dynamic pulse propagation model is established to predict the interaction process, including plasma generation and surface temperature. The interactive modeling and the experiments enable the selection of a set of laser parameters to achieve controllable optical figuring and finishing. This demonstration shows the potential for using femtosecond lasers for advanced freeform optic forming, finishing, and reduction of detrimental mid-spatial-frequency errors, and laser-ablation-based patterning used for fabrication of integrated photonics and lasers.
Collapse
|
12
|
Liu F, Tong J, Xu Z, Ge K, Ruan J, Cui L, Zhai T. Electrically Tunable Polymer Whispering-Gallery-Mode Laser. MATERIALS 2022; 15:ma15144812. [PMID: 35888278 PMCID: PMC9317815 DOI: 10.3390/ma15144812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023]
Abstract
Microlasers hold great promise for the development of photonics and optoelectronics. At present, tunable microcavity lasers, especially regarding in situ dynamic tuning, are still the focus of research. In this study, we combined a 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) piezoelectric crystal with a Poly [9,9-dioctylfluorenyl-2,7-diyl] (PFO) microring cavity to realize a high-quality, electrically tunable, whispering-gallery-mode (WGM) laser. The dependence of the laser properties on the diameter of the microrings, including the laser spectrum and quality (Q) value, was investigated. It was found that with an increase in microring diameter, the laser emission redshifted, and the Q value increased. In addition, the device effectively achieved a blueshift under an applied electric field, and the wavelength tuning range was 0.71 nm. This work provides a method for in situ dynamic spectral modulation of microcavity lasers, and is expected to provide inspiration for the application of integrated photonics technology.
Collapse
Affiliation(s)
- Fangyuan Liu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
| | - Junhua Tong
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Zhiyang Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
| | - Kun Ge
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
| | - Jun Ruan
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
| | - Libin Cui
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
- Correspondence: (L.C.); (T.Z.)
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (F.L.); (Z.X.); (K.G.); (J.R.)
- Correspondence: (L.C.); (T.Z.)
| |
Collapse
|
13
|
On-Chip Integrated Yb3+-Doped Waveguide Amplifiers on Thin Film Lithium Niobate. MICROMACHINES 2022; 13:mi13060865. [PMID: 35744479 PMCID: PMC9229314 DOI: 10.3390/mi13060865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
We report the fabrication and optical characterization of Yb3+-doped waveguide amplifiers (YDWA) on the thin film lithium niobate fabricated by photolithography assisted chemo-mechanical etching. The fabricated Yb3+-doped lithium niobate waveguides demonstrates low propagation loss of 0.13 dB/cm at 1030 nm and 0.1 dB/cm at 1060 nm. The internal net gain of 5 dB at 1030 nm and 8 dB at 1060 nm are measured on a 4.0 cm long waveguide pumped by 976 nm laser diodes, indicating the gain per unit length of 1.25 dB/cm at 1030 nm and 2 dB/cm at 1060 nm, respectively. The integrated Yb3+-doped lithium niobate waveguide amplifiers will benefit the development of a powerful gain platform and are expected to contribute to the high-density integration of thin film lithium niobate based photonic chip.
Collapse
|
14
|
Zhu X, Engelberg J, Remennik S, Zhou B, Pedersen JN, Uhd Jepsen P, Levy U, Kristensen A. Resonant Laser Printing of Optical Metasurfaces. NANO LETTERS 2022; 22:2786-2792. [PMID: 35311279 DOI: 10.1021/acs.nanolett.1c04874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the challenges for metasurface research is upscaling. The conventional methods for fabrication of metasurfaces, such as electron-beam or focused ion beam lithography, are not scalable. The use of ultraviolet steppers or nanoimprinting still requires large-size masks or stamps, which are costly and challenging in further handling. This work demonstrates a cost-effective and lithography-free method for printing optical metasurfaces. It is based on resonant absorption of laser light in an optical cavity formed by a multilayer structure of ultrathin metal and dielectric coatings. A nearly perfect light absorption is obtained via interferometric control of absorption and operating around a critical coupling condition. Controlled by the laser power, the surface undergoes a structural transition from random, semiperiodic, and periodic to amorphous patterns with nanoscale precision. The reliability, upscaling, and subwavelength resolution of this approach are demonstrated by realizing metasurfaces for structural colors, optical holograms, and diffractive optical elements.
