1
|
Fiore AM, Varvaro G, Agostinelli E, Mangone A, De Giglio E, Terzano R, Allegretta I, Dell'Anna MM, Fiore S, Mastrorilli P. Synthesis and Use in Catalysis of Hematite Nanoparticles Obtained from a Polymer Supported Fe(III) Complex. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ambra M. Fiore
- DICATECh Department Politecnico di Bari Via Orabona, 4. 70125 Bari Italy
| | - Gaspare Varvaro
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche Research Area Roma 1, Monterotondo Scalo 00016 Roma Italy
| | - Elisabetta Agostinelli
- Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche Research Area Roma 1, Monterotondo Scalo 00016 Roma Italy
| | - Annarosa Mangone
- Dipartimento di Chimica Università degli Studi di Bari-Aldo Moro Via Orabona, 4 70125 Bari Italy
| | - Elvira De Giglio
- Dipartimento di Chimica Università degli Studi di Bari-Aldo Moro Via Orabona, 4 70125 Bari Italy
| | - Roberto Terzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari-Aldo Moro Via Amendola, 165/A 70125 Bari Italy
| | - Ignazio Allegretta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Università degli Studi di Bari-Aldo Moro Via Amendola, 165/A 70125 Bari Italy
| | | | - Saverio Fiore
- Institute of Methodologies for Environmental Analysis National Research Council of Italy (IMAA-CNR) Tito Scalo 85050 Potenza Italy
| | - Piero Mastrorilli
- DICATECh Department Politecnico di Bari Via Orabona, 4. 70125 Bari Italy
| |
Collapse
|
2
|
Mukhtar A, Cao XM, Mehmood T, Wang DS, Wu KM. Structural characterization of self-assembled chain like Fe-FeOx Core shell nanostructure. NANOSCALE RESEARCH LETTERS 2019; 14:308. [PMID: 31502100 PMCID: PMC6734011 DOI: 10.1186/s11671-019-3128-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
One of the big challenge of studying the core-shell iron nanostructures is to know the nature of oxide shell, i.e., whether it is γ-Fe2O3 (Maghemite), Fe3O4 (Magnetite), α-Fe2O3 (Hematite), or FeO (Wustite). By knowing the nature of iron oxide shell with zero valent iron core, one can determine the chemical or physical behavior of core-shell nanostructures. Fe core-shell nanochains (NCs) were prepared through the reduction of Fe3+ ions by sodium boro-hydride in aqueous solution at room atmosphere, and Fe NCs were further aged in water up to 240 min. XRD was used to study the structure of Fe NCs. Further analysis of core-shell nature of Fe NCs was done by TEM, results showed increase in thickness of oxide shell (from 2.5, 4, 6 to 10 nm) as water aging time increases (from 0 min, 120 min, 240 min to 360 min). The Raman spectroscopy was employed to study the oxide nature of Fe NCs. To further confirm the magnetite phase in Fe NCs, the Mössbauer spectroscopy was done on Fe NCs-0 and Fe NCs-6. Result shows the presence of magnetite in the sample before aging in water, and the sample after prolonged aging contains pure Hematite phase. It shows that prolonged water oxidation transforms the structure of shell of Fe NCs from mixture of Hematite and Magnetite in to pure hematite shell. The Magnetic properties of the Fe NCs were measured by VSM at 320 K. Because of high saturation magnetization (Ms) values, Fe NCs could be used as r2 contrasts agents for magnetic resonance imaging (MRI) in near future.
Collapse
Affiliation(s)
- Aiman Mukhtar
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiao-Ming Cao
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Tahir Mehmood
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Da-shuang Wang
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Kai-ming Wu
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Devaiah D, Smirniotis PG. Effects of the Ce and Cr Contents in Fe–Ce–Cr Ferrite Spinels on the High-Temperature Water–Gas Shift Reaction. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04707] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Damma Devaiah
- Chemical Engineering Program,
Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221−0012, United States
| | - Panagiotis G. Smirniotis
- Chemical Engineering Program,
Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221−0012, United States
| |
Collapse
|
4
|
|
5
|
Compact hematite buffer layer as a promoter of nanorod photoanode performances. Sci Rep 2016; 6:35049. [PMID: 27733756 PMCID: PMC5062085 DOI: 10.1038/srep35049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022] Open
Abstract
The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.
