1
|
Liu B, Huang Y, Zheng W, Wang D, Fan M. A SERS pH sensor for highly alkaline conditions and its application for pH sensing in aerosol droplets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1856-1861. [PMID: 35510989 DOI: 10.1039/d2ay00387b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-Enhanced Raman Scattering (SERS) has been widely used in pH sensing. However, SERS sensors capable of stably analysing pH under highly alkaline conditions are still scarce. In this work, a SERS pH sensor employing Alizarin Yellow R as the molecular probe was carefully developed for strong alkaline solutions. The results showed that the probe presented excellent sensing performance in the pH range of 10.04-14.04, including desirable stability and reversibility. Raman band assignments of the probe molecules with the protonated and deprotonated forms were calculated using Gaussian 09. To demonstrate the application, we measured the centroid pH of the phosphate buffer (PB) droplet and compared it to the value obtained with 4-mercaptobenzoic acid (4-MBA) as a probe.
Collapse
Affiliation(s)
- Boyu Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yuting Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Wenxu Zheng
- College of Material and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
- State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, 610031, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
- State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, 610031, China
| |
Collapse
|
2
|
Zhao X, Campbell S, El-Khoury PZ, Jia Y, Wallace GQ, Claing A, Bazuin CG, Masson JF. Surface-Enhanced Raman Scattering Optophysiology Nanofibers for the Detection of Heavy Metals in Single Breast Cancer Cells. ACS Sens 2021; 6:1649-1662. [PMID: 33847111 DOI: 10.1021/acssensors.1c00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mercury(II) ions (Hg2+) and silver ions (Ag+) are two of the most hazardous pollutants causing serious damage to human health. Here, we constructed surface-enhanced Raman scattering (SERS)-active nanofibers covered with 4-mercaptopyridine (4-Mpy)-modified gold nanoparticles to detect Hg2+ and Ag+. Experimental evidence suggests that the observed spectral changes originate from the combined effect of (i) the coordination between the nitrogen on 4-Mpy and the metal ions and (ii) the 4-Mpy molecular orientation (from flatter to more perpendicular with respect to the metal surface). The relative intensity of a pair of characteristic Raman peaks (at ∼428 and ∼708 cm-1) was used to quantify the metal ion concentration, greatly increasing the reproducibility of the measurement compared to signal-on or signal-off detection based on a single SERS peak. The detection limit of this method for Hg2+ is lower than that for the Ag+ (5 vs 100 nM), which can be explained by the stronger interaction energy between Hg2+ and N compared to Ag+ and N, as demonstrated by density functional theory calculations. The Hg2+ and Ag+ ions can be masked by adding ethylenediaminetetraacetate and Cl-, respectively, to the Hg2+ and Ag+ samples. The good sensitivity, high reproducibility, and excellent selectivity of these nanosensors were also demonstrated. Furthermore, detection of Hg2+ in living breast cancer cells at the subcellular level is possible, thanks to the nanometric size of the herein described SERS nanosensors, allowing high spatial resolution and minimal cell damage.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Shirley Campbell
- Département de pharmacologie et physiologie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Patrick Z. El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Yuechen Jia
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Gregory Q. Wallace
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Audrey Claing
- Département de pharmacologie et physiologie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - C. Geraldine Bazuin
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and ⊥Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
3
|
Jaworska A, Malek K, Kudelski A. Intracellular pH - Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy - A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119410. [PMID: 33465573 DOI: 10.1016/j.saa.2020.119410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/29/2020] [Indexed: 05/13/2023]
Abstract
The value of pH in various parts of protoplasm can affect nearly all aspects of cell functions. Therefore, the determination of intracellular acid-base features is required in many areas of biological and biochemical studies. Because of a significant scientific importance of in vivo intracellular pH measurements, various groups carried out such experiments. In this review article we describe intracellular pH measurements using two the most sensitive optical spectroscopies: surface-enhanced Raman scattering (SERS) and fluorescence. It is reasonable to present these two techniques in one review article because the experimental approach in Raman and fluorescence experiments is relatively similar. The basic theoretical background explaining the mechanism of operation of fluorescence and SERS sensors are discussed and the motivations to carry out intracellular pH measurements are briefly described. Future perspectives in this field are also discussed.
