1
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Itoh T, Procházka M, Dong ZC, Ji W, Yamamoto YS, Zhang Y, Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem Rev 2023; 123:1552-1634. [PMID: 36745738 PMCID: PMC9952515 DOI: 10.1021/acs.chemrev.2c00316] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, 761-0395Kagawa, Japan
| | - Marek Procházka
- Faculty
of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16Prague 2, Czech Republic
| | - Zhen-Chao Dong
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Wei Ji
- College
of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin145040, China
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, 923-1292Ishikawa, Japan
| | - Yao Zhang
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Yukihiro Ozaki
- School of
Biological and Environmental Sciences, Kwansei
Gakuin University, 2-1,
Gakuen, Sanda, 669-1330Hyogo, Japan
- Toyota
Physical and Chemical Research Institute, Nagakute, 480-1192Aichi, Japan
| |
Collapse
|
3
|
Aitekenov S, Sultangaziyev A, Abdirova P, Yussupova L, Gaipov A, Utegulov Z, Bukasov R. Raman, Infrared and Brillouin Spectroscopies of Biofluids for Medical Diagnostics and for Detection of Biomarkers. Crit Rev Anal Chem 2022; 53:1561-1590. [PMID: 35157535 DOI: 10.1080/10408347.2022.2036941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This review surveys Infrared, Raman/SERS and Brillouin spectroscopies for medical diagnostics and detection of biomarkers in biofluids, that include urine, blood, saliva and other biofluids. These optical sensing techniques are non-contact, noninvasive and relatively rapid, accurate, label-free and affordable. However, those techniques still have to overcome some challenges to be widely adopted in routine clinical diagnostics. This review summarizes and provides insights on recent advancements in research within the field of vibrational spectroscopy for medical diagnostics and its use in detection of many health conditions such as kidney injury, cancers, cardiovascular and infectious diseases. The six comprehensive tables in the review and four tables in supplementary information summarize a few dozen experimental papers in terms of such analytical parameters as limit of detection, range, diagnostic sensitivity and specificity, and other figures of merits. Critical comparison between SERS and FTIR methods of analysis reveals that on average the reported sensitivity for biomarkers in biofluids for SERS vs FTIR is about 103 to 105 times higher, since LOD SERS are lower than LOD FTIR by about this factor. High sensitivity gives SERS an edge in detection of many biomarkers present in biofluids at low concentration (nM and sub nM), which can be particularly advantageous for example in early diagnostics of cancer or viral infections.HighlightsRaman, Infrared spectroscopies use low volume of biofluidic samples, little sample preparation, fast time of analysis and relatively inexpensive instrumentation.Applications of SERS may be a bit more complicated than applications of FTIR (e.g., limited shelf life for nanoparticles and substrates, etc.), but this can be generously compensated by much higher (by several order of magnitude) sensitivity in comparison to FTIR.High sensitivity makes SERS a noninvasive analytical method of choice for detection, quantification and diagnostics of many health conditions, metabolites, and drugs, particularly in diagnostics of cancer, including diagnostics of its early stages.FTIR, particularly ATR-FTIR can be a method of choice for efficient sensing of many biomarkers, present in urine, blood and other biofluids at sufficiently high concentrations (mM and even a few µM)Brillouin scattering spectroscopy detecting visco-elastic properties of probed liquid medium, may also find application in clinical analysis of some biofluids, such as cerebrospinal fluid and urine.
Collapse
Affiliation(s)
- Sultan Aitekenov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Alisher Sultangaziyev
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Perizat Abdirova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Lyailya Yussupova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
4
|
Kim NW, Choe H, Shah MA, Lee DG, Hur S. High-Density Patterned Array Bonding through Void-Free Divinyl Siloxane Bis-Benzocyclobutene Bonding Process. Polymers (Basel) 2021; 13:3633. [PMID: 34771189 PMCID: PMC8588381 DOI: 10.3390/polym13213633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Divinylsiloxane-bis-benzocyclobutene (DVS-BCB) has attracted significant attention as an intermediate bonding material, owing to its excellent properties. However, its applications are limited, due to damage to peripheral devices at high curing temperatures and unoptimized compressive pressure. Therefore, it is necessary to explore the compressive pressure condition for DVS-BCB bonding. This study demonstrates an optimization process for void-free DVS-BCB bonding. The process for obtaining void-free DVS-BCB bonding is a vacuum condition of 0.03 Torr, compressive pressure of 0.6 N/mm2, and curing temperature of 250 °C for 1 h. Herein, we define two factors affecting the DVS-BCB bonding quality through the DVS-BCB bonding mechanism. For strong DVS-BCB bonding, void-free and high-density chemical bonds are required. Therefore, we observed the DVS-BCB bonding under various compressive pressure conditions at a relatively low temperature (250 °C). The presence of voids and high-density crosslinking density was examined through near-infrared confocal laser microscopy and Fourier-transform infrared microscopy. We also evaluated the adhesion of the DVS-BCB bonding, using a universal testing machine. The results suggest that the good adhesion with no voids and high crosslinking density was obtained at the compressive pressure condition of 0.6 N/mm2. We believe that the proposed process will be of great significance for applications in semiconductor and device packaging technologies.
