1
|
Cavanagh AS, Kuter N, Sollinger BI, Aziz K, Turnbill V, Martin LJ, Northington FJ. Intranasal therapies for neonatal hypoxic-ischemic encephalopathy: Systematic review, synthesis, and implications for global accessibility to care. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615156. [PMID: 39386687 PMCID: PMC11463427 DOI: 10.1101/2024.09.26.615156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of neurodevelopmental morbidity in term infants worldwide. Incidence of HIE is highest in low and middle-income communities with minimal access to neonatal intensive care and an underdeveloped infrastructure for advanced neurologic interventions. Moreover, therapeutic hypothermia, standard of care for HIE in high resourced settings, is shown to be ineffective in low and middle-income communities. With their low cost, ease of administration, and capacity to potently target the central nervous system, intranasal therapies pose a unique opportunity to be a more globally accessible treatment for neonatal HIE. Intranasal experimental therapeutics have been studied in both rodent and piglet models, but no intranasal therapeutics for neonatal HIE have undergone human clinical trials. Additional research must be done to expand the array of treatments available for use as intranasal therapies for neonatal HIE thus improving the neurologic outcomes of infants worldwide.
Collapse
|
2
|
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells "know" where they are needed. Front Immunol 2024; 15:1400739. [PMID: 38863701 PMCID: PMC11165056 DOI: 10.3389/fimmu.2024.1400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.
Collapse
Affiliation(s)
| | - David D. Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Huang ZQ, Liu J, Sun LY, Ong HH, Ye J, Xu Y, Wang DY. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions. Allergy 2024; 79:1146-1165. [PMID: 38372149 DOI: 10.1111/all.16064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Tight junction (TJ) proteins establish a physical barrier between epithelial cells, playing a crucial role in maintaining tissue homeostasis by safeguarding host tissues against pathogens, allergens, antigens, irritants, etc. Recently, an increasing number of studies have demonstrated that abnormal expression of TJs plays an essential role in the development and progression of inflammatory airway diseases, including chronic obstructive pulmonary disease, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS) with or without nasal polyps. Among them, CRS with nasal polyps is a prevalent chronic inflammatory disease that affects the nasal cavity and paranasal sinuses, leading to a poor prognosis and significantly impacting patients' quality of life. Its pathogenesis primarily involves dysfunction of the nasal epithelial barrier, impaired mucociliary clearance, disordered immune response, and excessive tissue remodeling. Numerous studies have elucidated the pivotal role of TJs in both the pathogenesis and response to traditional therapies in CRS. We therefore to review and discuss potential factors contributing to impair and repair of TJs in the nasal epithelium based on their structure, function, and formation process.
Collapse
Affiliation(s)
- Zhi-Qun Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Li-Ying Sun
- First School of Clinical Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hsiao Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Ye
- Department of Otolaryngology-Head and Neck Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
4
|
Kim KA, Jung JH, Choi YS, Kim ST. Ginsenoside Re protects rhinovirus-induced disruption of tight junction through inhibition of ROS-mediated phosphatases inactivation in human nasal epithelial cells. Heliyon 2024; 10:e27688. [PMID: 38495147 PMCID: PMC10940941 DOI: 10.1016/j.heliyon.2024.e27688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Maintaining tight junction integrity significantly contributes to epithelial barrier function. If the barrier function is destroyed, the permeability of the cells increases, and the movement of the pathogens is promoted, thereby further increasing the susceptibility to secondary infection. Ginsenoside components have multiple biological activities, including antiviral effects. In this study, we examined the protective effects of ginsenoside Re against rhinovirus-induced tight junction disruption in primary human nasal epithelial cells (HNE). Incubation with human rhinovirus resulted in marked disruption of tight junction proteins (ZO-1, E-cadherin, claudin-1, and occludin) in human nasal epithelial cells. Rhinovirus-induced disruption of tight junction proteins was strongly inhibited by the treatment of cells with ginsenoside Re. Indeed, significant amounts of reactive oxygen species (ROS) have been detected in human nasal epithelial cells co-incubated with rhinovirus. Moreover, rhinovirus-induced ROS generation was markedly reduced by the ginsenoside Re. However, ginsenosides Rb1 and Rc did not inhibit tight junction disruption or ROS generation in nasal epithelial cells following incubation with rhinovirus. Furthermore, incubation with rhinovirus resulted in a marked decrease in protein phosphatase activity and an increase in protein tyrosine phosphorylation levels in nasal epithelial cells. Treatment of cells with ginsenoside Re inhibited rhinovirus-induced inactivation of phosphatases and phosphorylation of tyrosine. Our results identified ginsenoside Re as an effective compound that prevented rhinovirus-induced tight junction disruption in human nasal epithelial cells.
Collapse
Affiliation(s)
- Kyeong Ah Kim
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, South Korea
| | - Joo Hyun Jung
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, South Korea
| | - Yun Sook Choi
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, South Korea
| | - Seon Tae Kim
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, South Korea
| |
Collapse
|
5
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
6
|
Mogitate M. Epipharynegal Abrasive Therapy Downregulates the Number of Epipharyngeal Abrasive CD4 Cells With Symptomatic Recovery. Cureus 2023; 15:e50288. [PMID: 38089949 PMCID: PMC10710962 DOI: 10.7759/cureus.50288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2023] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE In this study, the author focused on CD4 and CD8 profiles in epipharyngeal abrasive cells in patients with chronic epipharyngitis and investigated how the profiles differ from those in normal healthy subjects and how epipharyngeal abrasive therapy (EAT) influences these profiles. METHODS This study included 18 patients (one male and 17 females, median age: 46 (30.0-56.5) years) who had been treated for chronic epipharyngitis between June 2021 and September 2021. Epipharyngeal abrasive cells were collected from patients with chronic epipharyngitis before EAT and three months after repeated EAT and were subjected to two-color flow cytometric analyses for CD4 and CD8 expression. The severity of participants' symptoms was monitored using the visual analog scale. RESULTS Symptoms of chronic epipharyngitis were significantly abated after three months of repeated EAT (p <0.001). The number of epipharyngeal abrasive CD4(+) T cells in patients with chronic epipharyngitis before EAT, which was significantly higher than that in normal healthy subjects (p <0.01), significantly decreased by the third month of repeated EAT (p = 0.01), alongside symptomatic recovery. CONCLUSION These results suggest that epipharyngeal CD4(+) T cells may have a critical role in treating the persistent inflammation of chronic epipharyngitis, and EAT may reduce the number of CD4 cells, which results in symptomatic recovery.