Collapse
Affiliation(s)
- Aleksandra Jaworska
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland.
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
4
|
Gao G, Liu F, Xu Z, Wan D, Han Y, Kuang Y, Wang Q, Zhi Q. Evidence of nigericin as a potential therapeutic candidate for cancers: A review. Biomed Pharmacother 2021; 137:111262. [PMID: 33508621 DOI: 10.1016/j.biopha.2021.111262] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging studies have shown that nigericin, an H+, K+ and Pb2+ ionophore, has exhibited a promising anti-cancer activity in various cancers. However, its anti-cancer mechanisms have not been fully elucidated. In this review, the recent progresses on the use of nigericin in human cancers have been summarized. By exchanging H+ and K+ across cell membranes, nigericin shows promising anti-cancer activities in in vitro and in vivo as a single agent or in combination with other anti-cancer drugs through decreasing intracellular pH (pHi). The underlying mechanisms of nigericin also include the inactivation of Wnt/β-catenin signals, blockade of Androgen Receptor (AR) signaling, and activation of Stress-Activated Protein Kinase/c-Jun N-terminal Kinase (SAPK/JNK) signaling pathways. In many cancers, nigericin is proved to specifically target putative Cancer Stem Cells (CSCs), and its synergistic effects on photodynamic therapy are also reported. Other mechanisms of nigericin including influencing the mitochondrial membrane potentials, inducing an increase in drug accumulation and autophagy, controlling insulin accumulation in nuclei, and increasing the cytotoxic activity of liposome-entrapped drugs, are also discussed. Notably, the potential adverse effects such as teratogenic effects, insulin resistance and eryptosis shall not be ignored. Taken together, these reports suggest that treatment of cancer cells with nigericin may offer a novel therapeutic strategy and future potential of translation to clinics.
Collapse
Affiliation(s)
- Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital, Wujiang, Jiangsu, 215228, China.
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
5
|
Huang Y, Liu W, Wang D, Gong Z, Fan M. Evaluation of the intrinsic pH sensing performance of surface-enhanced Raman scattering pH probes. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Soleymani J, Hasanzadeh M, shadjou N, Somi MH, Jouyban A. The role of nanomaterials on the cancer cells sensing based on folate receptor: Analytical approach. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Li SS, Zhang M, Wang JH, Yang F, Kang B, Xu JJ, Chen HY. Monitoring the Changes of pH in Lysosomes during Autophagy and Apoptosis by Plasmon Enhanced Raman Imaging. Anal Chem 2019; 91:8398-8405. [PMID: 31144810 DOI: 10.1021/acs.analchem.9b01250] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lysosomes are acidic organelles that not only participate in intracellular degradation but also relate to various cellular functions. Abnormal pH in lysosomes would lead to lysosomal dysfunction, which may further result in many diseases. In this work, we statistically analyze the pH change in the lysosomes of HeLa cells model by using surface enhanced Raman scattering (SERS) imaging technique. We prepared a plasmon Raman pH probe and localized the pH probe to lysosomes via an incubation-depletion method. The pH profiles within lysosomes during the process of cellular autophagy and apoptosis were monitored in situ by SERS imaging. The pH in lysosomes decreased slightly during the process of autophagy, while the pH in lysosomes increased during apoptosis. The phenomenon, in general, is consistent with our current biological knowledge. However, we did not observe significant variation of pH between different individual cells. This information might provide an in depth understanding about the relationship of lysosomal pH with fundamental cellular functions and mechanism of diseases.
