1
|
Taliaferro JM. Transcriptome-scale methods for uncovering subcellular RNA localization mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119202. [PMID: 34998919 PMCID: PMC9035289 DOI: 10.1016/j.bbamcr.2021.119202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Across a variety of systems, thousands of RNAs are localized to specific subcellular locations. However, for the vast majority of these RNAs, the mechanisms that underlie their transport are unknown. Historically, these mechanisms were uncovered for a single transcript at a time by laboriously testing the ability of RNA fragments to direct transcript localization. Recently developed methods profile the content of subcellular transcriptomes using high-throughput sequencing, allowing the analysis of the localization of thousands of transcripts at once. By identifying commonalities shared among multiple localized transcripts, these methods have the potential to rapidly expand our understanding of RNA localization mechanisms.
Collapse
Affiliation(s)
- J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Dastidar SG, Nair D. A Ribosomal Perspective on Neuronal Local Protein Synthesis. Front Mol Neurosci 2022; 15:823135. [PMID: 35283723 PMCID: PMC8904363 DOI: 10.3389/fnmol.2022.823135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Continued mRNA translation and protein production are critical for various neuronal functions. In addition to the precise sorting of proteins from cell soma to distant locations, protein synthesis allows a dynamic remodeling of the local proteome in a spatially variable manner. This spatial heterogeneity of protein synthesis is shaped by several factors such as injury, guidance cues, developmental cues, neuromodulators, and synaptic activity. In matured neurons, thousands of synapses are non-uniformly distributed throughout the dendritic arbor. At any given moment, the activity of individual synapses varies over a wide range, giving rise to the variability in protein synthesis. While past studies have primarily focused on the translation factors or the identity of translated mRNAs to explain the source of this variation, the role of ribosomes in this regard continues to remain unclear. Here, we discuss how several stochastic mechanisms modulate ribosomal functions, contributing to the variability in neuronal protein expression. Also, we point out several underexplored factors such as local ion concentration, availability of tRNA or ATP during translation, and molecular composition and organization of a compartment that can influence protein synthesis and its variability in neurons.
Collapse
|
3
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
4
|
Schmidt CX, Tsang AH, Oster H. Generation of Mouse Primary Hypothalamic Neuronal Cultures for Circadian Bioluminescence Assays. Bio Protoc 2021; 11:e3944. [PMID: 33796618 DOI: 10.21769/bioprotoc.3944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 11/02/2022] Open
Abstract
An endogenous circadian clock system enables organisms to adapt to time-of-day dependent environmental changes. In consequence, most physiological processes exhibit daily rhythms of, e.g., energy metabolism, immune function, sleep, or hormone production. Hypothalamic circadian clocks have been identified to play a particular role in coordinating many of these processes. Primary neuronal cultures are widely used as a physiologically relevant model to study molecular events within neurons. However, as circadian rhythms include dynamic molecular changes over longer timescales that vary between individual cells, longitudinal measurement methods are essential to investigate the regulation of circadian clocks of hypothalamic neurons. Here we provide a protocol for generating primary hypothalamic neuronal cultures expressing a circadian luciferase reporter. Such reporter cells can be used to longitudinally monitor cellular circadian rhythms at high temporal resolution by performing bioluminescence measurements.
Collapse
Affiliation(s)
- Cosima X Schmidt
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Madugalle SU, Meyer K, Wang DO, Bredy TW. RNA N 6-Methyladenosine and the Regulation of RNA Localization and Function in the Brain. Trends Neurosci 2020; 43:1011-1023. [PMID: 33041062 PMCID: PMC7688512 DOI: 10.1016/j.tins.2020.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
A major challenge in neurobiology in the 21st century is to understand how the brain adapts with experience. Activity-dependent gene expression is integral to the synaptic plasticity underlying learning and memory; however, this process cannot be explained by a simple linear trajectory of transcription to translation within a specific neuronal population. Many other regulatory mechanisms can influence RNA metabolism and the capacity of neurons to adapt. In particular, the RNA modification N6-methyladenosine (m6A) has recently been shown to regulate RNA processing through alternative splicing, RNA stability, and translation. Here, we discuss the emerging idea that m6A could also coordinate the transport, localization, and local translation of key mRNAs in learning and memory and expand on the notion of dynamic functional RNA states in the brain.