Collapse
|
7
|
Tugizov SM. Molecular Pathogenesis of Human Immunodeficiency Virus-Associated Disease of Oropharyngeal Mucosal Epithelium. Biomedicines 2023; 11:1444. [PMID: 37239115 PMCID: PMC10216750 DOI: 10.3390/biomedicines11051444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The oropharyngeal mucosal epithelia have a polarized organization, which is critical for maintaining a highly efficient barrier as well as innate immune functions. In human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) disease, the barrier and innate immune functions of the oral mucosa are impaired via a number of mechanisms. The goal of this review was to discuss the molecular mechanisms of HIV/AIDS-associated changes in the oropharyngeal mucosa and their role in promoting HIV transmission and disease pathogenesis, notably the development of opportunistic infections, including human cytomegalovirus, herpes simplex virus, and Epstein-Barr virus. In addition, the significance of adult and newborn/infant oral mucosa in HIV resistance and transmission was analyzed. HIV/AIDS-associated changes in the oropharyngeal mucosal epithelium and their role in promoting human papillomavirus-positive and negative neoplastic malignancy are also discussed.
Collapse
Affiliation(s)
- Sharof M Tugizov
- Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Wo B, Du C, Yang Y, Qi H, Liang Z, He C, Yao F, Li X. Human placental extract regulates polarization of macrophages via IRGM/NLRP3 in allergic rhinitis. Biomed Pharmacother 2023; 160:114363. [PMID: 36746096 DOI: 10.1016/j.biopha.2023.114363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
Allergic rhinitis (AR) is globally prevalent and its pathogenesis remains unclear. Alternative activation of macrophages is suggested in AR and thought to be involved in natural immunoregulatory processes in AR. Aberrant activation of Nod-like receptor protein 3 (NLRP3) inflammasome is linked with AR. Human placenta extract (HPE) is widely used in clinics due to its multiple therapeutic potential carried by diverse bioactive molecules in it. We aim to investigate the effect of HPE on AR and the possible underlying mechanism. Ovalbumin (OVA)-induced AR rat model was set up and treated by HPE or cetirizine. General manifestation of AR was evaluated along with the histological and biochemical analysis performed on rat nasal mucosa. A proteomic analysis was performed on AR rat mucosa. Mouse alveolar macrophages (MH-S cells) were cultured under OVA stimulation to investigate the regulation of macrophages polarization. The morphological changes and the expression of NLRP3 inflammasome and immunity-related GTPase M (IRGM) in nasal mucosa as well as in MH-S cells were evaluated respectively. The results of our study showed the general manifestation of AR along with the histological changes in nasal mucosa of AR rats were improved by HPE. HPE suppresses NLRP3 inflammasome and the decline of IRGM in AR rats and MH-S cells. HPE regulates macrophage polarization through IRGM/NLRP3. We demonstrated that HPE had protection for AR and the protection is achieved partly through suppressing M1 while promoting M2, the process which is mediated by IRGM via inhibiting NLRP3 inflammasome in AR.
Collapse
Affiliation(s)
- Beibei Wo
- Department of Otolaryngology Head and Neck Surgery, the 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, China; Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yan Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Huimin Qi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Zihui Liang
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Conghui He
- Department of Otolaryngology Head and Neck Surgery, the 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, China
| | - Fang Yao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.
| | - Xiaoming Li
- Department of Otolaryngology Head and Neck Surgery, the 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, China; Graduate School of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
9
|
How an Immune-Factor-Based Formulation of Micro-Immunotherapy Could Interfere with the Physiological Processes Involved in the Atopic March. Int J Mol Sci 2023; 24:ijms24021483. [PMID: 36675006 PMCID: PMC9864899 DOI: 10.3390/ijms24021483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Allergic diseases consist of improper inflammatory reactions to antigens and are currently an important healthcare concern, especially considering their increasing worldwide development in recent decades. The "atopic march" defines the paradigm of allergic diseases occurring in chronological order and displaying specific spatial manifestations, as they usually start as atopic dermatitis (AD) and food allergies during infancy and progressively evolve into allergic asthma (AA) and allergic rhinitis (AR) or rhino-conjunctivitis in childhood. Many immune cell subtypes and inflammatory factors are involved in these hypersensitivity reactions. In particular, the T helpers 2 (Th2) subset, through its cytokine signatures made of interleukins (ILs), such as IL-4, IL-5, IL-10, and IL-13, as well as mast cells and their related histamine pathways, contribute greatly to the perpetuation and evolution of the atopic march. By providing low doses (LD) and ultra-low doses (ULD) of ILs and immune factors to the body, micro-immunotherapy (MI) constitutes an interesting therapeutic strategy for the management of the atopic march and its symptoms. One of the aims of this review is to shed light on the current concept of the atopic march and the underlying immune reactions occurring during the IgE-mediated responses. Moreover, the different classes of traditional and innovative treatments employed in allergic diseases will also be discussed, with a special emphasis on the potential benefits of the MI medicine 2LALERG® formulation in this context.
Collapse
|
10
|
Moreno CM, Boeree E, Freitas CMT, Weber KS. Immunomodulatory role of oral microbiota in inflammatory diseases and allergic conditions. FRONTIERS IN ALLERGY 2023; 4:1067483. [PMID: 36873050 PMCID: PMC9981797 DOI: 10.3389/falgy.2023.1067483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
In recent years, the interplay between oral microbiota and systemic disease has gained attention as poor oral health is associated with several pathologies. The oral microbiota plays a role in the maintenance of overall health, and its dysbiosis influences chronic inflammation and the pathogenesis of gum diseases. Periodontitis has also been associated with other diseases and health complications such as cancer, neurogenerative and autoimmune disorders, chronic kidney disease, cardiovascular diseases, rheumatic arthritis, respiratory health, and adverse pregnancy outcomes. The host microbiota can influence immune cell development and immune responses, and recent evidence suggests that changes in oral microbiota composition may also contribute to sensitization and the development of allergic reactions, including asthma and peanut allergies. Conversely, there is also evidence that allergic reactions within the gut may contribute to alterations in oral microbiota composition. Here we review the current evidence of the role of the oral microbiota in inflammatory diseases and health complications, as well as its future relevance in improving health and ameliorating allergic disease.