Collapse
Affiliation(s)
- Shan-Shan Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China.,Institute for Biosensing, and Collenge of Chemistry and Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Miao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jian-Hua Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Fan Yang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
8
|
Bai L, Wang X, Zhang K, Tan X, Zhang Y, Xie W. Etchable SERS nanosensor for accurate pH and hydrogen peroxide sensing in living cells. Chem Commun (Camb) 2019; 55:12996-12999. [DOI: 10.1039/c9cc06485k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
“Turning off” extracellular SERS signals for accurate pH and hydrogen peroxide sensing in living cells.
Collapse
Affiliation(s)
- Lu Bai
- Key Laboratory of Advanced Energy Materials Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Xiaojie Wang
- Medical School of Nankai University
- Tianjin 300071
- China
| | - Kaifu Zhang
- Key Laboratory of Advanced Energy Materials Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Xiaoyue Tan
- Medical School of Nankai University
- Tianjin 300071
- China
| | - Yuying Zhang
- Medical School of Nankai University
- Tianjin 300071
- China
| | - Wei Xie
- Key Laboratory of Advanced Energy Materials Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
9
|
Bi L, Wang Y, Yang Y, Li Y, Mo S, Zheng Q, Chen L. Highly Sensitive and Reproducible SERS Sensor for Biological pH Detection Based on a Uniform Gold Nanorod Array Platform. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15381-15387. [PMID: 29664282 DOI: 10.1021/acsami.7b19347] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Conventional research on surface-enhanced Raman scattering (SERS)-based pH sensors often depends on nanoparticle aggregation, whereas the variability in nanoparticle aggregation gives rise to poor repeatability in the SERS signal. Herein, we fabricated a gold nanorod array platform via an efficient evaporative self-assembly method. The platform exhibits great SERS sensitivity with an enhancement factor of 5.6 × 107 and maintains excellent recyclability and reproducibility with relative standard deviation (RSD) values of less than 8%. On the basis of the platform, we developed a highly sensitive bovine serum albumin (BSA)-coated 4-mercaptopyridine (4-MPy)-linked (BMP) SERS-based pH sensor to report pH ranging from pH 3.0 to pH 8.0. The intensity ratio variation of 1004 and 1096 cm-1 in 4-MPy showed excellent pH sensitivity, which decreased as the surrounding pH increased. Furthermore, this BMP SERS-based pH sensor was employed to measure the pH value in C57BL/6 mouse blood. We have demonstrated that the pH sensor has great advantages such as good stability, reliability, and accuracy, which could be extended for the design of point-of-care devices.
Collapse
Affiliation(s)
| | - Yunqing Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Yantai 264003 , China
| | | | | | | | | | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Yantai 264003 , China
| |
Collapse
|
10
|
Ren W, Damayanti NP, Wang X, Irudayaraj JMK. Kinase phosphorylation monitoring with i-motif DNA cross-linked SERS probes. Chem Commun (Camb) 2015; 52:410-3. [PMID: 26525744 DOI: 10.1039/c5cc06566f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We propose an ultrasensitive SERS-based peptide biosensor platform to monitor phosphorylation catalyzed by kinase in a dynamic format. The developed SERS strategy has a short response time with potential to monitor phosphorylation in live cells.
Collapse
Affiliation(s)
- Wen Ren
- Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
11
|
Ren W, Zhou Z, Irudayaraj JMK. Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites. Analyst 2015; 140:6625-30. [PMID: 26332451 PMCID: PMC4571490 DOI: 10.1039/c5an01294e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report on a rapid and highly sensitive scheme to detect trichloroethylene (TCE), an environmental contaminant, by surface enhanced Raman scattering (SERS) with multifunctional Au/TiO2 core-shell nanocomposites as SERS substrates. A facile approach to fabricate TiO2 shell around gold core nanocomposites is proposed as sensors for TCE detection by SERS. During detection, TCE was first oxidized due to the photocatalytic activity of the TiO2 shell and the increase in SERS intensity due to the product of TCE photooxidation can be used to determine the concentration of TCE. It should be noted that the SERS of the Raman label, 4-mercaptopyridine (4-MPy) modified onto the gold nanoparticle (GNP) core is in proportion to the product of TCE photooxidation. After optimizing the sample pH, enrichment of the analyte, and the UV exposure time, the methodology developed accomplishes an excellent limit of detection (LOD) (0.038 μM, i.e.∼5 ppb) for TCE in water. Our unique approach based on the synthesized SERS composite to detect TCE, a chlorinated environmental contaminant directly in water could pave the way for the development of a multifunctional nanosensor platform to monitor TCE and the catalytic reactions in a multiplex format.