Collapse
Affiliation(s)
- Xiaolong Zhu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Jacob Engelberg
- Department of Applied Physics, The Faculty of Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sergei Remennik
- Department of Applied Physics, The Faculty of Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Binbin Zhou
- Department of Photonics Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Jonas Nyvold Pedersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Peter Uhd Jepsen
- Department of Photonics Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Uriel Levy
- Department of Applied Physics, The Faculty of Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Anders Kristensen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
15
|
Jin L, Chen X, Wu Y, Ai X, Yang X, Xiao S, Song Q. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nat Commun 2022; 13:1727. [PMID: 35365646 PMCID: PMC8975839 DOI: 10.1038/s41467-022-29435-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
The development of multi-wavelength lasing, particularly with the wavelength tuning in a wide spectral range, is challenging but highly desirable for integrated photonic devices due to its dynamic switching functionality, high spectral purity and contrast. Here, we propose a general strategy, that relies on the simultaneous design on the electronic states and the optical states, to demonstrate dynamically switchable single-mode lasing spanning beyond the record range (300 nm). This is achieved through integrating the reversely designed nanocrystals with two size-mismatched coupled microcavities. We show an experimental validation of a crosstalk-free violet-to-red single-mode behavior through collective control of asymmetric excitation and excitation wavelength. The single-mode action persists for a wide power range, and presents significant enhancement when compared with that in the microdisk laser. These findings enlighten the reverse design of luminescent materials. Given the remarkable doping flexibility, our results may create new opportunities in a variety of frontier applications.
Collapse
Affiliation(s)
- Limin Jin
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China.
| | - Xian Chen
- College of Materials Science of Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yunkai Wu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Xiangzhe Ai
- College of Materials Science of Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaoli Yang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China. .,Pengcheng Laboratory, Shenzhen, 518055, P. R. China.
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China. .,Pengcheng Laboratory, Shenzhen, 518055, P. R. China.
| |
Collapse
|
16
|
Luo Q, Yang C, Hao Z, Zhang R, Ma R, Zheng D, Liu H, Yu X, Gao F, Bo F, Kong Y, Zhang G, Xu J. Integrated ytterbium-doped lithium niobate microring lasers. OPTICS LETTERS 2022; 47:1427-1430. [PMID: 35290330 DOI: 10.1364/ol.451742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Integrated and stable microlasers are indispensable building blocks of micro-photonics. Here, we report the realization of an ytterbium-doped lithium niobate microring laser operating in the 1060-nm band under the pump of a 980-nm-band laser. The monolithic laser has a low threshold of 59.32 µW and relatively high output power of 6.44 µW, a state-of-the-art value for rare-earth ions-doped lithium niobate thin-film lasers. The monolithic laser with desirable performance and attractive scalability may find many applications in lithium niobite photonics.
Collapse
|
17
|
Luo Q, Yang C, Hao Z, Zhang R, Ma R, Zheng D, Liu H, Yu X, Gao F, Bo F, Kong Y, Zhang G, Xu J. On-chip ytterbium-doped lithium niobate microdisk lasers with high conversion efficiency. OPTICS LETTERS 2022; 47:854-857. [PMID: 35167542 DOI: 10.1364/ol.448232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Integrated optical systems based on lithium niobate on insulator (LNOI) have attracted the interest of researchers. Recently, erbium-doped LNOI lasers have been realized. However, the reported lasers have a relatively lower conversion efficiency and only operate in the 1550 nm band. In this paper, we demonstrate an LNOI laser operating in the 1060 nm band based on a high Q factor ytterbium-doped LNOI microdisk cavity. The threshold and the conversion efficiency of the laser are 21.19 µW and 1.36%, respectively. To our knowledge, the conversion efficiency is the highest among the reported rare-earth-doped LNOI lasers. This research extends the operating band of LNOI lasers and shows the potential in realizing high-power LNOI lasers.
Collapse
|
18
|
Zhou Y, Wang Z, Fang Z, Liu Z, Zhang H, Yin D, Liang Y, Zhang Z, Liu J, Huang T, Bao R, Wu R, Lin J, Wang M, Cheng Y. On-chip microdisk laser on Yb 3+-doped thin-film lithium niobate. OPTICS LETTERS 2021; 46:5651-5654. [PMID: 34780428 DOI: 10.1364/ol.440379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate an on-chip Yb3+-doped lithium niobate (LN) microdisk laser. The intrinsic quality factors of the fabricated Yb3+-doped LN microdisk resonator are measured up to 3.79×105 at a 976 nm wavelength and 1.1×106 at a 1514 nm wavelength. The multi-mode laser emissions are obtained in a band from 1020 to 1070 nm pumped by a 984 nm laser and with the low threshold of 103µW, resulting in a slope efficiency of 0.53% at room temperature. Furthermore, both the second-harmonic frequency of pump light and the sum frequency of the pump light and laser emissions are generated in the on-chip Yb3+-doped LN microdisk, benefiting from the strong χ(2) nonlinearity of LN. These microdisk lasers are expected to contribute to the high-density integration of a lithium niobate on insulator-based photonic chip.