Collapse
Affiliation(s)
- Carlos M Moreno
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Ellie Boeree
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Claudia M Tellez Freitas
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
11
|
Nur Husna SM, Md Shukri N, Tuan Sharif SE, Tan HTT, Mohd Ashari NS, Wong KK. IL-4/IL-13 Axis in Allergic Rhinitis: Elevated Serum Cytokines Levels and Inverse Association With Tight Junction Molecules Expression. Front Mol Biosci 2022; 9:819772. [PMID: 35372516 PMCID: PMC8969661 DOI: 10.3389/fmolb.2022.819772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
The IL-4/IL-13 axis is involved in the pathogenesis of allergic rhinitis (AR). In this study, we investigated the serum cytokines levels of IL-4, IL-5, IL-6, and IL-13 in AR patients, and the transcript expression levels of their receptors (i.e. IL4R, IL5RA, IL6R, and IL13RA1) in nasal epithelial cells of AR patients versus non-allergic controls. Nasal epithelial cells and blood samples of non-allergic controls (n = 30) and AR patients (n = 30) were collected to examine mRNA expression and serum cytokines levels, respectively. Bioinformatics analyses of IL-4/IL-13 receptor heterodimer association with tight junction (TJ) and JAK/STAT signaling genes were conducted in a gene expression profiling (GEP) dataset (GSE44037) of AR patients (n = 12) and healthy controls (n = 6). Serum IL-4, IL-5, IL-6 or IL-13 levels, and IL13RA1 transcript expression were significantly higher in AR patients compared with non-allergic controls. IL-4 and IL-13 serum levels were positively correlated with IL13RA1 expression in AR patients but not in non-allergic controls. In the GEP dataset (GSE44037), six TJ (CLDN4, CLDN7, CLDN12, CLDN15, TJP1, and TJP2) genes’ expressions were negatively correlated, respectively, with IL-4Rα/IL-13Rα1 heterodimeric receptor expression in AR patients and not in control samples. These six TJ genes contributed to the significant enrichment of tight junction Gene Ontology (GO ID: 0070160). Lastly, STATs DNA binding motif analysis showed that each of these TJ genes contains STATs binding consensus sequence within intronic and intergenic regions. Our results suggest that increased IL-4/IL-13 serum cytokines levels may contribute to decreased TJs expression via IL-4Rα/IL-13Rα1 heterodimeric receptor in nasal epithelium of AR patients.
Collapse
Affiliation(s)
- Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Norasnieda Md Shukri
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Hern Tze Tina Tan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Noor Suryani Mohd Ashari
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- *Correspondence: Kah Keng Wong,
| |
Collapse
|
12
|
Hotta O, Ieiri N, Nagai M, Tanaka A, Harabuchi Y. Role of Palatine Tonsil and Epipharyngeal Lymphoid Tissue in the Development of Glomerular Active Lesions ( Glomerular vasculitis) in Immunoglobulin A Nephropathy. Int J Mol Sci 2022; 23:727. [PMID: 35054911 PMCID: PMC8775943 DOI: 10.3390/ijms23020727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Hematuria is an essential symptom of immunoglobulin A nephropathy (IgAN). Although the etiology of hematuria in IgAN has not been fully elucidated, it is thought that the rupture of the glomerular basement membranes caused by intra-capillary leukocyte influx, so-called glomerular vasculitis, is the pathological condition responsible for severe hematuria. Glomerular vasculitis are active lesions that exist in the glomeruli of acute phase IgAN and it is important because it is suspected to make the transition to segmental glomerular sclerosis (SGS) as a repair scar lesion in the chronic phase, and the progression of SGS would eventually lead to glomerular obsolescence. Worsening of hematuria concomitant with acute pharyngitis is common in patients with IgAN; therefore, elucidating the relationship between the immune system of Waldeyer's ring, including the palatine tonsil and epipharyngeal lymphoid tissue, and the glomerular vasculitis may lead to understanding the nature of IgAN. The epipharynx is an immunologically activated site even under normal conditions, and enhanced activation of innate immunity is likely to occur in response to airborne infection. Hyperactivation of innate immunity via upregulation of Toll-like receptors in the interfollicular area of the palatine tonsil and epipharyngeal lymphoid tissue, followed by enhanced fractalkine/CX3CR1 interactions, appears to play an important role in the development of glomerular vasculitis in IgAN. As latent but significant epipharyngitis is present in most patients with IgAN, it is plausible that acute upper respiratory infection may contribute as a trigger for the innate epipharyngeal immune system, which is already upregulated in a chronically inflamed environment. Given that epipharyngitis and its effects on IgAN are not fully understood, we propose that the so-called "epipharynx-kidney axis" may provide an important focus for future research.
Collapse
Affiliation(s)
- Osamu Hotta
- Division of Internal Medicine, Hotta Osamu Clinic (HOC), Sendai 984-0013, Miyagi, Japan;
| | - Norio Ieiri
- Division of Internal Medicine, Hotta Osamu Clinic (HOC), Sendai 984-0013, Miyagi, Japan;
| | - Masaaki Nagai
- Division of Nephrology, Narita Memorial Hospital, Toyohashi 441-8029, Aichi, Japan;
| | | | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan;
| |
Collapse
|
13
|
Gerber W, Svitina H, Steyn D, Peterson B, Kotzé A, Weldon C, Hamman JH. Comparison of RPMI 2650 cell layers and excised sheep nasal epithelial tissues in terms of nasal drug delivery and immunocytochemistry properties. J Pharmacol Toxicol Methods 2021; 113:107131. [PMID: 34699972 DOI: 10.1016/j.vascn.2021.107131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Nasal drug administration has been identified as a potential alternative to oral drug administration, especially for systemic delivery of large molecular weight compounds. Major advantages of nasal drug delivery include high vascularity and permeability of the epithelial membranes as well as circumvention of first-pass metabolism. RPMI 2650 cell layers (in vitro cell model) and excised sheep nasal mucosal tissues (ex vivo sheep model) were evaluated with regard to epithelial thickness, selected tight junction protein expression (i.e. claudin-1, F-actin chains, zonula occludin-1), extent of p-glycoprotein (P-gp) related efflux of a model compound (Rhodamine-123, R123) and paracellular permeation of a large molecular weight model compound (FITC-dextran 4400, FD4). The cell model grown under liquid cover conditions (LCC) was thinner (24 ± 4 μm) than the epithelial layer of the sheep model (53 ± 4 μm), whereas the thickness of cell model grown under air liquid interface (ALI) conditions (53 ± 8 μm) compared well with that of the sheep model. Although the location and distribution of tight junction proteins and F-actin differed to some extent between the cell model grown under ALI conditions and the sheep model, the extent of paracellular permeation of FD4 was similar (Papp = 0.48 × 10-6 cm.s-1 and 0.46 × 10-6 cm.s-1, respectively). Furthermore, the bi-directional permeation of R123 yielded the same efflux ratio (ER = 2.33) in both models. The permeation results from this exploratory study indicated similarity in terms of compound permeation between the RPMI 2650 nasal epithelial cell line and the excised sheep nasal epithelial tissue model.