Collapse
Affiliation(s)
- Wen Ren
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | |
Collapse
|
12
|
Jaworska A, Jamieson LE, Malek K, Campbell CJ, Choo J, Chlopicki S, Baranska M. SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α. Analyst 2015; 140:2321-9. [PMID: 25485622 DOI: 10.1039/c4an01988a] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intracellular pH plays an important role in various cellular processes. In this work, we describe a method for monitoring of the intracellular pH in endothelial cells by using surface enhanced Raman spectroscopy (SERS) and 4-mercaptobenzoic acid (MBA) anchored to gold nanoparticles as pH-sensitive probes. Using the Raman microimaging technique, we analysed changes in intracellular pH induced by buffers with acid or alkaline pH, as well as in endothelial inflammation induced by tumour necrosis factor-α (TNFα). The targeted nanosensor enabled spatial pH measurements revealing distinct changes of the intracellular pH in endosomal compartments of the endothelium. Altogether, SERS-based analysis of intracellular pH proves to be a promising technique for a better understanding of intracellular pH regulation in various subcellular compartments.
Collapse
Affiliation(s)
- Aleksandra Jaworska
- Faculty of Chemistry, Jagiellonian University, 3 Ingardena Str., 30-060 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Zheng XS, Hu P, Cui Y, Zong C, Feng JM, Wang X, Ren B. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing. Anal Chem 2014; 86:12250-7. [PMID: 25418952 DOI: 10.1021/ac503404u] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.
Collapse
Affiliation(s)
- Xiao-Shan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, ‡The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and §Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, and ∥School of Physics and Mechanical & Electrical Engineering, Xiamen University , Xiamen 361005, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Ruckh TT, Clark HA. Implantable nanosensors: toward continuous physiologic monitoring. Anal Chem 2013; 86:1314-23. [PMID: 24325255 DOI: 10.1021/ac402688k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Continuous physiologic monitoring would add greatly to both home and clinical medical treatment for chronic conditions. Implantable nanosensors are a promising platform for designing continuous monitoring systems. This Feature reviews design considerations and current approaches toward such devices.
Collapse
Affiliation(s)
- Timothy T Ruckh
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
15
|
Kong KV, Dinish US, Lau WKO, Olivo M. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates. Biosens Bioelectron 2013; 54:135-40. [PMID: 24269755 DOI: 10.1016/j.bios.2013.10.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/25/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases.