Collapse
Affiliation(s)
- Nam Woon Kim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon 34103, Korea; (N.W.K.); (M.A.S.)
| | - Hyeonjeong Choe
- Department of Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Muhammad Ali Shah
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon 34103, Korea; (N.W.K.); (M.A.S.)
| | - Duck-Gyu Lee
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon 34103, Korea; (N.W.K.); (M.A.S.)
| | - Shin Hur
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon 34103, Korea; (N.W.K.); (M.A.S.)
- Department of Nano-Mechatronics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
5
|
Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A Review on Surface-Enhanced Raman Scattering. BIOSENSORS 2019; 9:E57. [PMID: 30999661 PMCID: PMC6627380 DOI: 10.3390/bios9020057] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become a powerful tool in chemical, material and life sciences, owing to its intrinsic features (i.e., fingerprint recognition capabilities and high sensitivity) and to the technological advancements that have lowered the cost of the instruments and improved their sensitivity and user-friendliness. We provide an overview of the most significant aspects of SERS. First, the phenomena at the basis of the SERS amplification are described. Then, the measurement of the enhancement and the key factors that determine it (the materials, the hot spots, and the analyte-surface distance) are discussed. A section is dedicated to the analysis of the relevant factors for the choice of the excitation wavelength in a SERS experiment. Several types of substrates and fabrication methods are illustrated, along with some examples of the coupling of SERS with separation and capturing techniques. Finally, a representative selection of applications in the biomedical field, with direct and indirect protocols, is provided. We intentionally avoided using a highly technical language and, whenever possible, intuitive explanations of the involved phenomena are provided, in order to make this review suitable to scientists with different degrees of specialization in this field.
Collapse
Affiliation(s)
- Roberto Pilot
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Raffaella Signorini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Christian Durante
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Manjari Bhamidipati
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Gao L, Zhao H, Li Y, Li T, Chen D, Liu B. Controllable Fabrication of Au-Coated AFM Probes via a Wet-Chemistry Procedure. NANOSCALE RESEARCH LETTERS 2018; 13:366. [PMID: 30456453 PMCID: PMC6242804 DOI: 10.1186/s11671-018-2789-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS), which offers a spatial resolution far beyond the limitations of the optical diffraction and detection sensitivity down to a single molecular level, has become one of the powerful techniques applied in current nanoscience and technology. However, the excellent performance of a TERS system is very much dependent on the quality of metallized probes used in TERS characterization. Thus, how to prepare higher-quality probes plays a vital role in the development and application of TERS technique. In this work, one simple wet-chemistry procedure was designed to fabricate atomic force microscopy-based TERS (AFM-TERS) probes. Through the controlled growth of a gold film on a commercial silicon AFM probe, TERS probes with different apex diameters were prepared successfully. A series of TERS results indicated that the probes with the apex size of 50~60 nm had the maximum TERS enhancement, and the Raman enhancement factor was in the range of 106 to 107. Compared with those prepared by other fabrication methods, our TERS probes fabricated by this wet-chemistry method have the virtues of good stability, high reproducibility, and strong enhancement effect.