Collapse
|
19
|
Liu X, Yan X, Liu Y, Li H, Chen Y, Chen X. Tunable single-mode laser on thin film lithium niobate. OPTICS LETTERS 2021; 46:5505-5508. [PMID: 34724512 DOI: 10.1364/ol.441167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The erbium-doped lithium niobate on insulator (LNOI) laser plays an important role in the complete photonic integrated circuits (PICs). Here, we demonstrate an integrated tunable whispering gallery single-mode laser (WGSML) by making use of a coupled microdisk and microring on LNOI. A 974 nm single-mode pump light can have an excellent resonance in the designed microdisk, which is beneficial to the whispering gallery mode (WGM) laser generation. The WGSML at 1560.40 nm with a maximum 31.4 dB side mode suppression ratio (SMSR) has been achieved. By regulating the temperature, the output power of the WGSML increases, and the central wavelength can be changed from 1560.30 to 1560.40 nm. Furthermore, 1560.60 and 1565.00 nm WGSMLs have been achieved by changing the coupling gap width between the microdisk and microring. We can also use the electro-optic effect of LNOI to obtain more accurate adjustable WGSMLs in further research.
Collapse
|
20
|
Han Y, Zhang X, Huang F, Liu X, Xu M, Lin Z, He M, Yu S, Wang R, Cai X. Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser. OPTICS LETTERS 2021; 46:5413-5416. [PMID: 34724488 DOI: 10.1364/ol.442281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Significant improvements in the lithium niobate on insulator (LNOI) platform are pushing LNOI-based laser sources to the forefront of integrated photonics. Here, we report the first, to the best of our knowledge, electrically pumped hybrid lithium niobate/III-V laser by butt coupling an InP-based optical gain chip with a LNOI photonic integrated circuit (PIC). In the PIC, a Vernier filter consisting of two LNOI microring resonators is employed to select the lasing wavelength. A wavelength tuning range of more than 36 nm is achieved in the O band. The hybrid laser has a maximum on-chip optical power of 2.5 mW and threshold current density of 2.5kA/cm2. A side mode suppression ratio better than 60 dB is achieved.
Collapse
|
21
|
Xiao Z, Wu K, Cai M, Li T, Chen J. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. OPTICS LETTERS 2021; 46:4128-4131. [PMID: 34469956 DOI: 10.1364/ol.432921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The erbium-doped lithium niobate on insulator (Er:LNOI) platform has great promise in the application of telecommunication, microwave photonics, and quantum photonics, due to its excellent electro-optic, piezo-electric, nonlinear nature, as well as the gain characteristics in the telecommunication C-band. Here, we report a single-frequency Er:LNOI integrated laser based on a dual-cavity structure. Facilitated by the Vernier effect and gain competition, the single-frequency laser can operate stably at 1531 nm wavelength with a 1484 nm pump laser. The output laser has a power of 0.31 µW, a linewidth of 1.2 MHz, and a side mode suppression ratio of 31 dB. Our work allows the direct integration of this laser source with existing LNOI components and paves the way for a fully integrated LNOI system.
Collapse
|
22
|
Luo Q, Yang C, Zhang R, Hao Z, Zheng D, Liu H, Yu X, Gao F, Bo F, Kong Y, Zhang G, Xu J. On-chip erbium-doped lithium niobate microring lasers. OPTICS LETTERS 2021; 46:3275-3278. [PMID: 34197434 DOI: 10.1364/ol.425178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Lithium niobate on insulator (LNOI), regarded as an important candidate platform for optical integration due to its excellent nonlinear, electro-optic, and other physical properties, has become a research hotspot. A light source, as an essential component for an integrated optical system, is urgently needed. In this Letter, we reported the realization of 1550 nm band on-chip LNOI microlasers based on erbium-doped LNOI ring cavities with loaded quality factors higher than 1 million at ∼970nm, which were fabricated by using electron beam lithography and inductively coupled plasma reactive ion etching processes. These microlasers demonstrated a low pump threshold of ∼20µW and stable performance under the pump of a 980 nm band continuous laser. Comb-like laser spectra spanning from 1510 to 1580 nm were observed in a high pump power regime, which lays the foundation of the realization of pulsed laser and frequency combs on a rare-earth ion-doped LNOI platform. This Letter effectively promotes the development of on-chip integrated active LNOI devices.