Collapse
Affiliation(s)
- Sachithrani U Madugalle
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Kate Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Dan Ohtan Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Kiltschewskij DJ, Cairns MJ. Transcriptome-Wide Analysis of Interplay between mRNA Stability, Translation and Small RNAs in Response to Neuronal Membrane Depolarization. Int J Mol Sci 2020; 21:ijms21197086. [PMID: 32992958 PMCID: PMC7582590 DOI: 10.3390/ijms21197086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Experience-dependent changes to neural circuitry are shaped by spatially-restricted activity-dependent mRNA translation. Although the complexity of mRNA translation in neuronal cells is widely appreciated, translational profiles associated with neuronal excitation remain largely uncharacterized, and the associated regulatory mechanisms are poorly understood. Here, we employed ribosome profiling, mRNA sequencing and small RNA sequencing to profile transcriptome-wide changes in mRNA translation after whole cell depolarization of differentiated neuroblast cultures, and investigate the contribution of sequence-specific regulatory mechanisms. Immediately after depolarization, a functional partition between transcriptional and translational responses was uncovered, in which many mRNAs were subjected to significant changes in abundance or ribosomal occupancy, but not both. After an extended (2 h) post-stimulus rest phase, however, these changes became synchronized, suggesting that there are different layers of post-transcriptional regulation which are temporally separated but become coordinated over time. Globally, changes in mRNA abundance and translation were found to be associated with a number of intrinsic mRNA features, including mRNA length, GC% and secondary structures; however, the effect of these factors differed between both post-depolarization time-points. Furthermore, small RNA sequencing revealed that miRNAs and tRNA-derived small RNA fragments were subjected to peak changes in expression immediately after stimulation, during which these molecules were predominantly associated with fluctuations in mRNA abundance, consistent with known regulatory mechanisms. These data suggest that excitation-associated neuronal translation is subjected to extensive temporal coordination, with substantial contributions from a number of sequence-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Dylan J. Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
- Schizophrenia Research Institute, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-02-4921-8670
| |
Collapse
|
7
|
Ghosh Dastidar S, Das Sharma S, Chakraborty S, Chattarji S, Bhattacharya A, Muddashetty RS. Distinct regulation of bioenergetics and translation by group I mGluR and NMDAR. EMBO Rep 2020; 21:e48037. [PMID: 32351028 PMCID: PMC7271334 DOI: 10.15252/embr.201948037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity is responsible for the high energy consumption in the brain. However, the cellular mechanisms draining ATP upon the arrival of a stimulus are yet to be explored systematically at the post-synapse. Here, we provide evidence that a significant fraction of ATP is consumed upon glutamate stimulation to energize mGluR-induced protein synthesis. We find that both mGluR and NMDAR alter protein synthesis and ATP consumption with distinct kinetics at the synaptic-dendritic compartments. While mGluR activation leads to a rapid and sustained reduction in neuronal ATP levels, NMDAR activation has no immediate impact on the same. ATP consumption correlates inversely with the kinetics of protein synthesis for both receptors. We observe a persistent elevation in protein synthesis within 5 minutes of mGluR activation and a robust inhibition of the same within 2 minutes of NMDAR activation, assessed by the phosphorylation status of eEF2 and metabolic labeling. However, a delayed protein synthesis-dependent ATP expenditure ensues after 15 minutes of NMDAR stimulation. We identify a central role for AMPK in the correlation between protein synthesis and ATP consumption. AMPK is dephosphorylated and inhibited upon mGluR activation, while it is phosphorylated upon NMDAR activation. Perturbing AMPK activity disrupts receptor-specific modulations of eEF2 phosphorylation and protein synthesis. Our observations, therefore, demonstrate that the regulation of the AMPK-eEF2 signaling axis by glutamate receptors alters neuronal protein synthesis and bioenergetics.
Collapse
Affiliation(s)
- Sudhriti Ghosh Dastidar
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Shreya Das Sharma
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- The University of Trans‐Disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Sumita Chakraborty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Sumantra Chattarji
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- National Center for Biological SciencesBangaloreIndia
| | - Aditi Bhattacharya
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Ravi S Muddashetty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| |
Collapse
|
8
|
Fluorescence Imaging Methods to Investigate Translation in Single Cells. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032722. [PMID: 30082468 DOI: 10.1101/cshperspect.a032722] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Translation is the fundamental biological process that converts the genetic information in messenger RNAs (mRNAs) into functional proteins. Translation regulation allows cells to control when, where, and how many proteins are synthesized. Much of what we know about translation comes from ensemble approaches that measure the average of many cells. The cellular and molecular heterogeneity in the regulation of translation remains largely elusive. Fluorescence microscopy allows interrogation of biological problems with single-molecule, single-cell sensitivity. In recent years, improved design of reagents and microscopy tools has led to improved spatial and temporal resolution of translation imaging. It is now possible to track global translation in specific subcellular compartments and follow the translation dynamics of single transcripts. Highlighted here is the recent progress in translation imaging with emphasis on in vivo translation dynamics. These tools will be invaluable to the study of translation regulation.
Collapse
|
9
|
Namjoshi SV, Raab-Graham KF. Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 2017; 10:45. [PMID: 28286470 PMCID: PMC5323403 DOI: 10.3389/fnmol.2017.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory significantly. It is now possible to move from the study of activity-dependent changes of a single protein to modeling entire network changes that require local protein synthesis. This data revolution has necessitated the development of alternative computational and statistical techniques to analyze and understand the patterns contained within. Thus, the focus of this review is to provide a synopsis of the journey and evolution toward big data techniques to address still unanswered questions regarding how synapses are modified to strengthen neuronal circuits. We first review the seminal studies that demonstrated the pivotal role played by local mRNA translation as the mechanism underlying the enhancement of enduring synaptic activity. In the interest of those who are new to the field, we provide a brief overview of molecular biology and biochemical techniques utilized for sample preparation to identify locally translated proteins using RNA sequencing and proteomics, as well as the computational approaches used to analyze these data. While many mRNAs have been identified, few have been shown to be locally synthesized. To this end, we review techniques currently being utilized to visualize new protein synthesis, a task that has proven to be the most difficult aspect of the field. Finally, we provide examples of future applications to test the physiological relevance of locally synthesized proteins identified by big data approaches.
Collapse
Affiliation(s)
- Sanjeev V Namjoshi
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA; Department of Physiology and Pharmacology, Wake Forest Health Sciences, Medical Center Boulevard, Winston-SalemNC, USA
| |
Collapse
|