Collapse
Affiliation(s)
- Lizhen Gao
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng, 475004 People’s Republic of China
| | - Huiling Zhao
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng, 475004 People’s Republic of China
| | - Yinli Li
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng, 475004 People’s Republic of China
| | - Tianfeng Li
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng, 475004 People’s Republic of China
| | - Dong Chen
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng, 475004 People’s Republic of China
| | - Bo Liu
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng, 475004 People’s Republic of China
| |
Collapse
|
7
|
Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Anal Bioanal Chem 2018; 411:37-61. [DOI: 10.1007/s00216-018-1392-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
8
|
Hartman T, Wondergem CS, Weckhuysen BM. Practical Guidelines for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy of Heterogeneous Catalysts. Chemphyschem 2018; 19:2461-2467. [PMID: 29971926 DOI: 10.1002/cphc.201800509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Indexed: 11/11/2022]
Abstract
Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) has proven to be a useful characterization tool for heterogeneous catalysis research. The advantage of SHINERS lies in studying surface reactions on solid catalysts, including the detection of reactants, intermediates and products, in real time. However, due to the extremely strong local electric fields, minor amounts of contaminants can already have a big impact on the quality and interpretation of the spectroscopic data obtained. Often, a large part of the organic fingerprint region (1100-1700 cm-1 ) is omitted from SHINER spectra as this is not the main region of interest. However, we show that bands in this region are an important indication of the cleanliness of the substrate. In this work, we propose robust synthesis and measurement protocols to obtain clean SHINERS substrates amenable for catalysis research. By cleaning the substrates with various heat and oxidation treatments, featureless Raman spectra can be obtained. Furthermore, very pure gas feeds are required and must be obtained by flushing the gas lines and the reaction chamber beforehand and installing a filter for further cleaning the gas feed. Controlling the laser power to limit substrate and sample degradation is also a crucial aspect of proper measurement protocols.
Collapse
Affiliation(s)
- Thomas Hartman
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99, 3584 CG Utrecht, (The Netherlands)
| | - Caterina S Wondergem
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99, 3584 CG Utrecht, (The Netherlands)
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99, 3584 CG Utrecht, (The Netherlands)
| |
Collapse
|
9
|
Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev 2018; 118:4946-4980. [PMID: 29638112 DOI: 10.1021/acs.chemrev.7b00668] [Citation(s) in RCA: 887] [Impact Index Per Article: 147.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) inherits the rich chemical fingerprint information on Raman spectroscopy and gains sensitivity by plasmon-enhanced excitation and scattering. In particular, most Raman peaks have a narrow width suitable for multiplex analysis, and the measurements can be conveniently made under ambient and aqueous conditions. These merits make SERS a very promising technique for studying complex biological systems, and SERS has attracted increasing interest in biorelated analysis. However, there are still great challenges that need to be addressed until it can be widely accepted by the biorelated communities, answer interesting biological questions, and solve fatal clinical problems. SERS applications in bioanalysis involve the complex interactions of plasmonic nanomaterials with biological systems and their environments. The reliability becomes the key issue of bioanalytical SERS in order to extract meaningful information from SERS data. This review provides a comprehensive overview of bioanalytical SERS with the main focus on the reliability issue. We first introduce the mechanism of SERS to guide the design of reliable SERS experiments with high detection sensitivity. We then introduce the current understanding of the interaction of nanomaterials with biological systems, mainly living cells, to guide the design of functionalized SERS nanoparticles for target detection. We further introduce the current status of label-free (direct) and labeled (indirect) SERS detections, for systems from biomolecules, to pathogens, to living cells, and we discuss the potential interferences from experimental design, measurement conditions, and data analysis. In the end, we give an outlook of the key challenges in bioanalytical SERS, including reproducibility, sensitivity, and spatial and time resolution.
Collapse
Affiliation(s)
- Cheng Zong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Mengxi Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Li-Jia Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ting Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xiao-Shan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
10
|
Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers. BIOSENSORS-BASEL 2017; 7:bios7010007. [PMID: 28085088 PMCID: PMC5371780 DOI: 10.3390/bios7010007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/01/2023]
Abstract
Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS.