Collapse
|
23
|
Gao R, Guan J, Yao N, Deng L, Lin J, Wang M, Qiao L, Wang Z, Liang Y, Zhou Y, Cheng Y. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. OPTICS LETTERS 2021; 46:3131-3134. [PMID: 34197398 DOI: 10.1364/ol.430015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
We report an on-chip single-mode microlaser with a low threshold fabricated on erbium doped lithium-niobate-on-insulator (LNOI). The single-mode laser emission at 1550.5 nm wavelength is generated in a coupled microdisk via the inverse Vernier effect at room temperature, when pumping the resonator at 977.7 nm wavelength. A threshold pump power as low as 200 μW is demonstrated due to the high quality factor above 106. Moreover, the measured linewidth of the microlaser reaches 348 kHz without discounting the broadening caused by the utilization of optical amplifiers, which is, to our knowledge, the best result in LNOI microlasers. Such a single-mode microlaser lithographically fabricated on chip is in high demand by the photonics community.
Collapse
|
24
|
Yin D, Zhou Y, Liu Z, Wang Z, Zhang H, Fang Z, Chu W, Wu R, Zhang J, Chen W, Wang M, Cheng Y. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. OPTICS LETTERS 2021; 46:2127-2130. [PMID: 33929434 DOI: 10.1364/ol.424996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate monolithic integration of an electro-optically (EO) tunable microring laser on lithium niobate on insulator (LNOI) platform. The device is fabricated by photolithography assisted chemo-mechanical etching, and the pump laser is evanescently coupled into the erbium (${\rm{E}}{{\rm{r}}^{3 +}}$)-doped lithium niobate (LN) microring laser using an undoped LN waveguide mounted above the microring. The quality factor of the LN microring resonator is measured as high as ${1.54} \times {{1}}{{{0}}^5}$ at the wavelength of 1542 nm. Lasing action can be observed at a pump power threshold below 3.5 mW using a 980 nm continuous-wave pump laser. Finally, tuning of the laser wavelength is achieved by varying the electric voltage on the microelectrodes fabricated in the vicinity of a microring waveguide, showing an EO coefficient of 0.33 pm/V.
Collapse
|
25
|
Su S, Ye X, Liu S, Zheng Y, Chen X. Active mode selection by defects in lithium niobate on insulator microdisks. OPTICS EXPRESS 2021; 29:11885-11891. [PMID: 33984960 DOI: 10.1364/oe.422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Whispering gallery mode (WGM) optical microcavities are important building blocks in photonic integrated circuits. Operation of such cavities on specific lower- or higher- order transverse modes has much interest in application perspectives. Here, we demonstrate active mode selection by introducing defects in lithium niobate on insulator microdisks. A focused ion beam is applied to precisely inscribe nano slits into the perimeter of the microdisk. The transmission spectra can be significantly thinned out without severe quality factor degradation. Either fundamental or high-order transverse WGMs can be retained by properly designing the size and location of the defects. The approach may have promising applications in single-mode lasing and nonlinear optics.
Collapse
|
26
|
Chen Z, Xu Q, Zhang K, Wong WH, Zhang DL, Pun EYB, Wang C. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. OPTICS LETTERS 2021; 46:1161-1164. [PMID: 33649682 DOI: 10.1364/ol.420250] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Lithium niobate on insulator (LNOI) is an emerging photonic platform with great promise for use in future optical communications, nonlinear optics, and microwave photonics. An important integrated photonic building block, active waveguide amplifiers, however, are still missing in the LNOI platform. Here, we report an efficient and compact waveguide amplifier based on erbium-doped LNOI waveguides, achieved using a sequence of erbium-doped crystal growth, ion slicing, and lithography-based waveguide fabrication. Using a compact 5 mm long waveguide, we demonstrate an on-chip net gain of >5dB for 1530 nm signal light with a relatively low pump power of 21 mW at 980 nm. The efficient LNOI waveguide amplifiers could become an important fundamental element in future lithium niobate photonic integrated circuits.
Collapse
|