Collapse
Affiliation(s)
- Werner Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa
| | - Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Bianca Peterson
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Awie Kotzé
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Ché Weldon
- School of Environmental Sciences and Development, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| |
Collapse
|
14
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.19432749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.1943274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Ogi K, Ramezanpour M, Liu S, Ferdoush Tuli J, Bennett C, Suzuki M, Fujieda S, Psaltis AJ, Wormald PJ, Vreugde S. Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. FRONTIERS IN ALLERGY 2021; 2:692049. [PMID: 35387029 PMCID: PMC8974687 DOI: 10.3389/falgy.2021.692049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background:Dermatophagoides pteronyssinus 1/2 (Der p 1/Der p 2) are regarded as important allergens of house dust mite (HDM). However, the effect of both products on the epithelial barrier and immune response of patients with and without HDM allergic rhinitis (AR) remains unclear. Methods: Air–liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects (non-AR) (n = 9) and HDM-AR patients (n = 9) were treated with Der P 1 and Der P 2, followed by testing the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextrans and immunofluorescence of claudin-1 and ZO-1. Interleukin-6 (IL-6) production was evaluated by ELISA. Results: Der p 1 reduced TEER significantly in a transient and dose-dependent manner in HNEC-ALI cultures from HDM-AR and non-AR patients, whilst the paracellular permeability was not affected. TEER was significantly reduced by Der p 1 at the 10-min time point in HDM-AR patients compared to non-AR patients (p = 0.0259). Compared to no-treatment control, in HNECs derived from HDM-AR patients, Der p 1 significantly cleaved claudin-1 after 30 min exposure (72.7 ± 9.5 % in non-AR group, 39.9 ± 7.1 % in HDM-AR group, p = 0.0286) and induced IL-6 secretion (p = 0.0271). Conclusions: Our results suggest that patients with HDM-AR are more sensitive to Der p 1 than non-AR patients with increased effects of Der p1 on the mucosal barrier and induction of inflammation, indicating an important role for Der p1 in sensitization and HDM-AR development.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sha Liu
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Jannatul Ferdoush Tuli
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Catherine Bennett
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Masanobu Suzuki
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Alkis James Psaltis
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Peter-John Wormald
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sarah Vreugde
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- *Correspondence: Sarah Vreugde
| |
Collapse
|
17
|
Nur Husna SM, Tan HTT, Md Shukri N, Mohd Ashari NS, Wong KK. Nasal Epithelial Barrier Integrity and Tight Junctions Disruption in Allergic Rhinitis: Overview and Pathogenic Insights. Front Immunol 2021; 12:663626. [PMID: 34093555 PMCID: PMC8176953 DOI: 10.3389/fimmu.2021.663626] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Allergic rhinitis (AR) is a common disorder affecting up to 40% of the population worldwide and it usually persists throughout life. Nasal epithelial barrier constitutes the first line of defense against invasion of harmful pathogens or aeroallergens. Cell junctions comprising of tight junctions (TJs), adherens junctions, desmosomes and hemidesmosomes form the nasal epithelial barrier. Impairment of TJ molecules plays causative roles in the pathogenesis of AR. In this review, we describe and discuss the components of TJs and their disruption leading to development of AR, as well as regulation of TJs expression by epigenetic changes, neuro-immune interaction, epithelial-derived cytokines (thymic stromal lymphopoietin, IL-25 and IL-33), T helper 2 (Th2) cytokines (IL-4, IL-5, IL-6 and IL-13) and innate lymphoid cells. These growing evidence support the development of novel therapeutic approaches to restore nasal epithelial TJs expression in AR patients.