Collapse
|
11
|
Balčytis A, Ryu M, Seniutinas G, Juodkazytė J, Cowie BCC, Stoddart PR, Zamengo M, Morikawa J, Juodkazis S. Black-CuO: surface-enhanced Raman scattering and infrared properties. NANOSCALE 2015; 7:18299-18304. [PMID: 26487549 DOI: 10.1039/c5nr04783h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Large surface area samples of nanotextured black CuO were prepared by chemical etching of Cu for use in surface-enhanced Raman scattering (SERS). The SERS intensity of a self-assembled monolayer (SAM) of thiophenol was proportional to the thickness of a nanoscale-conformal Au film deposited by magnetron sputtering over the black CuO. A very high SERS yield of ∼10(4) counts per s per mW was observed for the thiophenol SAM on the thickest Au films studied here. Synchrotron X-ray photoelectron spectroscopy was used to confirm that the surface of the chemically etched Cu was covered by high purity CuO. IR spectral characterization of the black CuO showed a close to linear increase in reflectivity from 25 to 100% over the range of 4000-500 cm(-1) wavenumbers (or 2.5-20 μm in wavelength). Sensing applications and thermal effects in SERS are discussed.
Collapse
Affiliation(s)
- Armandas Balčytis
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia. and Center for Physical Sciences and Technology, A. Goštauto 9, LT-01108 Vilnius, Lithuania
| | - Meguya Ryu
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Gediminas Seniutinas
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia.
| | - Jurga Juodkazytė
- Center for Physical Sciences and Technology, A. Goštauto 9, LT-01108 Vilnius, Lithuania
| | - Bruce C C Cowie
- Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168, Australia
| | - Paul R Stoddart
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia.
| | | | - Junko Morikawa
- Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Saulius Juodkazis
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia. and Center for Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Chen S, Li X, Guo Y, Qi J. A Ag-molecularly imprinted polymer composite for efficient surface-enhanced Raman scattering activities under a low-energy laser. Analyst 2015; 140:3239-43. [DOI: 10.1039/c4an02301c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have fabricated flower-shaped Ag particles coated with a molecularly imprinted polymer (Ag@MIP) based on the molecular imprinting technique and SERS technology.
Collapse
Affiliation(s)
- Shaona Chen
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Xin Li
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
- Department of Chemistry
| | - Yan Guo
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Jingyao Qi
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| |
Collapse
|
13
|
Krasnoslobodtsev AV, Torres MP, Kaur S, Vlassiouk IV, Lipert RJ, Jain M, Batra SK, Lyubchenko YL. Nano-immunoassay with improved performance for detection of cancer biomarkers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:167-73. [PMID: 25200613 DOI: 10.1016/j.nano.2014.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/22/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
Abstract
Nano-immunoassay utilizing surface-enhanced Raman scattering (SERS) effect is a promising analytical technique for early detection of cancer. In its current standing the assay is capable of discriminating samples of healthy individuals from samples of pancreatic cancer patients. Further improvements in sensitivity and reproducibility will extend practical applications of the SERS-based detection platforms to wider range of problems. In this report, we discuss several strategies designed to improve performance of the SERS-based detection system. We demonstrate that reproducibility of the platform is enhanced by using atomically smooth mica surface as a template for preparation of capture surface in SERS sandwich immunoassay. Furthermore, assay's stability and sensitivity can be further improved by using either polymer or graphene monolayer as a thin protective layer applied on top of the assay addresses. The protective layer renders signal to be more stable against photo-induced damage and carbonaceous contamination.
Collapse
Affiliation(s)
- Alexey V Krasnoslobodtsev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Physics, University of Nebraska Omaha, Omaha, NE, USA.
| | - María P Torres
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
14
|
Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW. Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 2014; 16:2224-39. [PMID: 24366393 DOI: 10.1039/c3cp53560f] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a powerful spectroscopic technique capable of detecting trace amounts of chemicals and identifying them based on their unique vibrational characteristics. While there are many complex methods for fabricating SERS substrates, there has been a recent shift towards the development of simple, low cost fabrication methods that can be performed in most labs or even in the field. The potential of SERS for widespread use will likely be realized only with development of cheaper, simpler methods. In this Perspective article we briefly review several of the more popular methods for SERS substrate fabrication, discuss the characteristics of simple SERS substrates, and examine several methods for producing simple SERS substrates. We highlight potential applications and future directions for simple SERS substrates, focusing on highly SERS active three-dimensional nanostructures fabricated by inkjet and screen printing and galvanic displacement for portable SERS analysis - an area that we believe has exciting potential for future research and commercialization.