Collapse
|
6
|
Neil CW, Yang YJ, Schupp D, Jun YS. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4395-4405. [PMID: 24621369 DOI: 10.1021/es405119q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Managed aquifer recharge (MAR) is a water reuse technique with the potential to meet growing water demands. However, MAR sites have encountered arsenic mobilization resulting from recharge operations. To combat this challenge, it is imperative to identify the mechanisms of arsenic mobilization during MAR. In this bench-scale study, arsenic mobilization from arsenopyrite (FeAsS) was characterized for conditions relevant to MAR operations. Experimentally determined activation energies for arsenic mobilization from FeAsS under aerobic conditions were 36.9 ± 2.3 kJ/mol for 10 mM sodium chloride, 40.8 ± 3.5 kJ/mol for 10 mM sodium nitrate, and 43.6 ± 5.0 kJ/mol for secondary effluent from a wastewater treatment plant. Interestingly, the sodium chloride system showed higher arsenic mobilization under aerobic conditions. In addition, secondary mineral precipitation varied among systems and further affected arsenic mobilization. For example, the wastewater system inhibited precipitation, while in the sodium chloride system, faster phase transformation of iron(III) (hydr)oxide precipitates was observed, resulting in hematite formation after 7 days. The phase transformation to hematite will result in less available surface area for arsenic attenuation. These new observations and activation energies can be useful to develop improved reactive transport models for the fate of arsenic during MAR, and develop strategies to minimize arsenic release.
Collapse
Affiliation(s)
- Chelsea W Neil
- Department of Energy, Environmental and Chemical Engineering, Washington University , St. Louis, Missouri 63130, United States
| | | | | | | |
Collapse
|
7
|
Riha SC, Racowski JM, Lanci MP, Klug JA, Hock AS, Martinson ABF. Phase discrimination through oxidant selection in low-temperature atomic layer deposition of crystalline iron oxides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3439-3445. [PMID: 23432093 DOI: 10.1021/la305027k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Control over the oxidation state and crystalline phase of thin-film iron oxides was achieved by low-temperature atomic layer deposition (ALD), utilizing a novel iron precursor, bis(2,4-methylpentadienyl)iron. This low-temperature (T = 120 °C) route to conformal deposition of crystalline Fe3O4 or α-Fe2O3 thin films is determined by the choice of oxygen source selected for the second surface half-reaction. The approach employs ozone to produce fully oxidized α-Fe2O3 or a milder oxidant, H2O2, to generate the Fe(2+)/Fe(3+) spinel, Fe3O4. Both processes show self-limiting surface reactions and deposition rates of at least 0.6 Å/cycle, a significantly high growth rate at such mild conditions. We utilized this process to prepare conformal iron oxide thin films on a porous framework, for which α-Fe2O3 is active for photocatalytic water splitting.
Collapse
Affiliation(s)
- Shannon C Riha
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | | | | | | | | |
Collapse
|
8
|
Shah VB, Orf GS, Reisch S, Harrington LB, Prado M, Blankenship RE, Biswas P. Characterization and deposition of various light-harvesting antenna complexes by electrospray atomization. Anal Bioanal Chem 2012; 404:2329-38. [PMID: 22983169 DOI: 10.1007/s00216-012-6368-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/19/2012] [Accepted: 08/20/2012] [Indexed: 01/22/2023]
Abstract
Photosynthetic organisms have light-harvesting complexes that absorb and transfer energy efficiently to reaction centers. Light-harvesting complexes (LHCs) have received increased attention in order to understand the natural photosynthetic process and also to utilize their unique properties in fabricating efficient artificial and bio-hybrid devices to capture solar energy. In this work, LHCs with different architectures, sizes, and absorption spectra, such as chlorosomes, Fenna-Matthews-Olson (FMO) protein, LH2 complex, and phycobilisome have been characterized by an electrospray-scanning mobility particle-sizer system (ES-SMPS). The size measured by ES-SMPS for FMO, chlorosomes, LH2, and phycobilisome were 6.4, 23.3, 9.5, and 33.4 nm, respectively. These size measurements were compared with values measured by dynamic light scattering and those reported in the literature. These complexes were deposited onto a transparent substrate by electrospray deposition. Absorption and fluorescence spectra of the deposited LHCs were measured. It was observed that the LHCs have light absorption and fluorescence spectra similar to that in solution, demonstrating the viability of the process.
Collapse
Affiliation(s)
- Vivek B Shah
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Posner R, Jubb A, Frankel G, Stratmann M, Allen H. A simultaneous Kelvin Probe and Raman spectroscopy approach for in situ surface and interface analysis. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|