Collapse
Affiliation(s)
- Kien Voon Kong
- Bio-Optical Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A(⁎)STAR), 11 Biopolis Way, Singapore 138667, Singapore
| | - U S Dinish
- Bio-Optical Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A(⁎)STAR), 11 Biopolis Way, Singapore 138667, Singapore
| | - Weber Kam On Lau
- Department of Urology, Singapore General Hospital, Singapore, Singapore
| | - Malini Olivo
- Bio-Optical Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A(⁎)STAR), 11 Biopolis Way, Singapore 138667, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; School of Physics, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
16
|
|
17
|
He H, Wang P, Allred DD, Majewski J, Wilkerson MP, Rector KD. Characterization of Chemical Speciation in Ultrathin Uranium Oxide Layered Films. Anal Chem 2012; 84:10380-7. [DOI: 10.1021/ac302598r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - D. D. Allred
- Department of Physics
and Astronomy, Brigham Young University, Provo, Utah 84602, United
States
| | | | | | | |
Collapse
|
18
|
Live Cells as Dynamic Laboratories: Time Lapse Raman Spectral Microscopy of Nanoparticles with Both IgE Targeting and pH-Sensing Functions. Int J Anal Chem 2012; 2012:390182. [PMID: 22778738 PMCID: PMC3388588 DOI: 10.1155/2012/390182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/01/2012] [Indexed: 11/27/2022] Open
Abstract
This review captures the use of live cells as dynamic microlaboratories through implementation of labeled nanoparticles (nanosensors) that have both sensing and targeting functions. The addition of 2,4-ε-dinitrophenol-L-lysine (DNP) as a FcεRI targeting ligand and 4-mercaptopyridine (4-MPy) as a pH-sensing ligand enables spatial and temporal monitoring of FcεRI receptors and their pH environment within the endocytic pathway. To ensure reliability, the sensor is calibrated in vivo using the ionophore nigericin and standard buffer solutions to equilibrate the external [H+]
concentration with that of the cell compartments. This review highlights the nanosensors, ability to traffic and respond to pH of receptor-bound nanosensors (1) at physiological temperature (37°C)
versus room temperature (25°C), (2) after pharmacological treatment with bafilomycin, an H+ ATPase pump inhibitor, or amiloride, an inhibitor of Na+/H+ exchange, and (3) in response to both temperature and pharmacological treatment. Whole-cell, time lapse images are demonstrated to show the ability to transform live cells into dynamic laboratories to monitor temporal and spatial endosomal pH. The versatility of these probes shows promise for future applications relevant to intracellular trafficking and intelligent drug design.
Collapse
|
19
|
Lawson L, Huser T. Synthesis and Characterization of a Disulfide Reporter Molecule for Enhancing pH Measurements Based on Surface-Enhanced Raman Scattering. Anal Chem 2012; 84:3574-80. [DOI: 10.1021/ac203103s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Latevi Lawson
- NSF Center for Biophotonics
Science and Technology, University of California, Davis, Sacramento, California 95817, United States
- Department
of Chemistry, University of California, Davis, Davis, California
95616, United States
| | - Thomas Huser
- NSF Center for Biophotonics
Science and Technology, University of California, Davis, Sacramento, California 95817, United States
- Department of Internal Medicine, University of California, Davis, Sacramento, California
95817, United States
| |
Collapse
|
20
|
Zong S, Wang Z, Yang J, Cui Y. Intracellular pH Sensing Using p-Aminothiophenol Functionalized Gold Nanorods with Low Cytotoxicity. Anal Chem 2011; 83:4178-83. [DOI: 10.1021/ac200467z] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Jing Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
21
|
Wang Z, Zong S, Yang J, Li J, Cui Y. Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 2011; 26:2883-9. [DOI: 10.1016/j.bios.2010.11.032] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/19/2010] [Accepted: 11/23/2010] [Indexed: 11/26/2022]
|
22
|
Merkoçi A. Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioelectron 2010; 26:1164-77. [DOI: 10.1016/j.bios.2010.07.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/21/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
|
23
|
Nowak-Lovato KL, Wilson BS, Rector KD. SERS nanosensors that report pH of endocytic compartments during FcεRI transit. Anal Bioanal Chem 2010; 398:2019-29. [PMID: 20842349 DOI: 10.1007/s00216-010-4176-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/25/2010] [Accepted: 08/29/2010] [Indexed: 02/02/2023]
Abstract
Recently, the development of an IgE receptor (FcεRI)-targeted, pH-sensitive, surface-enhanced Raman spectroscopy (SERS) nanosensor has been demonstrated by Nowak-Lovato and Rector (Appl Spectrosc 63:387-395, 2009). The targeted nanosensor enables spatial and temporal pH measurements as internalized receptors progress through endosomal compartments in live cells. Trafficking of receptor-bound nanosensors was compared at physiological temperature (37 °C) versus room temperature (25 °C). As expected, we observed markedly slower progression of receptors through low-pH endocytic compartments at the lower temperature. We also demonstrate the utility of the nanosensors to measure directly changes in the pH of intracellular compartments after treatment with bafilomycin or amiloride. We report an increase in endosome compartment pH after treatment with bafilomycin, an H(+) ATPase pump inhibitor. Decreased endosomal luminal pH was measured in cells treated with amiloride, an inhibitor of Na(+)/H(+) exchange. The decrease in amiloride-treated cells was transient, followed by a recovery period of approximately 15-20 min to restore endosomal pH. These experiments demonstrate the novel application of Raman spectroscopy to monitor local pH environment in live cells with the use of targeted SERS nanosensors.
Collapse
Affiliation(s)
- K L Nowak-Lovato
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
24
|
Lucas M, Macdonald BA, Wagner GL, Joyce SA, Rector KD. Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2010; 2:2198-205. [PMID: 20735091 DOI: 10.1021/am100371q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lignocellulosic biomass offers economic and environmental advantages over corn starch for biofuels production. However, its fractionation currently requires energy-intensive pretreatments, due to the lignin chemical resistance and complex cell wall structure. Recently, ionic liquids have been used to dissolve biomass at high temperatures. In this study, thin sections of poplar wood were swollen by ionic liquid (1-ethyl-3-methylimidazolium acetate) pretreatment at room temperature. The samples contract when rinsed with deionized water. The controlled expansion and contraction of the wood structure can be used to incorporate enzymes and catalysts deep into the wood structure for improved pretreatments and accelerated cellulose hydrolysis. As a proof of concept, silver and gold nanoparticles of diameters ranging from 20 to 100 nm were incorporated at depths up to 4 mum. Confocal surface-enhanced Raman images at different depths show that a significant number of nanoparticles were incorporated into the pretreated sample, and they remained on the samples after rinsing. Quantitative X-ray fluorescence microanalyses indicate that the majority of nanoparticle incorporation occurs after an ionic liquid pretreatment of less than 1 h. In addition to improved pretreatments, the incorporation of materials and chemicals into wood and paper products enables isotope tracing, development of new sensing, and imaging capabilities.
Collapse
Affiliation(s)
- Marcel Lucas
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | |
Collapse
|
25
|
Goddard G, Brown LO, Habbersett R, Brady CI, Martin JC, Graves SW, Freyer JP, Doorn SK. High-resolution spectral analysis of individual SERS-active nanoparticles in flow. J Am Chem Soc 2010; 132:6081-90. [PMID: 20143808 DOI: 10.1021/ja909850s] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoparticle spectroscopic tags based on surface enhanced Raman scattering (SERS) are playing an increasingly important role in bioassay and imaging applications. The ability to rapidly characterize large populations of such tags spectroscopically in a high-throughput flow-based platform will open new areas for their application and provide new tools for advancing their development. We demonstrate here a high-resolution spectral flow cytometer capable of acquiring Raman spectra of individual SERS-tags at flow rates of hundreds of particles per second, while maintaining the spectral resolution required to make full use of the detailed information encoded in the Raman signature for advanced multiplexing needs. The approach allows multiple optical parameters to be acquired simultaneously over thousands of individual nanoparticle tags. Characteristics such as tag size, brightness, and spectral uniformity are correlated on a per-particle basis. The tags evaluated here display highly uniform spectral signatures, but with greater variability in brightness. Subpopulations in the SERS response, not apparent in ensemble measurements, are also shown to exist. Relating tag variability to synthesis parameters makes flow-based spectral characterization a powerful tool for advancing particle development through its ability to provide rapid feedback on strategies aimed at constraining desired tag properties. Evidence for single-tag signal saturation at high excitation power densities is also shown, suggesting a role for high-throughput investigation of fundamental properties of the SERS tags as well.
Collapse
Affiliation(s)
- Gregory Goddard
- National Flow Cytometry Resource, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|