1
|
Rodrigues JS, Chenlo M, Bravo SB, Perez-Romero S, Suarez-Fariña M, Sobrino T, Sanz-Pamplona R, González-Prieto R, Blanco Freire MN, Nogueiras R, López M, Fugazzola L, Cameselle-Teijeiro JM, Alvarez CV. dsRNAi-mediated silencing of PIAS2beta specifically kills anaplastic carcinomas by mitotic catastrophe. Nat Commun 2024; 15:3736. [PMID: 38744818 PMCID: PMC11094195 DOI: 10.1038/s41467-024-47751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.
Collapse
Affiliation(s)
- Joana S Rodrigues
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Susana B Bravo
- Department of Proteomics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Tomas Sobrino
- Department of NeuroAging Group - Clinical Neurosciences Research Laboratory (LINC), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rebeca Sanz-Pamplona
- University Hospital Lozano Blesa, Institute for Health Research Aragon (IISA), ARAID Foundation, Aragon Government and CIBERESP, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Román González-Prieto
- Cell Dynamics and Signaling Department, Andalusian Center for Molecular Biology and Regenerative Medicine, Universidad de Sevilla - CSIC - Universidad Pablo de Olavide-Junta de Andalucía, 41092, Sevilla, Spain
- Department of Cell Biology, Faculty of Biology, University of Sevilla, 41012, Sevilla, Spain
| | - Manuel Narciso Blanco Freire
- Department of Surgery, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Molecular Metabolism, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS); Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Current Status and Future Perspectives about Molecular Biomarkers of Nasopharyngeal Carcinoma. Cancers (Basel) 2021; 13:cancers13143490. [PMID: 34298701 PMCID: PMC8305767 DOI: 10.3390/cancers13143490] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is a serious major public health problem in its endemic countries. Up to 80% of NPC patients with locally advanced disease or distant metastasis at diagnosis were associated with poor prognosis and with median survival less than 4 months. The mortality rate of NPC metastasis is up to 91%. To date, there is no available curative treatment or reliable early diagnosis or prognosis for NPC. Discovery and development of reliable early diagnosis and prognosis biomarkers for nasopharyngeal carcinoma are urgent needed. Hence, we have here listed the potential early diagnosis and prognosis biomarker candidates for nasopharyngeal carcinoma. This review will give an insight to readers on the progress of NPC biomarker discovery to date, as well as future prospective biomarker development and their translation to clinical use. Abstract Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein–Barr virus infection, individual’s genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
Collapse
|
3
|
Li M, Peng F, Wang G, Liang X, Shao M, Chen Z, Chen Y. Coupling of Cell Surface Biotinylation and SILAC-Based Quantitative Proteomics Identified Myoferlin as a Potential Therapeutic Target for Nasopharyngeal Carcinoma Metastasis. Front Cell Dev Biol 2021; 9:621810. [PMID: 34178975 PMCID: PMC8219959 DOI: 10.3389/fcell.2021.621810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/30/2021] [Indexed: 12/28/2022] Open
Abstract
Distant metastasis is a major cause of treatment failure in nasopharyngeal carcinoma (NPC) patients. Cell surface proteins represent attractive targets for cancer diagnosis or therapy. However, the cell surface proteins associated with NPC metastasis are poorly understood. To identify potential therapeutic targets for NPC metastasis, we isolated cell surface proteins from two isogenic NPC cell lines, 6-10B (low metastatic) and 5-8F (highly metastatic), through cell surface biotinylation. Stable isotope labeling by amino acids in cell culture (SILAC) based proteomics was applied to comprehensively characterize the cell surface proteins related with the metastatic phenotype. We identified 294 differentially expressed cell surface proteins, including the most upregulated protein myoferlin (MYOF), two receptor tyrosine kinases(RTKs) epidermal growth factor receptor (EGFR) and ephrin type-A receptor 2 (EPHA2) and several integrin family molecules. These differentially expressed proteins are enriched in multiple biological pathways such as the FAK-PI3K-mTOR pathway, focal adhesions, and integrin-mediated cell adhesion. The knockdown of MYOF effectively suppresses the proliferation, migration and invasion of NPC cells. Immunohistochemistry analysis also showed that MYOF is associated with NPC metastasis. We experimentally confirmed, for the first time, that MYOF can interact with EGFR and EPHA2. Moreover, MYOF knockdown could influence not only EGFR activity and its downstream epithelial–mesenchymal transition (EMT), but also EPHA2 ligand-independent activity. These findings suggest that MYOF might be an attractive potential therapeutic target that has double effects of simultaneously influencing EGFR and EPHA2 signaling pathway. In conclusion, this is the first study to profile the cell surface proteins associated with NPC metastasis and provide valuable resource for future researches.
Collapse
Affiliation(s)
- Maoyu Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Peng
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, China
| | - Guoqiang Wang
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, China
| | - Meiying Shao
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuchu Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, China
| | - Yongheng Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Medical Genetics and College of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
4
|
Mohanty V, Subbannayya Y, Patil S, Puttamallesh VN, Najar MA, Datta KK, Pinto SM, Begum S, Mohanty N, Routray S, Abdulla R, Ray JG, Sidransky D, Gowda H, Prasad TSK, Chatterjee A. Molecular alterations in oral cancer using high-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue. J Cell Commun Signal 2021; 15:447-459. [PMID: 33683571 DOI: 10.1007/s12079-021-00609-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
Loss of cell differentiation is a hallmark for the progression of oral squamous cell carcinoma (OSCC). Archival Formalin-Fixed Paraffin-Embedded (FFPE) tissues constitute a valuable resource for studying the differentiation of OSCC and can offer valuable insights into the process of tumor progression. In the current study, we performed LC-MS/MS-based quantitative proteomics of FFPE specimens from pathologically-confirmed well-differentiated, moderately-differentiated, and poorly-differentiated OSCC cases. The data were analyzed in four technical replicates, resulting in the identification of 2376 proteins. Of these, 141 and 109 were differentially expressed in moderately-differentiated and poorly differentiated OSCC cases, respectively, compared to well-differentiated OSCC. The data revealed significant metabolic reprogramming with respect to lipid metabolism and glycolysis with proteins belonging to both these processes downregulated in moderately-differentiated OSCC when compared to well-differentiated OSCC. Signaling pathway analysis indicated the alteration of extracellular matrix organization, muscle contraction, and glucose metabolism pathways across tumor grades. The extracellular matrix organization pathway was upregulated in moderately-differentiated OSCC and downregulated in poorly differentiated OSCC, compared to well-differentiated OSCC. PADI4, an epigenetic enzyme transcriptional regulator, and its transcriptional target HIST1H1B were both found to be upregulated in moderately differentiated and poorly differentiated OSCC, indicating epigenetic events underlying tumor differentiation. In conclusion, the findings support the advantage of using high-resolution mass spectrometry-based FFPE archival blocks for clinical and translational research. The candidate signaling pathways identified in the study could be used to develop potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Shankargouda Patil
- Division of Oral Pathology, College of Dentistry, Department of Maxillofacial Surgery and Diagnostic Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Keshava K Datta
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Sameera Begum
- Department of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Neeta Mohanty
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha'O'Anusandhan University, Bhubaneswar, Odisha, 751003, India
| | - Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha'O'Anusandhan University, Bhubaneswar, Odisha, 751003, India.,Department of Dental Surgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Riaz Abdulla
- Department of Oral Pathology, Yenepoya Dental College, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India
| | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, West Bengal, 700 014, India.,Department of Pathology, Burdwan Dental College and Hospital, Burdwan, West Bengal, 713101, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India.
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, Karnataka, 575018, India. .,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India. .,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Bao J, Chen J, Zhang X, Xu L, Fan Y, Dou X. Combined signatures of serum proteome and transcriptome in patients with recurrent aphthous ulcer. Oral Dis 2021; 28:691-702. [PMID: 33576097 DOI: 10.1111/odi.13800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recurrent aphthous ulcer (RAU) is a common oral disease with unclear mechanism. This study aimed to explore the serum signatures of RAU patients via proteomic and transcriptomic analysis. METHODS This study was based on clinical observation. Part of serum was used for clinical tests, while the rest was processed for isobaric tags for relative and absolute quantitation (ITRAQ) labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) combined with microRNA (miRNA) microarrays. Bioinformatic analysis was then used to obtain significant signatures, which was verified by ELISA, qRT-PCR, and dual-luciferase reporter gene assays. RESULTS Clinical data showed that triglyceride level, white blood cell count, and neutrophils percentage were increased in RAU group, while lymphocytes percentage was decreased. ITRAQ-2D LC-MS/MS identified 22 upregulated and 33 downregulated proteins in RAU group. Simultaneously, miRNA microarrays identified 64 upregulated and 31 downregulated miRNAs. After integrative bioinformatic analysis and verification, three miRNA-protein pairs, mainly involved in oxidative stress and inflammation responses, were obtained. Additionally, the interaction network indicated the crucial role of complement and coagulation cascade pathway in RAU. CONCLUSIONS Our study revealed that complement and coagulation cascade pathway, oxidative stress, and inflammation responses may act as vital factors in pathogenesis of RAU.
Collapse
Affiliation(s)
- Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - XiZhao Zhang
- School of 1st Clinical Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - YongSheng Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - XiaoBing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Davalieva K, Kiprijanovska S, Dimovski A, Rosoklija G, Dwork AJ. Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues. J Proteomics 2021; 235:104117. [PMID: 33453434 DOI: 10.1016/j.jprot.2021.104117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The proteomics of formalin-fixed, paraffin-embedded (FFPE) samples has advanced significantly during the last two decades, but there are many protocols and few studies comparing them directly. There is no consensus on the most effective protocol for shotgun proteomic analysis. We compared the in-solution digestion with RapiGest and Filter Aided Sample Preparation (FASP) of FFPE prostate tissues stored 7 years and mirroring fresh frozen samples, using two label-free data-independent LC-MS/MS acquisitions. RapiGest identified more proteins than FASP, with almost identical numbers of proteins from fresh and FFPE tissues and 69% overlap, good preservation of high-MW proteins, no bias regarding isoelectric point, and greater technical reproducibility. On the other hand, FASP yielded 20% fewer protein identifications in FFPE than in fresh tissue, with 64-69% overlap, depletion of proteins >70 kDa, lower efficiency in acidic and neutral range, and lower technical reproducibility. Both protocols showed highly similar subcellular compartments distribution, highly similar percentages of extracted unique peptides from FFPE and fresh tissues and high positive correlation between the absolute quantitation values of fresh and FFPE proteins. In conclusion, RapiGest extraction of FFPE tissues delivers a proteome that closely resembles the fresh frozen proteome and should be preferred over FASP in biomarker and quantification studies. SIGNIFICANCE: Here we analyzed the performance of two sample preparation methods for shotgun proteomic analysis of FFPE tissues to give a comprehensive overview of the obtained proteomes and the resemblance to its matching fresh frozen counterparts. These findings give us better understanding towards competent proteomics analysis of FFPE tissues. It is hoped that it will encourage further assessments of available protocols before establishing the most effective protocol for shotgun proteomic FFPE tissue analysis.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia.
| | - Sanja Kiprijanovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia; Faculty of Pharmacy, University "St. Cyril and Methodius", 50ta Divizija 6, 1000 Skopje, North Macedonia
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA
| |
Collapse
|
7
|
Zhang XL, Wu ZZ, Xu Y, Wang JG, Wang YQ, Cao MQ, Wang CH. Saliva proteomic analysis reveals possible biomarkers of renal cell carcinoma. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractEarly diagnosis is a key to improve the prognosis of renal cell carcinoma (RCC); however, reliable RCC biomarkers are lacking in clinical practice. In this study, we used isobaric tags for relative and absolute quantification-based mass spectrometry to identify salivary proteins as biomarkers for the diagnosis of RCC. The objective of this study is to discover biomarkers from saliva by utilizing high-throughput quantitative proteomics approaches. Saliva proteins from 124 RCC patients and healthy individuals were identified and quantified. RCC putative biomarkers were verified by real-time polymerase chain reaction or enzyme-linked immunosorbent assay in a prevalidation sample set. Seventy-one differentially expressed salivary proteins were identified. Serotransferrin, haptoglobin, KRT9, and S100A9, which in previous studies were found to be most closely related to cancers, were selected as putative RCC biomarkers. Haptoglobin and S100A9 were significantly elevated in RCC compared with healthy control samples, although the expression of serotransferrin and KRT9 did not differ between the groups. Furthermore, receiver operating characteristic curves with a cut-off value of 75.49 ng/mL for S100A9 revealed a sensitivity of 87.10% and a specificity of 91.94% for discriminating RCC patients from healthy individuals. Salivary haptoglobin differentiated RCC patients from healthy controls with a sensitivity of 85.48% and specificity of 80.65% (cut-off value 43.02 µg/mL). These results provide experimental evidence to support S100A9 and haptoglobin as potential novel, noninvasive biomarkers for the diagnosis of RCC.
Collapse
Affiliation(s)
- Xiao Li Zhang
- Central Laboratory, The ShenZhen Second People’s Hospital, 3002 Sunggang W Road, Futian District, Shenzhen 518035, P. R. China
| | - Zheng Zhi Wu
- Geriatrics Department, The ShenZhen Second People's Hospital, 3002 Sunggang W Road, Futian District, Shenzhen 518035, P. R. China
| | - Yun Xu
- Central Laboratory, The ShenZhen Second People’s Hospital, 3002 Sunggang W Road, Futian District, Shenzhen 518035, P. R. China
| | - Ji Guo Wang
- Oncology Department, Chinese Medicine Hospital of Baoan District, Shenzhen 518113, P. R. China
| | - Yong Qiang Wang
- Central Laboratory, The ShenZhen Second People’s Hospital, 3002 Sunggang W Road, Futian District, Shenzhen 518035, P. R. China
| | - Mei Qun Cao
- Central Laboratory, The ShenZhen Second People’s Hospital, 3002 Sunggang W Road, Futian District, Shenzhen 518035, P. R. China
| | - Chang Hao Wang
- Central Laboratory, The ShenZhen Second People’s Hospital, 3002 Sunggang W Road, Futian District, Shenzhen 518035, P. R. China
| |
Collapse
|
8
|
Netto E, Santos H, Carvalho L, Capelo-Martínez JL, Rito M, Cabeçadas J, Roldão M. Label-free quantitative mass spectrometry from formalin-fixed paraffin-embedded samples of nasopharyngeal carcinoma: Preliminary results from a non-endemic European cohort of patients. Rep Pract Oncol Radiother 2020; 25:746-753. [PMID: 32684864 DOI: 10.1016/j.rpor.2020.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Aim Report our results of biomarker discovery in formalin-fixed paraffin-embedded (FFPE) nasopharyngeal carcinoma (NPC) via proteomic analysis. Background Nasopharyngeal carcinoma (NPC) is a rare cancer in Western countries. Proteomic analysis have already been reported as a useful tool to provide biomarkers. Formalin-fixed paraffin-embedded (FFPE) samples, despite largely underused, can provide invaluable information for biomarker research via proteomic analysis. Methods FFPE samples of NPC were submitted to protein extraction followed by FASP-digestion and label-free quantitative mass spectrometry (MS). Patients' received concurrent chemoradiation with or without adjuvant chemotherapy as per Intergroup 0099 trial. IMRT was delivered following the RTOG0615 specifications. Toxicity was scored using the CTCAE 4.03 tables. Survival was estimated using Kaplan-Meier curves. Log-rank was used to detect differences. KEGG ontology graphics were generated. Results 28 FFPE samples from NPC patients were used. Patients were: 79% male, 97% Caucasians, 86% WHO type 3, 40% T1, 10% T2, 25% T3, and 25% T4. With a median follow up of 37 months, local control was 83 (T1, 100% T2, T3 and T4), overall survival was 84%, and six patients developed distant metastases. All five patients that died were due to metastatic disease. Tumor samples contained a median of 75% of tumor material. We found Epstein-Barr (EBV) and Herpes simplex (HSV) viruses' related proteins significantly present in early-stage primary NPC (T1 and T2, p < 0.01). A pool of 10 proteins was statistically up-regulated in the metastatic group of patients (p < 0.01). Median survival from this M1 group was <1 year (p < 0.001). Conclusions FFPE samples yielded adequate material for MS analysis. We found EBV and HSV related proteins on early-stage NPC, and proteomic profiling associated with distant metastases, potential candidates of disease biomarkers. Validation is needed.
Collapse
Affiliation(s)
- Eduardo Netto
- Serviço de Radioterapia, Instituto Português de Oncologia Francisco Gentil, Lisboa, Portugal.,NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hugo Santos
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Campus de Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Luís Carvalho
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Campus de Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - José Luis Capelo-Martínez
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Campus de Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Miguel Rito
- Serviço de Anatomia-Patológica, Instituto Português de Oncologia Francisco Gentil, Lisboa, Portugal
| | - José Cabeçadas
- Serviço de Anatomia-Patológica, Instituto Português de Oncologia Francisco Gentil, Lisboa, Portugal
| | - Margarida Roldão
- Serviço de Radioterapia, Instituto Português de Oncologia Francisco Gentil, Lisboa, Portugal.,NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Herrera JA, Mallikarjun V, Rosini S, Montero MA, Lawless C, Warwood S, O’Cualain R, Knight D, Schwartz MA, Swift J. Laser capture microdissection coupled mass spectrometry (LCM-MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues. Clin Proteomics 2020; 17:24. [PMID: 32565759 PMCID: PMC7302139 DOI: 10.1186/s12014-020-09287-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. METHODS Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. RESULTS This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3. CONCLUSION Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.
Collapse
Affiliation(s)
- Jeremy A. Herrera
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Venkatesh Mallikarjun
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Silvia Rosini
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Maria Angeles Montero
- Histopathology Department, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT UK
| | - Craig Lawless
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Stacey Warwood
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Ronan O’Cualain
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - David Knight
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Martin A. Schwartz
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Joe Swift
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| |
Collapse
|
10
|
Li XY, Meng HL, Li KG, Yang XH, Zhu XD, Li L, Liang ZG, Pan XB, Zeng FY, Qu S. Amyloid Beta (A4) Precursor Protein: A Potential Biomarker for Recurrent Nasopharyngeal Carcinoma. Cancer Manag Res 2019; 11:10651-10656. [PMID: 31908537 PMCID: PMC6929967 DOI: 10.2147/cmar.s218030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023] Open
Abstract
Background and Aim Nasopharyngeal carcinoma (NPC) is one of the most common cancers in Southern China, Southeast Asia. Radiotherapy is the main treatment for NPC. Still, about 20% of patients with NPC have a recurrence. No effective serum biomarkers are available for recurrent nasopharyngeal carcinoma (rNPC) to date. This study aimed to explore whether amyloid beta (A4) precursor protein (APP) might serve as a valuable diagnostic and prognostic biomarker for patients with rNPC. Methods In a previous study, a tandem mass tag–based proteomic test was performed, which screened 59 differentially expressed proteins (DEPs) between nonrecurrent nasopharyngeal carcinoma (nrNPC) and rNPC. In this study, a protein–protein interaction was conducted to screen the key proteins among the 59 DEPs. APP was validated and evaluated by enzyme-linked immunosorbent assay in 70 serum samples [recurrence (n = 35) and no-recurrence (n = 35)]. Also, the receiver operating characteristic (ROC) curve was plotted to evaluate the predictive value of APP. Results The area under the ROC curve was 0.666 (95% CI: 0.514–0.818, P = 0.044). The best cutoff point of the relative expression levels for APP was 1.23 (concentration = 16.95 ng/mL), at which the sensitivity was 55.2% and the specificity was 90.9%. Conclusion The findings indicated that APP might be a valuable diagnostic and prognostic biomarker for patients with rNPC.
Collapse
Affiliation(s)
- Xiao-Yu Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Hui-Ling Meng
- Department of Radiation Oncology, Liuzhou People's Hospital, Liuzhou, Guangxi 545000, People's Republic of China
| | - Kai-Guo Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Xiao-Hui Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China.,Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, People's Republic of China
| | - Ling Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Zhong-Guo Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Xin-Bin Pan
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Fan-Yan Zeng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Song Qu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China.,Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
11
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a distinct head and neck squamous cell carcinoma in its etiological association of Epstein-Barr virus (EBV) infection, hidden anatomical location, remarkable racial and geographical distribution, and high incidence of locoregional recurrence or metastasis. Thanks to the advancements in proteomics in recent decades, more understanding of the disease etiology, carcinogenesis, and progression has been gained, potentially deciphering the molecular characteristics of the malignancy. Areas covered: In this review, we provide an overview of the proteomic aberrations that are likely involved or drive NPC development and progression, focusing on the contributions of major EBV-encoded factors, intercommunication with environment, protein features of high metastasis and therapy resistance, and protein-protein interactions that allow NPC cells to evade immune recognition and elimination. Finally, multistep carcinogenesis and subtypes of NPC from a proteomic perspective are inquired. Expert commentary: Proteomic studies have covered various aspects involved in NPC pathogenesis, yet much remains to be uncovered. Coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation are critical in ensuring the emergence of good science out of NPC proteomics. NPC proteogenomics and proteoform analysis are two promising fields to promote the application of the proteomic findings from bench to bedside.
Collapse
Affiliation(s)
- Zhefeng Xiao
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| | - Zhuchu Chen
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| |
Collapse
|
13
|
Feng X, Shi H, Chao X, Zhao F, Song L, Wei M, Zhang H. Deciphering the Pharmacological Mechanism of the Herb Radix Ophiopogonis in the Treatment of Nasopharyngeal Carcinoma by Integrating iTRAQ-Coupled 2-D LC-MS/MS Analysis and Network Investigation. Front Pharmacol 2019; 10:253. [PMID: 30936832 PMCID: PMC6431671 DOI: 10.3389/fphar.2019.00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
The herb Radix Ophiopogonis (RO) has been used effectively to treat nasopharyngeal carcinoma (NPC) as an adjunctive therapy. Due to the complexity of the traditional Chinese herbs, the pharmacological mechanism of RO’s action on NPC remains unclear. To address this problem, an integrative approach bridging proteome experiments with bioinformatics prediction was employed. First, differentially expressed protein profile from NPC serum samples was established using isobaric tag for relative and absolute quantification (iTRAQ) coupled 2-D liquid chromatography (LC)-MS/MS analysis. Second, the RO putative targets were predicted using Traditional Chinese Medicines Integrated Database and known therapeutic targets of NPC were collected from Drugbank and OMIM databases. Then, a network between RO putative targets and NPC known therapeutic targets was constructed. Third, based on pathways enrichment analysis, an integrative network was constructed using DAVID and STRING database in order to identify potential candidate targets of RO against NPC. As a result, we identified 13 differentially expressed proteins from clinical experiments compared with the healthy control. And by bioinformatics investigation, 12 putative targets of RO were selected. Upon interactions between experimental and predicted candidate targets, we identified three key candidate targets of RO against NPC: VEGFA, TP53, and HSPA8, by calculating the nodes’ topological features. In conclusion, this integrative pharmacology-based analysis revealed the anti-NPC effects of RO might be related to its regulatory impact via the PI3K-AKT signaling pathway, the Wnt signaling pathway, and the cAMP signaling pathway by targeting VEGFA, TP53, and HSPA8. The findings of potential key targets may provide new clues for NPC’s treatments with the RO adjunctive therapy.
Collapse
Affiliation(s)
- Xuesong Feng
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hailong Shi
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xu Chao
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fei Zhao
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liang Song
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Minhui Wei
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hong Zhang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.,Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
14
|
Piehowski PD, Petyuk VA, Sontag RL, Gritsenko MA, Weitz KK, Fillmore TL, Moon J, Makhlouf H, Chuaqui RF, Boja ES, Rodriguez H, Lee JSH, Smith RD, Carrick DM, Liu T, Rodland KD. Residual tissue repositories as a resource for population-based cancer proteomic studies. Clin Proteomics 2018; 15:26. [PMID: 30087585 PMCID: PMC6074037 DOI: 10.1186/s12014-018-9202-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/27/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Mass spectrometry-based proteomics has become a powerful tool for the identification and quantification of proteins from a wide variety of biological specimens. To date, the majority of studies utilizing tissue samples have been carried out on prospectively collected fresh frozen or optimal cutting temperature (OCT) embedded specimens. However, such specimens are often difficult to obtain, in limited in supply, and clinical information and outcomes on patients are inherently delayed as compared to banked samples. Annotated formalin fixed, paraffin embedded (FFPE) tumor tissue specimens are available for research use from a variety of tissue banks, such as from the surveillance, epidemiology and end results (SEER) registries' residual tissue repositories. Given the wealth of outcomes information associated with such samples, the reuse of archived FFPE blocks for deep proteomic characterization with mass spectrometry technologies would provide a valuable resource for population-based cancer studies. Further, due to the widespread availability of FFPE specimens, validation of specimen integrity opens the possibility for thousands of studies that can be conducted worldwide. METHODS To examine the suitability of the SEER repository tissues for proteomic and phosphoproteomic analysis, we analyzed 60 SEER patient samples, with time in storage ranging from 7 to 32 years; 60 samples with expression proteomics and 18 with phosphoproteomics, using isobaric labeling. Linear modeling and gene set enrichment analysis was used to evaluate the impacts of collection site and storage time. RESULTS All samples, regardless of age, yielded suitable protein mass after extraction for expression analysis and 18 samples yielded sufficient mass for phosphopeptide analysis. Although peptide, protein, and phosphopeptide identifications were reduced by 50, 20 and 76% respectively, from comparable OCT specimens, we found no statistically significant differences in protein quantitation correlating with collection site or specimen age. GSEA analysis of GO-term level measurements of protein abundance differences between FFPE and OCT embedded specimens suggest that the formalin fixation process may alter representation of protein categories in the resulting dataset. CONCLUSIONS These studies demonstrate that residual FFPE tissue specimens, of varying age and collection site, are a promising source of protein for proteomic investigations if paired with rigorously verified mass spectrometry workflows.
Collapse
Affiliation(s)
- Paul D. Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Ryan L. Sontag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Marina A. Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Thomas L. Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Hala Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20850 USA
| | - Rodrigo F. Chuaqui
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20850 USA
| | - Emily S. Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Jerry S. H. Lee
- Center for Strategic Scientific Initiatives, National Cancer Institute, Bethesda, MD 20892 USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Danielle M. Carrick
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD 20850 USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| |
Collapse
|
15
|
Chen X, Xie ZH, Lv YX, Tang QP, Zhang H, Zhang JY, Wu B, Jiang WH. A proteomics analysis reveals that A2M might be regulated by STAT3 in persistent allergic rhinitis. Clin Exp Allergy 2017; 46:813-24. [PMID: 27228572 DOI: 10.1111/cea.12711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 12/11/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Proteomics tools can be used to identify the differentially expressed proteins related to allergic rhinitis (AR). However, the large numbers of proteins related to AR have not yet been explored using an advanced quantitative proteomics approach, known as isobaric tags for relative and absolute quantitation (iTRAQ). OBJECTIVES To identify differentially expressed proteins in persistent AR patients and to explore the regulatory signalling pathways involving the identified proteins. METHODS Forty-five persistent AR patients and 20 healthy controls were recruited for this study. iTRAQ was used to identify the proteins that were differentially expressed between these two groups, and a bioinformatics analysis was then conducted to identify the signalling pathways associated with the identified proteins. Immunofluorescence labelling was performed to detect alpha-2-macroglobulin (A2M), STAT3, p-STAT3 and IL17 in the nasal mucosa. RESULTS A total of 133 differentially expressed proteins were identified. We then determined the top 10 regulatory pathways associated with these proteins and found that the blood coagulation pathway had the most significant association. A2M, a protein involved in the blood coagulation pathway, was found to be differentially expressed in the serum of AR patients. The bioinformatics analysis indicated that STAT3 is an upstream transcription factor that might regulate A2M expression. An immunofluorescence study further confirmed that STAT3 and A2M are co-localized in nasal mucosa cells. Additionally, A2M, STAT3, p-STAT3, and IL17 are elevated in AR patients. The expressional level of A2M is positively related to IL17 and the symptom of the congestion in AR subjects. CONCLUSIONS The blood coagulation pathway may be a key regulatory network pathway contributing to the allergic inflammatory response in AR patients. A2M, which is regulated by STAT3, may be an important protein in the pathogenesis of allergic rhinitis in AR patients.
Collapse
Affiliation(s)
- X Chen
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Z H Xie
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Y X Lv
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Q P Tang
- Department of Rehabilitation, Brain Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - H Zhang
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - J Y Zhang
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - B Wu
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - W H Jiang
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Chen Z, Long L, Wang K, Cui F, Zhu L, Tao Y, Wu Q, Xiang M, Liang Y, Qiu S, Xiao Z, Yi B. Identification of nasopharyngeal carcinoma metastasis-related biomarkers by iTRAQ combined with 2D-LC-MS/MS. Oncotarget 2017; 7:34022-37. [PMID: 27145374 PMCID: PMC5085135 DOI: 10.18632/oncotarget.9067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/16/2016] [Indexed: 12/15/2022] Open
Abstract
To identify metastasis-related proteins in nasopharyngeal carcinoma (NPC), iTRAQ-tagging combined with 2D LC-MS/MS analysis was performed to identify the differentially expressed proteins (DEPs) in high metastatic NPC 5-8F cells and non-metastatic NPC 6-10B cells, and qRT-PCR and Western blotting were used to confirm DEPs. As a result, 101 DEPs were identified by proteomics, and 12 DEPs were selectively validated. We further detected expression of three DEPs (RAN, SQSTM1 and TRIM29) in a cohort of NPC tissue specimens to assess their value as NPC metastatic biomarkers, and found that combination of RAN, SQSTM1 and TRIM29 could discriminate metastatic NPC from non-metastatic NPC with a sensitivity of 88% and a specificity of 91%. TRIM29 and RAN expression level were closely correlated with lymph node and distant metastasis and clinical stage (P <0.05) in NPC patients. Finally, a combination of loss-of-function and gain-of-function approaches was performed to determine the effects of TRIM29 on NPC cell proliferation, migration, invasion and metastasis. The results showed that TRIM29 knockdown significantly attenuated while TRIM29 overexpression promoted NPC cell in vitro proliferation, migration and invasion and in vivo metastasis. The present data first time show that SQSTM1, RAN and TRIM29 are novel potential biomarkers for predicting NPC metastasis, demonstrate that TRIM29 is a metastasis-promoted protein of NPC.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Long
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Facai Cui
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lepan Zhu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya Tao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qiong Wu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Manlin Xiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yunlai Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shiyang Qiu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhiqiang Xiao
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
17
|
Meng H, Zhu X, Li L, Liang Z, Li X, Pan X, Zeng F, Qu S. Identification of CALM as the potential serum biomarker for predicting the recurrence of nasopharyngeal carcinoma using a mass spectrometry-based comparative proteomic approach. Int J Mol Med 2017; 40:1152-1164. [PMID: 28849027 PMCID: PMC5593497 DOI: 10.3892/ijmm.2017.3094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
To date, there are no serum biomarkers available for the prediction of recurrent nasopharyngeal carcinoma (rNPC). The diagnosis of rNPC mostly depends on imaging and biopsy of diseased tissue; however, both of these methods work mostly if the target tumor is at an advanced stage. Therefore, the identificaqtion of recurrent biomarkers is urgently required. In the present study, we used tandem mass tag (TMT) labeling and high performance liquid chromatography (HPLC) fractionation followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify differentially expressed proteins. Serum was collected from 40 patients with NPC [recurrence (n=20) and no recurrence (n=20)]. Compared to non-recurrent NPC (nrNPC), we found 59 proteins to be significantly dysregulated in rNPC; most of these have been previously reported to play a role in carcinogenesis. The dysregulation of calmodulin (CALM) was confirmed in 74 new patients [recurrence (n=32) and no recurrence (n=42)] by ELISA. Moreover, we performed a preliminary pathway analysis which revealed that oxidative phosphorylation was altered in the patients with rNPC compared to those with nrNPC. Taken together, these data identify a potential diagnostic biomarker for rNPC and elucidate the potential molecular mechanisms that are dysregulated and contribute to the pathogenesis of rNPC.
Collapse
Affiliation(s)
- Huiling Meng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Ling Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Zhongguo Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Xiaoyu Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Xinbin Pan
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Fanyan Zeng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Song Qu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
18
|
Pedersen MH, Hood BL, Beck HC, Conrads TP, Ditzel HJ, Leth-Larsen R. Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors. Oncoimmunology 2017. [PMID: 28638726 DOI: 10.1080/2162402x.2017.1305531] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype with varying disease outcomes. Tumor-infiltrating lymphocytes (TILs) are frequent in TNBC and have been shown to correlate with outcome, suggesting an immunogenic component in this subtype. However, other factors intrinsic to the cancer cells may also influence outcome. To identify proteins and molecular pathways associated with recurrence in TNBC, 34 formalin-fixed paraffin-embedded (FFPE) primary TNBC tumors were investigated by global proteomic profiling using mass spectrometry. Approximately, half of the patients were lymph node-negative and remained free of local or distant metastasis within 10 y follow-up, while the other half developed distant metastasis. Proteomic profiling identified >4,000 proteins, of which 63 exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. Importantly, downregulation of proteins in the major histocompatibility complex (MHC) class I antigen presentation pathways were enriched, including TAP1, TAP2, CALR, HLA-A, ERAP1 and TAPBP, and were associated with significantly shorter recurrence-free and overall survival. In addition, proteins involved in cancer cell proliferation and growth, including GBP1, RAD23B, WARS and STAT1, also exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. The association between the antigen-presentation pathway and outcome were validated in a second sample set of 10 primary TNBC tumors and corresponding metastases using proteomics and in a large public gene expression database of 249 TNBC and 580 basal-like breast cancer cases. Our study demonstrates that downregulation of antigen presentation is a key mechanism for TNBC cells to avoid immune surveillance, allowing continued growth and spread.
Collapse
Affiliation(s)
- Martin H Pedersen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Brian L Hood
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Thomas P Conrads
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Oncology, Odense University Hospital, Odense C, Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
19
|
Xiao Z, Li M, Li G, Fu Y, Peng F, Chen Y, Chen Z. Proteomic Characterization Reveals a Molecular Portrait of Nasopharyngeal Carcinoma Differentiation. J Cancer 2017; 8:570-577. [PMID: 28367237 PMCID: PMC5370501 DOI: 10.7150/jca.17414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/29/2016] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is categorized into three different differentiated subtypes by World Health Organization (WHO). Based on an earlier comparative proteomic database of the three histological subtypes, the study was to deepen our understanding of molecular mechanisms associated with NPC differentiation through bio-information mining. Among the three subtypes were 194 differentially expressed proteins (DEPs) of 725 identified proteins. Two DEPs, heat shock protein family B (small) member 1 (HSPB1) and keratin 5 (KRT5), were validated in a series of NPC tissue samples by using immunohistochemistry. Quantified protein families including keratins, S100 proteins (S100s) and heat shock proteins exhibited characteristic expression alterations. Comparisons of predicted bio-function activation states among different subtypes, including formation of cellular protrusion, metastasis, cell death, and viral infections, were conducted. Canonical pathway analysis inferred that Rho GTPases related signaling pathways regulated the motility and invasion of dedifferentiated NPC. In conclusion, the study explored the proteomic characteristics of NPC differentiation, which could deepen our knowledge of NPC tumorigenesis and allow the development of novel targets of therapeutic and prognostic value in NPC.
Collapse
Affiliation(s)
- Zhefeng Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Guoqing Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Ying Fu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China;; State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, P.R. China;; Collaborative Innovation Center for Cancer Medicine (CICCM), Guangzhou, Guangdong, P. R. China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China;; State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, P.R. China;; Collaborative Innovation Center for Cancer Medicine (CICCM), Guangzhou, Guangdong, P. R. China
| |
Collapse
|
20
|
Li G, Li M, Liang X, Xiao Z, Zhang P, Shao M, Peng F, Chen Y, Li Y, Chen Z. Identifying DCN and HSPD1 as Potential Biomarkers in Colon Cancer Using 2D-LC-MS/MS Combined with iTRAQ Technology. J Cancer 2017; 8:479-489. [PMID: 28261350 PMCID: PMC5332900 DOI: 10.7150/jca.17192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/29/2016] [Indexed: 12/31/2022] Open
Abstract
Colon cancer is one of the most common types of gastrointestinal cancers and the fourth cause of cancer death worldwide. To discover novel diagnostic biomarkers for colon cancer and investigate potential mechanisms of oncogenesis, quantitative proteomic approach using iTRAQ-tagging and 2D-LC-MS/MS was performed to characterize proteins alterations in colon cancer and non-neoplastic colonic mucosa (NNCM) using laser capture microdissection-harvested from the two types of tissues, respectively. As a result, 188 DEPs were identified, and the differential expression of two DEPs (DCN and HSPD1) was further verified by Western blotting and immunohistochemistry. KEGG pathway analysis disclosed that the DEPs were related to signaling pathways associated with cancer; furthermore, DCN and HSPD1 are in the relative central hub position among protein-protein interaction subnetwork of the DEPs. The results not only shed light on the mechanism by the DEPs contributed to colonic carcinogenesis, but also showed that DCN and HSPD1 are novel potential biomarkers for the diagnosis of colon cancer.
Collapse
Affiliation(s)
- Guoqing Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacy and Life Science, University of South China, Hengyang 421001, Hunan, China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xujun Liang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhefeng Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Pengfei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Meiying Shao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanyuan Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.; Medical College, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
21
|
Ostasiewicz P, Wiśniewski J. A Protocol for Large-Scale Proteomic Analysis of Microdissected Formalin Fixed and Paraffin Embedded Tissue. Methods Enzymol 2017; 585:159-176. [DOI: 10.1016/bs.mie.2016.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Lai ZW, Weisser J, Nilse L, Costa F, Keller E, Tholen M, Kizhakkedathu JN, Biniossek M, Bronsert P, Schilling O. Formalin-Fixed, Paraffin-Embedded Tissues (FFPE) as a Robust Source for the Profiling of Native and Protease-Generated Protein Amino Termini. Mol Cell Proteomics 2016; 15:2203-13. [PMID: 27087653 PMCID: PMC5083106 DOI: 10.1074/mcp.o115.056515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Dysregulated proteolysis represents a hallmark of numerous diseases. In recent years, increasing number of studies has begun looking at the protein termini in hope to unveil the physiological and pathological functions of proteases in clinical research. However, the availability of cryopreserved tissue specimens is often limited. Alternatively, formalin-fixed, paraffin-embedded (FFPE) tissues offer an invaluable resource for clinical research. Pathologically relevant tissues are often stored as FFPE, which represent the most abundant resource of archived human specimens. In this study, we established a robust workflow to investigate native and protease-generated protein N termini from FFPE specimens. We demonstrate comparable N-terminomes of cryopreserved and formalin-fixed tissue, thereby showing that formalin fixation/paraffin embedment does not proteolytically damage proteins. Accordingly, FFPE specimens are fully amenable to N-terminal analysis. Moreover, we demonstrate feasibility of FFPE-degradomics in a quantitative N-terminomic study of FFPE liver specimens from cathepsin L deficient or wild-type mice. Using a machine learning approach in combination with the previously determined cathepsin L specificity, we successfully identify a number of potential cathepsin L cleavage sites. Our study establishes FFPE specimens as a valuable alternative to cryopreserved tissues for degradomic studies.
Collapse
Affiliation(s)
- Zon Weng Lai
- From the ‡Institute of Molecular Medicine and Cell Research
| | | | - Lars Nilse
- From the ‡Institute of Molecular Medicine and Cell Research
| | | | - Eva Keller
- From the ‡Institute of Molecular Medicine and Cell Research
| | - Martina Tholen
- From the ‡Institute of Molecular Medicine and Cell Research
| | - Jayachandran N Kizhakkedathu
- ¶Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre of Chemistry, University of British Columbia, Vancouver, Canada
| | | | - Peter Bronsert
- ‖Department of Pathology, **German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- From the ‡Institute of Molecular Medicine and Cell Research, **German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany ‡‡BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany;
| |
Collapse
|
23
|
Wang C, Liu CM, Wei LL, Shi LY, Pan ZF, Mao LG, Wan XC, Ping ZP, Jiang TT, Chen ZL, Li ZJ, Li JC. A Group of Novel Serum Diagnostic Biomarkers for Multidrug-Resistant Tuberculosis by iTRAQ-2D LC-MS/MS and Solexa Sequencing. Int J Biol Sci 2016; 12:246-56. [PMID: 26884721 PMCID: PMC4737680 DOI: 10.7150/ijbs.13805] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/11/2015] [Indexed: 01/29/2023] Open
Abstract
The epidemic of pulmonary tuberculosis (TB), especially multidrug-resistance tuberculosis (MDR-TB) presented a major challenge for TB treatment today. We performed iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) and Solexa sequencing among MDR-TB patients, drug-sensitive tuberculosis (DS-TB) patients, and healthy controls. A total of 50 differentially expressed proteins and 43 differentially expressed miRNAs (fold change >1.50 or <0.60, P<0.05) were identified in the MDR-TB patients compared to both DS-TB patients and healthy controls. We found that 22.00% of differentially expressed proteins and 32.56% of differentially expressed miRNAs were related, and could construct a network mainly in complement and coagulation cascades. Significant differences in CD44 antigen (CD44), coagulation factor XI (F11), kininogen-1 (KNG1), miR-4433b-5p, miR-424-5p, and miR-199b-5p were found among MDR-TB patients, DS-TB patients and healthy controls (P<0.05) by enzyme-linked immunosorbent assay (ELISA) and SYBR green qRT-PCR validation. A strong negative correlation, consistent with the target gene prediction, was found between miR-199b-5p and KNG1 (r=-0.232, P=0.017). Moreover, we established the MDR-TB diagnostic model based on five biomarkers (CD44, KNG1, miR-4433b-5p, miR-424-5p, and miR-199b-5p). Our study proposes potential biomarkers for MDR-TB diagnosis, and also provides a new experimental basis to understand the pathogenesis of MDR-TB.
Collapse
Affiliation(s)
- Chong Wang
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chang-Ming Liu
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Li-Liang Wei
- 2. Department of Respiratory Medicine, The Sixth Hospital of Shaoxing, Shaoxing 312000, P.R. China
| | - Li-Ying Shi
- 3. Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Zhi-Fen Pan
- 4. Department of Tuberculosis, The First Hospital of Jiaxing, Jiaxing 314001, P.R. China
| | - Lian-Gen Mao
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiao-Chen Wan
- 3. Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Ze-Peng Ping
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Ting Jiang
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Liang Chen
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Jie Li
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ji-Cheng Li
- 1. Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
24
|
Wang C, Wei LL, Shi LY, Pan ZF, Yu XM, Li TY, Liu CM, Ping ZP, Jiang TT, Chen ZL, Mao LG, Li ZJ, Li JC. Screening and identification of five serum proteins as novel potential biomarkers for cured pulmonary tuberculosis. Sci Rep 2015; 5:15615. [PMID: 26499913 PMCID: PMC4620482 DOI: 10.1038/srep15615] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/29/2015] [Indexed: 01/14/2023] Open
Abstract
Rapid and efficient methods for the determination of cured tuberculosis (TB) are lacking. A total of 85 differentially expressed serum proteins were identified by iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) analysis (fold change >1.50 or <0.60, P < 0.05). We validated albumin (ALB), Rho GDP-dissociation inhibitor 2 (ARHGDIB), complement 3 (C3), ficolin-2 (FCN2), and apolipoprotein (a) (LPA) using the enzyme-linked immunosorbent assay (ELISA) method. Significantly increased ALB and LPA levels (P = 0.036 and P = 0.012, respectively) and significantly reduced ARHGDIB, C3, and FCN2 levels (P < 0.001, P = 0.035, and P = 0.018, respectively) were observed in cured TB patients compared with untreated TB patients. In addition, changes in ALB and FCN2 levels occurred after 2 months of treatment (P < 0.001 and P = 0.030, respectively). We established a cured TB model with 87.10% sensitivity, 79.49% specificity, and an area under the curve (AUC) of 0.876. The results indicated that ALB, ARHGDIB, C3, FCN2, and LPA levels might serve as potential biomarkers for cured TB. Our study provides experimental data for establishing objective indicators of cured TB and also proposes potential markers for evaluating the efficacy of anti-TB drugs.
Collapse
Affiliation(s)
- Chong Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Li-Liang Wei
- Department of Respiratory Medicine, The Sixth Hospital of Shaoxing, Shaoxing 312000, P.R. China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Zhi-Fen Pan
- Department of Tuberculosis, The First Hospital of Jiaxing, Jiaxing 314001, P.R. China
| | - Xiao-Mei Yu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Tian-Yu Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chang-Ming Liu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ze-Peng Ping
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Ting Jiang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Liang Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lian-Gen Mao
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Jie Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ji-Cheng Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
25
|
iTRAQ-based quantitative proteomic analysis of esophageal squamous cell carcinoma. Tumour Biol 2015; 37:1909-18. [DOI: 10.1007/s13277-015-3840-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023] Open
|
26
|
Weißer J, Lai ZW, Bronsert P, Kuehs M, Drendel V, Timme S, Kuesters S, Jilg CA, Wellner UF, Lassmann S, Werner M, Biniossek ML, Schilling O. Quantitative proteomic analysis of formalin-fixed, paraffin-embedded clear cell renal cell carcinoma tissue using stable isotopic dimethylation of primary amines. BMC Genomics 2015. [PMID: 26220445 PMCID: PMC4518706 DOI: 10.1186/s12864-015-1768-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Formalin-fixed, paraffin-embedded (FFPE) tissues represent the most abundant resource of archived human specimens in pathology. Such tissue specimens are emerging as a highly valuable resource for translational proteomic studies. In quantitative proteomic analysis, reductive di-methylation of primary amines using stable isotopic formaldehyde variants is increasingly used due to its robustness and cost-effectiveness. Results In the present study we show for the first time that isotopic amine dimethylation can be used in a straightforward manner for the quantitative proteomic analysis of FFPE specimens without interference from formalin employed in the FFPE process. Isotopic amine dimethylation of FFPE specimens showed equal labeling efficiency as for cryopreserved specimens. For both FFPE and cryopreserved specimens, differential labeling of identical samples yielded highly similar ratio distributions within the expected range for dimethyl labeling. In an initial application, we profiled proteome changes in clear cell renal cell carcinoma (ccRCC) FFPE tissue specimens compared to adjacent non–malignant renal tissue. Our findings highlight increased levels of glyocolytic enzymes, annexins as well as ribosomal and proteasomal proteins. Conclusion Our study establishes isotopic amine dimethylation as a versatile tool for quantitative proteomic analysis of FFPE specimens and underlines proteome alterations in ccRCC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1768-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Weißer
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany. .,Present address: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090, Vienna, Austria.
| | - Z W Lai
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.
| | - P Bronsert
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - M Kuehs
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - V Drendel
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - S Timme
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - S Kuesters
- Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany.
| | - C A Jilg
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, 79106, Germany.
| | - U F Wellner
- Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany. .,Present address: Clinic for Surgery, University Clinic of Schleswig-Holstein Campus Lübeck, Lübeck, Germany.
| | - S Lassmann
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - M Werner
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - M L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.
| | - O Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
27
|
A Review: Proteomics in Nasopharyngeal Carcinoma. Int J Mol Sci 2015; 16:15497-530. [PMID: 26184160 PMCID: PMC4519910 DOI: 10.3390/ijms160715497] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/08/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
Although radiotherapy is generally effective in the treatment of major nasopharyngeal carcinoma (NPC), this treatment still makes approximately 20% of patients radioresistant. Therefore, the identification of blood or biopsy biomarkers that can predict the treatment response to radioresistance and that can diagnosis early stages of NPC would be highly useful to improve this situation. Proteomics is widely used in NPC for searching biomarkers and comparing differentially expressed proteins. In this review, an overview of proteomics with different samples related to NPC and common proteomics methods was made. In conclusion, identical proteins are sorted as follows: Keratin is ranked the highest followed by such proteins as annexin, heat shock protein, 14-3-3σ, nm-23 protein, cathepsin, heterogeneous nuclear ribonucleoproteins, enolase, triosephosphate isomerase, stathmin, prohibitin, and vimentin. This ranking indicates that these proteins may be NPC-related proteins and have potential value for further studies.
Collapse
|
28
|
Cai XZ, Zeng WQ, Xiang Y, Liu Y, Zhang HM, Li H, She S, Yang M, Xia K, Peng SF. iTRAQ-Based Quantitative Proteomic Analysis of Nasopharyngeal Carcinoma. J Cell Biochem 2015; 116:1431-41. [PMID: 25648846 DOI: 10.1002/jcb.25105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a common disease in the southern provinces of China with a poor prognosis. To better understand the pathogenesis of NPC and identify proteins involved in NPC carcinogenesis, we applied iTRAQ coupled with two-dimensional LC-MS/MS to compare the proteome profiles of NPC tissues and the adjacent non-tumor tissues. We identified 54 proteins with differential expression in NPC and the adjacent non-tumor tissues. The differentially expressed proteins were further determined by RT-PCR and Western blot analysis. In addition, the up-regulation of HSPB1, NPM1 and NCL were determined by immunohistochemistry using tissue microarray. Functionally, we found that siRNA mediated knockdown of NPM1 inhibited the migration and invasion of human NPC CNE1 cell line. In summary, this is the first study on proteome analysis of NPC tissues using an iTRAQ method, and we identified many new differentially expressed proteins which are potential targets for the diagnosis and therapy of NPC.
Collapse
Affiliation(s)
- Xin-Zhang Cai
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Wei-Qun Zeng
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong-Min Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Li
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sha She
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Yang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Proteomic and high-throughput analysis of protein expression and microbial diversity of microbes from 30- and 300-year pit muds of Chinese Luzhou-flavor liquor. Food Res Int 2015; 75:305-314. [PMID: 28454961 DOI: 10.1016/j.foodres.2015.06.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/22/2015] [Accepted: 06/17/2015] [Indexed: 11/21/2022]
Abstract
Luzhou-flavor liquor is fermented based on the metabolism of special microbial communities in pit. In this study, total proteins and DNAs of microbes from 30- and 300-year pit muds were firstly extracted. Meanwhile, an efficient approach for protein extraction with increased protein content was optimized. iTRAQ-based proteomic was then applied to investigate the aroma-forming functional protein expression of microbes from the samples. Furthermore, high-throughput sequencing of 16S rDNA was employed to reveal microbial diversity. We comparatively identified 63 proteins of aroma-forming functional microbes in these samples, and found that 59 of these proteins were highly expressed in the 300-year pit mud. Those aroma-forming functional proteins were found to be involved in methanogenesis, as well as the formation of caproic acid and butyric acid during the liquor fermentation. High-throughput sequencing revealed that the microbes most commonly found in both samples were members of phylum Firmicutes (by 97% sequence similarity), both of which, along with another common Methanobacterium, were important components of aroma-forming functional colonies in the pit muds for the brewing of Chinese liquor. The findings in this study afford us new insight into the different protein expression levels and microbial communities in two pit muds.
Collapse
|
30
|
Omics-based identification of biomarkers for nasopharyngeal carcinoma. DISEASE MARKERS 2015; 2015:762128. [PMID: 25999660 PMCID: PMC4427004 DOI: 10.1155/2015/762128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer that is highly found in distinct geographic areas, such as Southeast Asia. The management of NPC remains burdensome as the prognosis is poor due to the late presentation of the disease and the complex nature of NPC pathogenesis. Therefore, it is necessary to find effective molecular markers for early detection and therapeutic measure of NPC. In this paper, the discovery of molecular biomarker for NPC through the emerging omics technologies including genomics, miRNA-omics, transcriptomics, proteomics, and metabolomics will be extensively reviewed. These markers have been shown to play roles in various cellular pathways in NPC progression. The knowledge on their function will help us understand in more detail the complexity in tumor biology, leading to the better strategies for early detection, outcome prediction, detection of disease recurrence, and therapeutic approach.
Collapse
|
31
|
Gunnigle E, Siggins A, Botting CH, Fuszard M, O'Flaherty V, Abram F. Low-temperature anaerobic digestion is associated with differential methanogenic protein expression. FEMS Microbiol Lett 2015; 362:fnv059. [PMID: 25862577 DOI: 10.1093/femsle/fnv059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 11/14/2022] Open
Abstract
Anaerobic digestion (AD) is an attractive wastewater treatment technology, leading to the generation of recoverable biofuel (methane). Most industrial AD applications, carry excessive heating costs, however, as AD reactors are commonly operated at mesophilic temperatures while handling waste streams discharged at ambient or cold temperatures. Consequently, low-temperature AD represents a cost-effective strategy for wastewater treatment. The comparative investigation of key microbial groups underpinning laboratory-scale AD bioreactors operated at 37, 15 and 7°C was carried out. Community structure was monitored using 16S rRNA clone libraries, while abundance of the most prominent methanogens was investigated using qPCR. In addition, metaproteomics was employed to access the microbial functions carried out in situ. While δ-Proteobacteria were prevalent at 37°C, their abundance decreased dramatically at lower temperatures with inverse trends observed for Bacteroidetes and Firmicutes. Methanobacteriales and Methanosaeta were predominant at all temperatures investigated while Methanomicrobiales abundance increased at 15°C compared to 37 and 7°C. Changes in operating temperature resulted in the differential expression of proteins involved in methanogenesis, which was found to occur in all bioreactors, as corroborated by bioreactors' performance. This study demonstrated the value of employing a polyphasic approach to address microbial community dynamics and highlighted the functional redundancy of AD microbiomes.
Collapse
Affiliation(s)
- Eoin Gunnigle
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Alma Siggins
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Catherine H Botting
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, Fife KY16 9ST, Scotland
| | - Matthew Fuszard
- BSRC Mass Spectrometry and Proteomics Facility, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, Fife KY16 9ST, Scotland
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
32
|
Wang H, Sun S, Zhang Y, Chen S, Liu P, Liu B. An off-line high pH reversed-phase fractionation and nano-liquid chromatography–mass spectrometry method for global proteomic profiling of cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 974:90-5. [DOI: 10.1016/j.jchromb.2014.10.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 12/30/2022]
|
33
|
Qualitative and quantitative proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissue. Methods Mol Biol 2015; 1295:109-15. [PMID: 25820718 DOI: 10.1007/978-1-4939-2550-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue has recently gained interest as an alternative to fresh/frozen tissue for retrospective protein biomarker discovery. However, during the formalin fixation proteins undergo degradation and cross-linking, making conventional protein analysis technologies challenging. Cross-linking is even more challenging when quantitative proteome analysis of FFPE tissue is planned. The use of conventional protein labeling technologies on FFPE tissue has turned out to be problematic as the lysine residue labeling targets are frequently blocked by the formalin treatment. We have established a qualitative and quantitative proteomics analysis technique for FFPE tissues that combines label-free proteomic analysis with optimized protein extraction and separation conditions.
Collapse
|
34
|
Xu D, Li Y, Li X, Wei LL, Pan Z, Jiang TT, Chen ZL, Wang C, Cao WM, Zhang X, Ping ZP, Liu CM, Liu JY, Li ZJ, Li JC. Serum protein S100A9, SOD3, and MMP9 as new diagnostic biomarkers for pulmonary tuberculosis by iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics 2014; 15:58-67. [PMID: 25332062 DOI: 10.1002/pmic.201400366] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/23/2014] [Accepted: 10/15/2014] [Indexed: 11/06/2022]
Abstract
This study aimed to discover the novel noninvasive biomarkers for the diagnosis of pulmonary tuberculosis (TB). We applied iTRAQ 2D LC-MS/MS technique to investigate protein profiles in patients with pulmonary TB and other lung diseases. A total of 34 differentially expressed proteins (24 upregulated proteins and ten downregulated proteins) were identified in the serum of pulmonary TB patients. Significant differences in protein S100-A9 (S100A9), extracellular superoxide dismutase [Cu-Zn] (SOD3), and matrix metalloproteinase 9 (MMP9) were found between pulmonary TB and other lung diseases by ELISA. Correlations analysis revealed that the serum concentration of MMP9 in the pulmonary TB was in moderate correlation with SOD3 (r = 0.581) and S100A9 (r = 0.471), while SOD3 was in weak correlation with S100A9 (r = 0.287). The combination of serum S100A9, SOD3, and MMP9 levels could achieve 92.5% sensitivity and 95% specificity to discriminate between pulmonary TB and healthy controls, 90% sensitivity and 87.5% specificity to discriminate between pulmonary TB and pneumonia, and 85% sensitivity and 92.5% specificity to discriminate between pulmonary TB and lung cancer, respectively. The results showed that S100A9, SOD3, and MMP9 may be potential diagnostic biomarkers for pulmonary TB, and provided experimental basis for the diagnosis of pulmonary TB.
Collapse
Affiliation(s)
- Dandan Xu
- Institute of Cell Biology, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gustafsson OJR, Arentz G, Hoffmann P. Proteomic developments in the analysis of formalin-fixed tissue. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:559-80. [PMID: 25315853 DOI: 10.1016/j.bbapap.2014.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Retrospective proteomic studies, including those which aim to elucidate the molecular mechanisms driving cancer, require the assembly and characterization of substantial patient tissue cohorts. The difficulty of maintaining and accessing native tissue archives has prompted the development of methods to access archives of formalin-fixed tissue. Formalin-fixed tissue archives, complete with patient meta data, have accumulated for decades, presenting an invaluable resource for these retrospective studies. This review presents the current knowledge concerning formalin-fixed tissue, with descriptions of the mechanisms of formalin fixation, protein extraction, top-down proteomics, bottom-up proteomics, quantitative proteomics, phospho- and glycoproteomics as well as imaging mass spectrometry. Particular attention has been given to the inclusion of proteomic investigations of archived tumour tissue. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Ove J R Gustafsson
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Georgia Arentz
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005.
| |
Collapse
|
36
|
Accessing microenvironment compartments in formalin-fixed paraffin-embedded tissues by protein expression analysis. Bioanalysis 2014; 5:2647-59. [PMID: 24180505 DOI: 10.4155/bio.13.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Formalin-fixed paraffin-embedded (FFPE) samples are an outstanding source of new information regarding disease evolvements. Current research on new biomarkers and diseases features has recently invested resources in FFPE-related projects. RESULTS In order to initiate clinical protein-expression studies using minute amount of biological material, a workflow based on the combination of filter-assisted sample preparation with MS analysis and label-free quantification was developed. Xenograft lung tumor tissue was investigated as a model system. The workflow was optimized and characterized in terms of its reproducibility from a quantitative and qualitative point of view. We proposed a modification of the original filter-assisted sample preparation protocol to improve reproducibility and highlight its potential for the investigation of hydrophobic proteins. CONCLUSIONS Altogether the presented workflow allows analysis of FFPE samples with improvements in the analytical time and performance, and we show its application for lung cancer xenograft tissue samples.
Collapse
|
37
|
Tanca A, Abbondio M, Pisanu S, Pagnozzi D, Uzzau S, Addis MF. Critical comparison of sample preparation strategies for shotgun proteomic analysis of formalin-fixed, paraffin-embedded samples: insights from liver tissue. Clin Proteomics 2014; 11:28. [PMID: 25097466 PMCID: PMC4115481 DOI: 10.1186/1559-0275-11-28] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/03/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The growing field of formalin-fixed paraffin-embedded (FFPE) tissue proteomics holds promise for improving translational research. Direct tissue trypsinization (DT) and protein extraction followed by in solution digestion (ISD) or filter-aided sample preparation (FASP) are the most common workflows for shotgun analysis of FFPE samples, but a critical comparison of the different methods is currently lacking. EXPERIMENTAL DESIGN DT, FASP and ISD workflows were compared by subjecting to the same label-free quantitative approach three independent technical replicates of each method applied to FFPE liver tissue. Data were evaluated in terms of method reproducibility and protein/peptide distribution according to localization, MW, pI and hydrophobicity. RESULTS DT showed lower reproducibility, good preservation of high-MW proteins, a general bias towards hydrophilic and acidic proteins, much lower keratin contamination, as well as higher abundance of non-tryptic peptides. Conversely, FASP and ISD proteomes were depleted in high-MW proteins and enriched in hydrophobic and membrane proteins; FASP provided higher identification yields, while ISD exhibited higher reproducibility. CONCLUSIONS These results highlight that diverse sample preparation strategies provide significantly different proteomic information, and present typical biases that should be taken into account when dealing with FFPE samples. When a sufficient amount of tissue is available, the complementary use of different methods is suggested to increase proteome coverage and depth.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Marcello Abbondio
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy ; Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| |
Collapse
|
38
|
Maes E, Valkenborg D, Mertens I, Broeckx V, Baggerman G, Sagaert X, Landuyt B, Prenen H, Schoofs L. Proteomic analysis of formalin-fixed paraffin-embedded colorectal cancer tissue using tandem mass tag protein labeling. MOLECULAR BIOSYSTEMS 2014; 9:2686-95. [PMID: 23986405 DOI: 10.1039/c3mb70177h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In clinical research, repositories of biological samples form a rich source of clinical material for biomarker studies. Banked material, however, is often not stored in optimal conditions regarding the technology used for biomarker research. A case in point is formalin-fixed paraffin-embedded (FFPE) tissue that could be used to obtain large cohorts of samples over a short period of time, as these tissues are routinely prepared for pathological analysis. However, in the context of mass spectrometry based peptide-centric proteomics, protein extraction and identification can be hampered by formalin-induced crosslinking. Furthermore, the molecular formalin crosslinks might be entangled differently across various samples, making it more difficult to reproducibly extract the same proteins from different samples. In this study, we establish the crosslink variability using Tandem Mass Tag (TMT) protein labeling followed by digestion, separation, identification and quantification of proteins extracted from FFPE colorectal cancer and paired healthy tissues. Moreover, by applying de novo interpretation of tandem mass spectra and subsequent analysis by Peaks PTM, unspecified modifications could be elucidated, leading to increased protein and proteome coverage. This approach might be useful for future FFPE proteomics studies.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fowler CB, O'Leary TJ, Mason JT. Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics 2014; 10:389-400. [PMID: 23992421 DOI: 10.1586/14789450.2013.820531] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Archival formalin-fixed, paraffin-embedded (FFPE) tissue and their associated diagnostic records represent an invaluable source of retrospective proteomic information on diseases for which the clinical outcome and response to treatment are known. However, analysis of archival FFPE tissues by high-throughput proteomic methods has been hindered by the adverse effects of formaldehyde fixation and subsequent tissue histology. This review examines recent methodological advances for extracting proteins from FFPE tissue suitable for proteomic analysis. These methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, allow at least a qualitative analysis of the proteome of FFPE archival tissues. The authors also discuss recent advances in the proteomic analysis of FFPE tissue; including liquid-chromatography tandem mass spectrometry, reverse phase protein microarrays and imaging mass spectrometry.
Collapse
Affiliation(s)
- Carol B Fowler
- Laboratory of Proteomics and Protein Science, Washington DC Veterans Affairs Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
40
|
Xiao L, Xiao T, Wang ZM, Cho WCS, Xiao ZQ. Biomarker discovery of nasopharyngeal carcinoma by proteomics. Expert Rev Proteomics 2014; 11:215-25. [PMID: 24611579 DOI: 10.1586/14789450.2014.897613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in southern China and southern Asia, and poses one of the most serious public health problems in these areas. Early diagnosis, predicting metastasis, recurrence, prognosis and therapeutic response of NPC remain a challenge. Discovery of diagnostic and predictive biomarkers is an ideal way to achieve these objectives. Proteomics has great potential in identifying cancer biomarkers. Comparative proteomics has identified a large number of potential biomarkers associated with NPC, although the clinical performance of such biomarkers needs to be further validated. In this article, we review the latest discovery and progress of biomarkers for early diagnosis, predicting metastasis, recurrence, prognosis and therapeutic response of NPC, inform the readers of the current status of proteomics-based NPC biomarker findings and suggest avenues for future work.
Collapse
Affiliation(s)
- Liang Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | | | | | | | | |
Collapse
|
41
|
Kakimoto Y, Ito S, Abiru H, Kotani H, Ozeki M, Tamaki K, Tsuruyama T. Sorbin and SH3 domain-containing protein 2 is released from infarcted heart in the very early phase: proteomic analysis of cardiac tissues from patients. J Am Heart Assoc 2013; 2:e000565. [PMID: 24342996 PMCID: PMC3886759 DOI: 10.1161/jaha.113.000565] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Few proteomic studies have examined human cardiac tissue following acute lethal infarction. Here, we applied a novel proteomic approach to formalin-fixed, paraffin-embedded human tissue and aimed to reveal the molecular changes in the very early phase of acute myocardial infarction. METHODS AND RESULTS Heart tissue samples were collected from 5 patients who died within 7 hours of myocardial infarction and from 5 age- and sex-matched control cases. Infarcted and control myocardia were histopathologically diagnosed and captured using laser microdissection. Proteins were extracted using an originally established method and analyzed using liquid chromatography-tandem mass spectrometry. The label-free quantification demonstrated that the levels of 21 proteins differed significantly between patients and controls. In addition to known biomarkers, the sarcoplasmic protein sorbin and SH3 domain-containing protein 2 (SORBS2) was greatly reduced in infarcted myocardia. Immunohistochemical analysis of cardiac tissues confirmed the decrease, and Western blot analysis showed a significant increase in serum sorbin and SH3 domain-containing protein 2 in acute myocardial infarction patients (n=10) compared with control cases (n=11). CONCLUSIONS Our advanced comprehensive analysis using patient tissues and serums indicated that sarcoplasmic sorbin and SH3 domain-containing protein 2 is released from damaged cardiac tissue into the bloodstream upon lethal acute myocardial infarction. The proteomic strategy presented here is based on precise microscopic findings and is quite useful for candidate biomarker discovery using human tissue samples stored in depositories.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
A combination of paclitaxel and siRNA-mediated silencing of Stathmin inhibits growth and promotes apoptosis of nasopharyngeal carcinoma cells. Cell Oncol (Dordr) 2013; 37:53-67. [DOI: 10.1007/s13402-013-0163-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 12/30/2022] Open
|
43
|
Giusti L, Lucacchini A. Proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics 2013; 10:165-77. [PMID: 23573783 DOI: 10.1586/epr.13.3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a valuable informational resource of histologically characterized specimens for proteomic studies. In this article, the authors review the advancement performed in the field of FFPE proteomics focusing on formaldehyde treatment and on strategies addressed to obtain the best recovery in the protein/peptide extraction. A variety of approaches have been used to characterize protein tissue extracts, and many efforts have been performed demonstrating the comparability between fresh/frozen and FFPE proteomes. Finally, the authors report and discuss the large numbers of works aimed at developing new strategies and sophisticated platforms in the analysis of FFPE samples to validate known potential biomarkers and to discover new ones.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | |
Collapse
|
44
|
ZHANG PENGFEI, ZENG GUQING, YI LUNZHAO, LIU JIANPING, WAN XUNXUN, QU JIAQUAN, LI JIANHUANG, LI CUI, TANG CANE, HU RONG, YE XU, CHEN YU, CHEN ZHUCHU, XIAO ZHIQIANG. Identification of integrin β1 as a prognostic biomarker for human lung adenocarcinoma using 2D-LC-MS/MS combined with iTRAQ technology. Oncol Rep 2013; 30:341-9. [DOI: 10.3892/or.2013.2477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/22/2013] [Indexed: 11/06/2022] Open
|
45
|
Kojima K, Bowersock GJ, Kojima C, Klug CA, Grizzle WE, Mobley JA. Validation of a robust proteomic analysis carried out on formalin-fixed paraffin-embedded tissues of the pancreas obtained from mouse and human. Proteomics 2013; 12:3393-402. [PMID: 22997103 DOI: 10.1002/pmic.201100663] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 08/17/2012] [Accepted: 09/05/2012] [Indexed: 01/02/2023]
Abstract
A number of reports have recently emerged with focus on extraction of proteins from formalin-fixed paraffin-embedded (FFPE) tissues for MS analysis; however, reproducibility and robustness as compared to flash frozen controls is generally overlooked. The goal of this study was to identify and validate a practical and highly robust approach for the proteomics analysis of FFPE tissues. FFPE and matched frozen pancreatic tissues obtained from mice (n = 8) were analyzed using 1D-nanoLC-MS(MS)(2) following work up with commercially available kits. The chosen approach for FFPE tissues was found to be highly comparable to that of frozen. In addition, the total number of unique peptides identified between the two groups was highly similar, with 958 identified for FFPE and 1070 identified for frozen, with protein identifications that corresponded by approximately 80%. This approach was then applied to archived human FFPE pancreatic cancer specimens (n = 11) as compared to uninvolved tissues (n = 8), where 47 potential pancreatic ductal adenocarcinoma markers were identified as significantly increased, of which 28 were previously reported. Further, these proteins share strongly overlapping pathway associations to pancreatic cancer that include estrogen receptor α. Together, these data support the validation of an approach for the proteomic analysis of FFPE tissues that is straightforward and highly robust, which can also be effectively applied toward translational studies of disease.
Collapse
Affiliation(s)
- Kyoko Kojima
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
46
|
Analysis of the formalin-fixed paraffin-embedded tissue proteome: pitfalls, challenges, and future prospectives. Amino Acids 2013; 45:205-18. [PMID: 23592010 DOI: 10.1007/s00726-013-1494-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are a real treasure for retrospective analysis considering the amount of samples present in hospital archives, combined with pathological, clinical, and outcome information available for every sample. Although unlocking the proteome of these tissues is still a challenge, new approaches are being developed. In this review, we summarize the different mass spectrometry platforms that are used in human clinical studies to unravel the FFPE proteome. The different ways of extracting crosslinked proteins and the analytical strategies are pointed out. Also, the pitfalls and challenges concerning the quality of FFPE proteomic approaches are depicted. We also evaluated the potential of these analytical methods for future clinical FFPE proteomics applications.
Collapse
|
47
|
Vincenti DC, Murray GI. The proteomics of formalin-fixed wax-embedded tissue. Clin Biochem 2013; 46:546-51. [DOI: 10.1016/j.clinbiochem.2012.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/06/2012] [Accepted: 10/01/2012] [Indexed: 01/16/2023]
|
48
|
Liu T, Huang Y, Liu J, Zhao Y, Jiang L, Huang Q, Cheng W, Guo L. MicroRNA-122 influences the development of sperm abnormalities from human induced pluripotent stem cells by regulating TNP2 expression. Stem Cells Dev 2013; 22:1839-50. [PMID: 23327642 DOI: 10.1089/scd.2012.0653] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development.
Collapse
Affiliation(s)
- Te Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Choi YS. Reaching for the deep proteome: recent nano liquid chromatography coupled with tandem mass spectrometry-based studies on the deep proteome. Arch Pharm Res 2012; 35:1861-70. [PMID: 23212627 DOI: 10.1007/s12272-012-1102-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/30/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
Abstract
In the last decade, there has been a dramatic progress in separation techniques, mass spectrometry, and bioinformatics, and this progress has significantly improved the techniques on protein analysis. However, the analysis of low-abundance proteins is still challenging because of the limited performance in the method of choice compared to the complexity and the vast dynamic range of biological samples. Since this issue is a big obstacle in most proteomics investigations, great interest has been paid recently to various techniques, such as multi-dimensional analysis, specific peptide selection, high-abundance protein depletion, ligand library treatment, to address this challenge. Therefore, here, the author reviews recent nano liquid chromatography coupled with tandem mass spectrometry-based studies on the deep proteome, mainly focusing on their methods and perspectives.
Collapse
Affiliation(s)
- Yong Seok Choi
- College of Pharmacy, Dankook University, Cheonan 330-714, Korea.
| |
Collapse
|
50
|
Comparability of differential proteomics data generated from paired archival fresh-frozen and formalin-fixed samples by GeLC-MS/MS and spectral counting. J Proteomics 2012; 77:561-76. [PMID: 23043969 DOI: 10.1016/j.jprot.2012.09.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/17/2012] [Accepted: 09/22/2012] [Indexed: 11/22/2022]
Abstract
In this study, a Veterinary Department repository composed by paired formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FrFr) sets of the same tissues, routinely archived in the typical conditions of a clinical setting, was exploited to perform a comparative evaluation of the results generated by GeLC-MS/MS (1-DE followed by in-gel digestion and LC-MS/MS) and spectral counting with the two types of archival samples. Therefore, two parallel differential proteomic studies were performed using 3 canine mammary carcinomas and 3 normal controls in a paired fashion (6 FrFr and 6 FFPE in total). As a result, the FrFr and FFPE differential proteomic datasets exhibited fair consistency in differential expression trends, according to protein molecular function, cellular localization, networks, and pathways. However, FFPE samples were globally slightly less informative, especially concerning the high-MW subproteome. As a further investigation, new insights into the molecular aspects of protein fixation and retrieval were obtained. In conclusion, archival FFPE samples can be reliably used for differential proteomics studies employing a spectral counting GeLC-MS/MS approach, although some typical biases need to be taken into account, and FrFr specimens (when available) should still be considered as the gold standard for clinical proteomics.
Collapse
|