Collapse
Affiliation(s)
- Jordan F Betz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | | | | | | |
Collapse
|
15
|
Yang Y, Li ZY, Nogami M, Tanemura M, Huang Z. The controlled fabrication of “Tip-On-Tip” TERS probes. RSC Adv 2014. [DOI: 10.1039/c3ra44532a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Schmid T, Opilik L, Blum C, Zenobi R. Chemische Bildgebung auf der Nanometerskala mittels spitzenverstärkter Raman-Spektroskopie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201203849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Schmid T, Opilik L, Blum C, Zenobi R. Nanoscale Chemical Imaging Using Tip-Enhanced Raman Spectroscopy: A Critical Review. Angew Chem Int Ed Engl 2013; 52:5940-54. [DOI: 10.1002/anie.201203849] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/02/2012] [Indexed: 11/12/2022]
|
18
|
Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm. Anal Bioanal Chem 2012; 404:1465-75. [PMID: 22820905 PMCID: PMC3426672 DOI: 10.1007/s00216-012-6225-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/09/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has recently been proved to be a promising technique for characterizing the chemical composition of the biofilm matrix. In the present study, to fully understand the chemical variations during biofilm formation, SERS based on silver colloidal nanoparticles was applied to evaluate the chemical components in the matrix of biofilm at different growth phases, including initial attached bacteria, colonies, and mature biofilm. Meanwhile, atomic force microscopy was also applied to study the changes of biofilm morphology. Three model bacteria, including Escherichia coli, Pseudomonas putida, and Bacillus subtilis, were used to cultivate biofilms. The results showed that the content of carbohydrates, proteins, and nucleic acids in the biofilm matrix increased significantly along with the biofilm growth of the three bacteria judging from the intensities and appearance probabilities of related marker peaks in the SERS spectra. The content of lipids, however, only increased in the Gram-negative biofilms (E. coli and P. putida) rather than the Gram-positive biofilm (B. subtilis). Our findings strongly suggest the SERS has significant potential for studying chemical variations during biofilm formation. Achieving surface-enhanced Raman scattering by coating silver nanoparticles on biofilm surface. ![]()
Collapse
|
19
|
Stadler J, Schmid T, Zenobi R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. NANOSCALE 2012; 4:1856-1870. [PMID: 22105888 DOI: 10.1039/c1nr11143d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This feature review provides an overview of the state-of the art and recent developments in tip-enhanced Raman spectroscopy (TERS), in-depth information about the different available types of instruments including their (dis-)advantages and capabilities as well as a short glance at a number of samples that have recently been investigated using TERS. Issues concerning the progression of TERS from point spectroscopy to an imaging technique are discussed, as well as problems arising from background and contamination signals. This review is concluded with a short TERS 'user guideline', trying to aid researchers new in the field to properly align and test their own TERS setups. Finally, a short outlook is given and some critical issues are raised that need to be solved by the community sooner or later, in order to promote TERS towards a 'push-button' operation.
Collapse
Affiliation(s)
- Johannes Stadler
- ETH Zurich, Department of Chemistry and Applied Biosciences, Wolfgang-Pauli-Strasse 10, HCI E 329, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
20
|
Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 2011; 403:27-54. [PMID: 22205182 DOI: 10.1007/s00216-011-5631-x] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/10/2011] [Accepted: 12/01/2011] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) combines molecular fingerprint specificity with potential single-molecule sensitivity. Therefore, the SERS technique is an attractive tool for sensing molecules in trace amounts within the field of chemical and biochemical analytics. Since SERS is an ongoing topic, which can be illustrated by the increased annual number of publications within the last few years, this review reflects the progress and trends in SERS research in approximately the last three years. The main reason why the SERS technique has not been established as a routine analytic technique, despite its high specificity and sensitivity, is due to the low reproducibility of the SERS signal. Thus, this review is dominated by the discussion of the various concepts for generating powerful, reproducible, SERS-active surfaces. Furthermore, the limit of sensitivity in SERS is introduced in the context of single-molecule spectroscopy and the calculation of the 'real' enhancement factor. In order to shed more light onto the underlying molecular processes of SERS, the theoretical description of SERS spectra is also a growing research field and will be summarized here. In addition, the recording of SERS spectra is affected by a number of parameters, such as laser power, integration time, and analyte concentration. To benefit from synergies, SERS is combined with other methods, such as scanning probe microscopy and microfluidics, which illustrates the broad applications of this powerful technique.
Collapse
Affiliation(s)
- Dana Cialla
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Hudson SD, Chumanov G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal Bioanal Chem 2009; 394:679-86. [DOI: 10.1007/s00216-009-2756-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/15/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
|
22
|
|