Collapse
Affiliation(s)
- Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences Malaysia, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Hern-Tze Tina Tan
- Department of Immunology, School of Medical Sciences Malaysia, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Norasnieda Md Shukri
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Otorhinolaryngology, Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Noor Suryani Mohd Ashari
- Department of Immunology, School of Medical Sciences Malaysia, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences Malaysia, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
18
|
Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer 2021; 20:52. [PMID: 33722265 PMCID: PMC7957288 DOI: 10.1186/s12943-021-01339-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
In vitro-transcribed messenger RNA-based therapeutics represent a relatively novel and highly efficient class of drugs. Several recently published studies emphasize the potential efficacy of mRNA vaccines in treating different types of malignant and infectious diseases where conventional vaccine strategies and platforms fail to elicit protective immune responses. mRNA vaccines have lately raised high interest as potent vaccines against SARS-CoV2. Direct application of mRNA or its electroporation into dendritic cells was shown to induce polyclonal CD4+ and CD8+ mediated antigen-specific T cell responses as well as the production of protective antibodies with the ability to eliminate transformed or infected cells. More importantly, the vaccine composition may include two or more mRNAs coding for different proteins or long peptides. This enables the induction of polyclonal immune responses against a broad variety of epitopes within the encoded antigens that are presented on various MHC complexes, thus avoiding the restriction to a certain HLA molecule or possible immune escape due to antigen-loss. The development and design of mRNA therapies was recently boosted by several critical innovations including the development of technologies for the production and delivery of high quality and stable mRNA. Several technical obstacles such as stability, delivery and immunogenicity were addressed in the past and gradually solved in the recent years.This review will summarize the most recent technological developments and application of mRNA vaccines in clinical trials and discusses the results, challenges and future directions with a special focus on the induced innate and adaptive immune responses.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Drug Delivery Systems
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Humans
- Immunity
- Immunotherapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Neoplasms/etiology
- Neoplasms/pathology
- Neoplasms/therapy
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Annkristin Heine
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Stefan Juranek
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Peter Brossart
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
19
|
Xu L, Tudor D, Bomsel M. The Protective HIV-1 Envelope gp41 Antigen P1 Acts as a Mucosal Adjuvant Stimulating the Innate Immunity. Front Immunol 2021; 11:599278. [PMID: 33613520 PMCID: PMC7886812 DOI: 10.3389/fimmu.2020.599278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
Mucosal nasal vaccine development, although ideal to protect from pathogens invading mucosally, is limited by the lack of specific adjuvant. We recently used P1, a conserved region of HIV-1 gp41-envelope glycoprotein, as efficient antigen in a prophylactic HIV-1 mucosal vaccine applied nasally. Herein, P1 immunomodulation properties were assessed on human nasal mucosal models by measuring induction of cytokine and chemokine production, intracellular signaling pathways, mucosal dendritic cell (DC) activation, and T cell proliferation. P1 adjuvant properties were evaluated by quantification of antigen-specific B cell responses against a model antigen in an in vitro immunization model. We now demonstrated that P1 has additional immunological properties. P1 initiates immune responses by inducing nasal epithelial cells to secrete the Th2-cytokine thymic stromal lymphopoietin (TSLP), a described mucosal adjuvant. Secreted TSLP activates, in turn, intracellular calcium flux and PAR-2-associated NFAT signaling pathway regulated by microRNA-4485. Thereafter, P1 induces mucosal dendritic cell maturation, secretion of TSLP in a TSLP-receptor (R)-dependent autocrine loop, but also IL-6, IL-10, IL-8, CCL20, CCL22, and MMP-9, and proliferation of CD4+ T cells. Finally, P1 acts as an adjuvant to stimulate antigen-specific B cell responses in vitro. Overall, P1 is a multi-functional domain with various immuno-modulatory properties. In addition to being a protective vaccine antigen for HIV prevention, P1 acts as adjuvant for other mucosal vaccines able to stimulate humoral and cellular antigen-specific responses.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, CNRS UMR 8104, Paris, France.,INSERM U1016, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
20
|
Nur Husna SM, Siti Sarah CO, Tan HTT, Md Shukri N, Mohd Ashari NS, Wong KK. Reduced occludin and claudin-7 expression is associated with urban locations and exposure to second-hand smoke in allergic rhinitis patients. Sci Rep 2021; 11:1245. [PMID: 33441633 PMCID: PMC7806883 DOI: 10.1038/s41598-020-79208-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/04/2020] [Indexed: 01/11/2023] Open
Abstract
The breakdown of nasal epithelial barrier occurs in allergic rhinitis (AR) patients. Impairment of cell junction molecules including tight junctions (TJs) and desmosomes plays causative roles in the pathogenesis of AR. In this study, we investigated the transcript expression levels of TJs including occludin (OCLN), claudin-3 and -7 (CLDN3 and CLDN7), desmoglein 3 (DSG3) and thymic stromal lymphopoietin (TSLP) in AR patients (n = 30) and non-allergic controls (n = 30). Nasal epithelial cells of non-allergic controls and AR patients were collected to examine their mRNA expression levels, and to correlate with clinico-demographical and environmental parameters. We demonstrated that the expression of OCLN (p = 0.009), CLDN3 (p = 0.032) or CLDN7 (p = 0.004) transcript was significantly lower in AR patients compared with non-allergic controls. No significant difference was observed in the expression of DSG3 (p = 0.750) or TSLP (p = 0.991) transcript in AR patients compared with non-allergic controls. A significant association between urban locations and lower OCLN expression (p = 0.010), or exposure to second-hand smoke with lower CLDN7 expression (p = 0.042) was found in AR patients. Interestingly, none of the TJs expression was significantly associated with having pets, frequency of changing bedsheet and housekeeping. These results suggest that defective nasal epithelial barrier in AR patients is attributable to reduced expression of OCLN and CLDN7 associated with urban locations and exposure to second-hand smoke, supporting recent findings that air pollution represents one of the causes of AR.
Collapse
Affiliation(s)
- Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Che Othman Siti Sarah
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Hern-Tze Tina Tan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.,Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Norasnieda Md Shukri
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan, Malaysia.,Department of Otorhinolaryngology, Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Noor Suryani Mohd Ashari
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.,Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia. .,Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
21
|
Jarillo-Luna RA, Gutiérrez-Meza JM, Franco-Vadillo A, Rivera-Aguilar V, Toledo-Blas M, Cárdenas-Jaramillo LM. Restraint stress increased the permeability of the nasal epithelium in BALB/c mice. Psychoneuroendocrinology 2020; 117:104700. [PMID: 32387874 DOI: 10.1016/j.psyneuen.2020.104700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
Abstract
Stress seems to affect the onset and evolution of diverse illnesses with an inflammatory substrate. Whether physiological or psychological, stress increases epithelial permeability. In the mucosa of the nasal cavity and upper respiratory tract, the epithelial barrier is regulated in large part by bicellular and tricellular tight junctions (bTJs and tTJs, respectively). The junctional complexes are composed of multiple membrane proteins: claudins, tight-junction-associated MARVEL proteins (TAMs: occludin, tricellulin and marvelD3), and scaffolding proteins such as ZO-1, -2 and -3. The aim of the present study was to examine the possible modification of nasal permeability and TJ protein expression in a mouse model of acute psychological stress (a 4-h immobility session). Serum corticosterone was quantified from plasma samples to verify the onset of stress. Evaluation was made of the relative concentration of key proteins in nasal mucosa by using Western blot, and of changes in permeability by analyzing FITC-Dextran leakage from the nose to the blood. Compared to the control, the stressed group showed a greater epithelial permeability to FITC-Dextran, a reduced expression of occludin and tricellulin, and an elevated expression of ZO-2 and claudin-4. This evidence points to increased paracellular flow of large molecules through an altered structure of tTJs. Apparently, the structure of bTJs remained unchanged. The current findings could provide insights into the relation of stress to the onset/exacerbation of respiratory infections and/or allergies.
Collapse
Affiliation(s)
- Rosa Adriana Jarillo-Luna
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico; Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico.
| | - Juan Manuel Gutiérrez-Meza
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico; Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico
| | - Antonio Franco-Vadillo
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico; Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico
| | - Victor Rivera-Aguilar
- Departamento de Microbiología, UBIPRO, FES-Iztacala, UNAM, Avenida de los Barrios s/n, CP. 54090, Tlalnepantla Edo. de México, Mexico
| | - Mireille Toledo-Blas
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP.11340, Ciudad de México, Mexico
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP. 11340, Ciudad de México, Mexico
| |
Collapse
|
22
|
Hotta O, Oda T. The epipharynx-kidney axis triggers glomerular vasculitis in immunoglobulin A nephropathy. Immunol Res 2020; 67:304-309. [PMID: 31745821 DOI: 10.1007/s12026-019-09099-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Macroscopic hematuria concomitant with acute pharyngitis is a characteristic feature of immunoglobulin A nephropathy (IgAN). Although the underlying mechanism of worsening hematuria has not been fully elucidated, activation of the innate immune system of nasopharynx-associated lymphoid tissue is thought to play an important role. The epipharynx is an immunologically activated site even under normal conditions, and enhanced activation of innate immunity is likely to occur in response to airborne infection. As latent but significant epipharyngitis presents in most IgAN patients, it is plausible that acute pharyngitis due to airway infection may contribute as a trigger of the epipharyngeal innate immune system, which is already upregulated in the chronically inflamed environment. The aim of this review was to discuss the mechanism of epipharynx-kidney axis involvement in glomerular vasculitis responsible for the worsening of hematuria in IgAN.
Collapse
Affiliation(s)
- Osamu Hotta
- Division of Internal Medicine, Hotta Osamu Clinic, Sendai, Japan.,Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takashi Oda
- Department of Nephrology and Blood Purification, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan.
| |
Collapse
|
23
|
Lien K, Mayer W, Herrera R, Rosbe K, Tugizov SM. HIV-1 proteins gp120 and tat induce the epithelial-mesenchymal transition in oral and genital mucosal epithelial cells. PLoS One 2019; 14:e0226343. [PMID: 31869348 PMCID: PMC6927651 DOI: 10.1371/journal.pone.0226343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
The oral, cervical, and genital mucosa, covered by stratified squamous epithelia with polarized organization and strong tight and adherens junctions, play a critical role in preventing transmission of viral pathogens, including human immunodeficiency virus (HIV). HIV-1 interaction with mucosal epithelial cells may depolarize epithelia and disrupt their tight and adherens junctions; however, the molecular mechanism of HIV-induced epithelial disruption has not been completely understood. We showed that prolonged interaction of cell-free HIV-1 virions, and viral envelope and transactivator proteins gp120 and tat, respectively, with tonsil, cervical, and foreskin epithelial cells induces an epithelial-mesenchymal transition (EMT). EMT is an epigenetic process leading to the disruption of mucosal epithelia and allowing the paracellular spread of viral and other pathogens. Interaction of cell-free virions and gp120 and tat proteins with epithelial cells substantially reduced E-cadherin expression and activated vimentin and N-cadherin expression, which are well-known mesenchymal markers. HIV gp120- and tat-induced EMT was mediated by SMAD2 phosphorylation and activation of transcription factors Slug, Snail, Twist1 and ZEB1. Activation of TGF-β and MAPK signaling by gp120, tat, and cell-free HIV virions revealed the critical roles of these signaling pathways in EMT induction. gp120- and tat-induced EMT cells were highly migratory via collagen-coated membranes, which is one of the main features of mesenchymal cells. Inhibitors of TGF-β1 and MAPK signaling reduced HIV-induced EMT, suggesting that inactivation of these signaling pathways may restore the normal barrier function of mucosal epithelia.
Collapse
Affiliation(s)
- Kathy Lien
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Wasima Mayer
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Rossana Herrera
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, CA, United States of America
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California–San Francisco, San Francisco, CA, United States of America
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Xiong T, Du Y, Fu Z, Geng G. MicroRNA-145-5p promotes asthma pathogenesis by inhibiting kinesin family member 3A expression in mouse airway epithelial cells. J Int Med Res 2019; 47:3307-3319. [PMID: 31264490 PMCID: PMC6683905 DOI: 10.1177/0300060518789819] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022] Open
Abstract
Background MicroRNA (miR)-145-5p is a respiratory disease biomarker, and is upregulated in asthma pathogenesis. However, its underlying mechanisms were unclear, so were investigated in the present study. Methods A mouse model of asthma was established by challenge with house dust mite (HDM) extract. An miR-145-5p antagomir was administered nasally and expression of kinesin family member 3A (KIF3A) and miR-145-5p was measured by immunohistochemistry, PCR, and western blot. Eosinophils in lavage fluid and levels of interleukin (IL)-4, IL-5, and IL-13 were quantified. Airway hyper-responsiveness was measured and KIF3A expression was tested following miR-145-5p overexpression or interference in the 16HBE14o- airway epithelial cell line. The effects of miR-145-5p and KIF3A co-transfection in 16HBE14o- cells were examined on cytokine release, epithelial barrier dysfunction, and epithelial repair in HDM-exposed cells. Results KIF3A downregulation and miR-145-5p upregulation were noted in airway epithelial cells of HDM-exposed asthmatic mice, while miR-145-5p antagonism significantly improved symptoms. MiR-145-5p promoted the HDM-induced release of chemokines and inflammatory factors and epithelial barrier dysfunction, and suppressed epithelial repair by directly targeting KIF3A. Conclusion miR-145-5p influenced HDM-induced epithelial cytokine release and epithelial barrier dysfunction via regulating KIF3 expression. It also affected epithelial repair, exacerbating the HDM-induced T helper 2-type immune response in mice.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Yongchuan District, Chongqing, China
| | - Ying Du
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Fu
- Department of Respiration, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Gang Geng
- Department of Respiration, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
25
|
|
26
|
Kumar S, Jeong Y, Ashraf MU, Bae YS. Dendritic Cell-Mediated Th2 Immunity and Immune Disorders. Int J Mol Sci 2019; 20:ijms20092159. [PMID: 31052382 PMCID: PMC6539046 DOI: 10.3390/ijms20092159] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells that recognize and present antigens to naïve T cells to induce antigen-specific adaptive immunity. Among the T-cell subsets, T helper type 2 (Th2) cells produce the humoral immune responses required for protection against helminthic disease by activating B cells. DCs induce a Th2 immune response at a certain immune environment. Basophil, eosinophil, mast cells, and type 2 innate lymphoid cells also induce Th2 immunity. However, in the case of DCs, controversy remains regarding which subsets of DCs induce Th2 immunity, which genes in DCs are directly or indirectly involved in inducing Th2 immunity, and the detailed mechanisms underlying induction, regulation, or maintenance of the DC-mediated Th2 immunity against allergic environments and parasite infection. A recent study has shown that a genetic defect in DCs causes an enhanced Th2 immunity leading to severe atopic dermatitis. We summarize the Th2 immune-inducing DC subsets, the genetic and environmental factors involved in DC-mediated Th2 immunity, and current therapeutic approaches for Th2-mediated immune disorders. This review is to provide an improved understanding of DC-mediated Th2 immunity and Th1/Th2 immune balancing, leading to control over their adverse consequences.
Collapse
Affiliation(s)
- Sunil Kumar
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yideul Jeong
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Muhammad Umer Ashraf
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yong-Soo Bae
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
27
|
Zhang J, Chen J, Robinson C. Cellular and Molecular Events in the Airway Epithelium Defining the Interaction Between House Dust Mite Group 1 Allergens and Innate Defences. Int J Mol Sci 2018; 19:E3549. [PMID: 30423826 PMCID: PMC6274810 DOI: 10.3390/ijms19113549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
Serodominant group 1 allergens of house dust mites (HDMs) are cysteine protease digestive enzymes. By increasing the detection of any allergen by dendritic antigen presenting cells, upregulating inflammatory signalling molecules, and activating cells crucial to the transition from innate to acquired immune responses, the proteolytic activity of these HDM allergens also underlies their behaviour as inhalant allergens. The significance of this property is underlined by the attenuation of allergic responses to HDMs by novel inhibitors in experimental models. The group 1 HDM allergens act as prothrombinases, enabling them to operate the canonical stimulation of protease activated receptors 1 and 4. This leads to the ligation of Toll-like receptor 4, which is an indispensable component in HDM allergy development, and reactive oxidant-regulated gene expression. Intermediate steps involve epidermal growth factor receptor ligation, activation of a disintegrin and metalloproteases, and the opening of pannexons. Elements of this transduction pathway are shared with downstream signalling from biosensors which bind viral RNA, suggesting a mechanistic linkage between allergens and respiratory viruses in disease exacerbations. This review describes recent progress in the characterisation of an arterial route which links innate responses to inhaled allergens to events underpinning the progression of allergy to unrelated allergens.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Chen
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| | - Clive Robinson
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| |
Collapse
|
28
|
Zhang J, Chen J, Zuo J, Newton GK, Stewart MR, Perrior TR, Garrod DR, Robinson C. Allergen Delivery Inhibitors: Characterisation of Potent and Selective Inhibitors of Der p 1 and Their Attenuation of Airway Responses to House Dust Mite Allergens. Int J Mol Sci 2018; 19:E3166. [PMID: 30326568 PMCID: PMC6214017 DOI: 10.3390/ijms19103166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Group 1 allergens of house dust mites (HDM) are globally significant triggers of allergic disease. They are considered as initiator allergens because their protease activity enables the development of allergy to a spectrum of unrelated allergens from various sources. This initiator-perpetuator function identifies Group 1 HDM allergens as attractive drug design targets for the first small-molecule approach directed towards a non-human, root cause trigger of allergic disease. The purpose of this study was to: (i) identify exemplar inhibitors of these allergens using Der p 1 as a design template, and (ii) characterise the pharmacological profiles of these compounds using in vitro and in vivo models relevant to allergy. Potent inhibitors representing four different chemotypes and differentiated by mechanism of action were investigated. These compounds prevented the ab initio development of allergy to the full spectrum of HDM allergens and in established allergy they inhibited the recruitment of inflammatory cells and blunted acute allergic bronchoconstriction following aerosol challenge with the full HDM allergen repertoire. Collectively, the data obtained in these experiments demonstrate that the selective pharmacological targeting of Der p 1 achieves an attractive range of benefits against exposure to all HDM allergens, consistent with the initiator-perpetuator function of this allergen.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Chen
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Jie Zuo
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
- BOE Technology Center, BOE Technology Group Co., Ltd., Beijing 100176, China.
| | - Gary K Newton
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
| | - Mark R Stewart
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
| | - Trevor R Perrior
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
| | - David R Garrod
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Clive Robinson
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
29
|
Zhang J, Chen J, Newton GK, Perrior TR, Robinson C. Allergen Delivery Inhibitors: A Rationale for Targeting Sentinel Innate Immune Signaling of Group 1 House Dust Mite Allergens through Structure-Based Protease Inhibitor Design. Mol Pharmacol 2018; 94:1007-1030. [PMID: 29976563 PMCID: PMC6064784 DOI: 10.1124/mol.118.112730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
Diverse evidence from epidemiologic surveys and investigations into the molecular basis of allergenicity have revealed that a small cadre of "initiator" allergens promote the development of allergic diseases, such as asthma, allergic rhinitis, and atopic dermatitis. Pre-eminent among these initiators are the group 1 allergens from house dust mites (HDM). In mites, group 1 allergens function as cysteine peptidase digestive enzymes to which humans are exposed by inhalation of HDM fecal pellets. Their protease nature confers the ability to activate high gain signaling mechanisms which promote innate immune responses, leading to the persistence of allergic sensitization. An important feature of this process is that the initiator drives responses both to itself and to unrelated allergens lacking these properties through a process of collateral priming. The clinical significance of group 1 HDM allergens in disease, their serodominance as allergens, and their IgE-independent bioactivities in innate immunity make these allergens interesting therapeutic targets in the design of new small-molecule interventions in allergic disease. The attraction of this new approach is that it offers a powerful, root-cause-level intervention from which beneficial effects can be anticipated by interference in a wide range of effector pathways associated with these complex diseases. This review addresses the general background to HDM allergens and the validation of group 1 as putative targets. We then discuss structure-based drug design of the first-in-class representatives of allergen delivery inhibitors aimed at neutralizing the proteolytic effects of HDM group 1 allergens, which are essential to the development and maintenance of allergic diseases.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Jie Chen
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Gary K Newton
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Trevor R Perrior
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Clive Robinson
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| |
Collapse
|
30
|
Cho HJ, Kim CH. Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis. BMB Rep 2018; 51:59-64. [PMID: 29366441 PMCID: PMC5836558 DOI: 10.5483/bmbrep.2018.51.2.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 12/21/2022] Open
Abstract
The airway epithelium is the first place, where a defense mechanism is initiated against environmental stimuli. Mucociliary transport (MCT), which is the defense mechanism of the airway and the role of airway epithelium as mechanical barriers are essential in innate immunity. To maintain normal physiologic function, normal oxygenation is critical for the production of energy for optimal cellular functions. Several pathologic conditions are associated with a decrease in oxygen tension in airway epithelium and chronic sinusitis is one of the airway diseases, which is associated with the hypoxic condition, a potent inflammatory stimulant. We have observed the overexpression of the hypoxia-inducible factor 1 (HIF-1), an essential factor for oxygen homeostasis, in the epithelium of sinus mucosa in sinusitis patients. In a series of previous reports, we have found hypoxia-induced mucus hyperproduction, especially by MUC5AC hyperproduction, disruption of epithelial barrier function by the production of VEGF, and down-regulation of junctional proteins such as ZO-1 and E-cadherin. Furthermore, hypoxia-induced inflammation by HMGB1 translocation into the cytoplasm results in the release of IL-8 through a ROS-dependent mechanism in upper airway epithelium. In this mini-review, we briefly introduce and summarize current progress in the pathogenesis of sinusitis related to hypoxia. The investigation of hypoxia-related pathophysiology in airway epithelium will suggest new insights on airway inflammatory diseases, such as rhinosinusitis for clinical application and drug development.
Collapse
Affiliation(s)
- Hyung-Ju Cho
- Department of Otorhinolaryngology, and The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, and The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
31
|
Fukuoka A, Yoshimoto T. Barrier dysfunction in the nasal allergy. Allergol Int 2018; 67:18-23. [PMID: 29150353 DOI: 10.1016/j.alit.2017.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells form the first physiological barrier against invasion by pathogens and the infiltration of allergens. Tight junctions (TJ), a cell-cell junctional complex located on the apical side of epithelial cells, have a critical role in the maintenance of epithelial barrier function. Impaired TJ structures are observed in patients with asthma, atopic dermatitis and nasal allergy; therefore, the dysfunction of epithelial barriers might be involved in the initiation or progression of allergic diseases. Protease-containing allergens and environmental pollutants enhance paracellular transport in epithelial cells through disruption of epithelial barrier function. This suggests that the disruption of TJ leads to the promotion of allergen delivery into the subepithelia, resulting in the progression of allergic diseases. Thus, protection of the epithelial barrier function might prevent or inhibit the development or exacerbation of allergic diseases. Recently, we reported that diesel exhaust particles (DEP), the main component of particulate patter 2.5, exacerbated allergic rhinitis (AR) in a mouse model through TJ disruption. In addition, we revealed that the oxidative stress-mediated pathway is involved in the effects caused by DEP and that nasal treatment with a reactive oxygen species (ROS) scavenger suppressed DEP-induced TJ disruption and exacerbation of AR. In this review, we focus on the relationship between TJ disruption and allergic disease. Furthermore, we discuss our recent findings regarding TJ disruption and the exacerbation of AR.
Collapse
|
32
|
Interplay between dengue virus and Toll-like receptors, RIG-I/MDA5 and microRNAs: Implications for pathogenesis. Antiviral Res 2017; 147:47-57. [DOI: 10.1016/j.antiviral.2017.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
|
33
|
Prakoeswa CRS, Herwanto N, Prameswari R, Astari L, Sawitri S, Hidayati AN, Indramaya DM, Kusumowidagdo ER, Surono IS. Lactobacillus plantarum IS-10506 supplementation reduced SCORAD in children with atopic dermatitis. Benef Microbes 2017; 8:833-840. [PMID: 29022387 DOI: 10.3920/bm2017.0011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lactobacillus plantarum IS-10506 is a novel probiotic isolated from dadih, an Indonesian traditional fermented buffalo milk. It's in vitro and in vivo probiotic properties have been assessed. Probiotic function has been shown in vivo by the suppression of allergic reactions in BALB/c mice through the action of T-regulatory cells cytokines by balancing Th1 and Th2 immune response. Atopic dermatitis (AD) is a chronic recurrent inflammatory skin disease characterised by the imbalance of Th1 and Th2. The aim of the study was to assess the probiotic function of L. plantarum IS-10506 in children with mild and moderate AD. A randomised double-blind placebo-controlled trial comparing microencapsulated L. plantarum IS-10506 (1010 cfu/day) and placebo (skim milk-Avicel) twice daily for 12 weeks was conducted in an outpatient clinic on children with mild and moderate AD. The trial included 22 AD children divided into intervention and control groups of n=12 and n=10 patients, respectively. Scoring Atopic Dermatitis Index (SCORAD) and serum immunoglobulin E (IgE), interleukin (IL)-4, interferon gamma (IFN-γ), forkhead box P3 (Foxp3+)/IL-10, and IL-17 levels were assessed. Demographic and baseline characteristics were not significantly different between the two groups. SCORAD and levels of IL-4, IFN-γ, and IL-17 were significantly lower in the probiotic group than those in the placebo group, while the IgE levels were not significantly changed. The ratio of Foxp3+ to IL-10 was significantly higher in the probiotic group than that in placebo group. Supplementation with the probiotic L. plantarum IS-10506 offered a potential treatment for children with AD. Further long-term studies with a larger sample size are required to confirm the therapeutic efficacy of L. plantarum IS-10506 in AD.
Collapse
Affiliation(s)
- C R S Prakoeswa
- 1 Dermatology and Venereology Department, Faculty of Medicine, Universitas Airlangga, Dr Soetomo Teaching Hospital, Prof Dr. Moestopo No.47, 60131 Surabaya, East Java, Indonesia
| | - N Herwanto
- 1 Dermatology and Venereology Department, Faculty of Medicine, Universitas Airlangga, Dr Soetomo Teaching Hospital, Prof Dr. Moestopo No.47, 60131 Surabaya, East Java, Indonesia
| | - R Prameswari
- 1 Dermatology and Venereology Department, