1
|
Huang YM, Hong XZ, Shen J, Geng LJ, Pan YH, Ling W, Zhao HL. Amyloids in Site-Specific Autoimmune Reactions and Inflammatory Responses. Front Immunol 2020; 10:2980. [PMID: 31993048 PMCID: PMC6964640 DOI: 10.3389/fimmu.2019.02980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Amyloid deposition is a histological hallmark of common human disorders including Alzheimer's disease (AD) and type 2 diabetes. Although some reports highlight that amyloid fibrils might activate the innate immunity system via pattern recognition receptors, here, we provide multiple lines of evidence for the protection by site-specific amyloid protein analogs and fibrils against autoimmune attacks: (1) strategies targeting clearance of the AD-related brain amyloid plaque induce high risk of deadly autoimmune destructions in subjects with cognitive dysfunction; (2) administration of amyloidogenic peptides with either full length or core hexapeptide structure consistently ameliorates signs of experimental autoimmune encephalomyelitis; (3) experimental autoimmune encephalomyelitis is exacerbated following genetic deletion of amyloid precursor proteins; (4) absence of islet amyloid coexists with T-cell-mediated insulitis in autoimmune diabetes and autoimmune polyendocrine syndrome; (5) use of islet amyloid polypeptide agonists rather than antagonists improves diabetes care; and (6) common suppressive signaling pathways by regulatory T cells are activated in both local and systemic amyloidosis. These findings indicate dual modulation activity mediated by amyloid protein monomers, oligomers, and fibrils to maintain immune homeostasis. The protection from autoimmune destruction by amyloid proteins offers a novel therapeutic approach to regenerative medicine for common degenerative diseases.
Collapse
Affiliation(s)
- Yan-Mei Huang
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Xue-Zhi Hong
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jian Shen
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Pathology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Li-Jun Geng
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Yan-Hong Pan
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Wei Ling
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Endocrinology, Xiangya Medical School, Central South University, Changsha, China
| | - Hai-Lu Zhao
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China.,Institute of Basic Medical Sciences, Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
2
|
Erthal LCS, Marques AF, Almeida FCL, Melo GLM, Carvalho CM, Palmieri LC, Cabral KMS, Fontes GN, Lima LMTR. Regulation of the assembly and amyloid aggregation of murine amylin by zinc. Biophys Chem 2016; 218:58-70. [PMID: 27693831 DOI: 10.1016/j.bpc.2016.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/10/2016] [Accepted: 09/17/2016] [Indexed: 11/17/2022]
Abstract
The secretory granule of the pancreatic β-cells is a zinc-rich environment copopulated with the hormones amylin and insulin. The human amylin is shown to interact with zinc ions with major contribution from the single histidine residue, which is absent in amylin from other species such as cat, rhesus and rodents. We report here the interaction of murine amylin with zinc ions in vitro. The self-assembly of murine amylin is tightly regulated by zinc and pH. Ion mobility mass spectrometry revealed zinc interaction with monomers and oligomers. Nuclear magnetic resonance confirms the binding of zinc to murine amylin. The aggregation process of murine amylin into amyloid fibrils is accelerated by zinc. Collectively these data suggest a general role of zinc in the modulation of amylin variants oligomerization and amyloid fibril formation.
Collapse
Affiliation(s)
- Luiza C S Erthal
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Adriana F Marques
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Fábio C L Almeida
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Gustavo L M Melo
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Camila M Carvalho
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Leonardo C Palmieri
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Katia M S Cabral
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Giselle N Fontes
- Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias-RJ, 25250-020 Rio de Janeiro, Brazil
| | - Luís Maurício T R Lima
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil; Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias-RJ, 25250-020 Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT), Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
3
|
Kim J, Cheon H, Jeong YT, Quan W, Kim KH, Cho JM, Lim YM, Oh SH, Jin SM, Kim JH, Lee MK, Kim S, Komatsu M, Kang SW, Lee MS. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J Clin Invest 2014; 124:3311-24. [PMID: 25036705 DOI: 10.1172/jci69625] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Islet amyloid accumulation is a hallmark of human type 2 diabetes (T2D). In contrast to human islet amyloid polypeptide (hIAPP), murine islet amyloid polypeptide (mIAPP) does not exhibit amyloidogenic propensity. Because autophagy is important in the clearance of amyloid-like proteins, we studied transgenic mice with β cell-specific expression of hIAPP to evaluate the contribution of autophagy in T2D-associated accumulation of hIAPP. In mice with β cell-specific expression of hIAPP, a deficiency in autophagy resulted in development of overt diabetes, which was not observed in mice expressing hIAPP alone or lacking autophagy alone. Furthermore, lack of autophagy in hIAPP-expressing animals resulted in hIAPP oligomer and amyloid accumulation in pancreatic islets, leading to increased death and decreased mass of β cells. Expression of hIAPP in purified monkey islet cells or a murine β cell line resulted in pro-hIAPP dimer formation, while dimer formation was absent or reduced dramatically in cells expressing either nonamyloidogenic mIAPP or nonfibrillar mutant hIAPP. In autophagy-deficient cells, accumulation of pro-hIAPP dimers increased markedly, and pro-hIAPP trimers were detected in the detergent-insoluble fraction. Enhancement of autophagy improved the metabolic profile of hIAPP-expressing mice fed a high-fat diet. These results suggest that autophagy promotes clearance of amyloidogenic hIAPP, autophagy deficiency exacerbates pathogenesis of human T2D, and autophagy enhancers have therapeutic potential for islet amyloid accumulation-associated human T2D.
Collapse
|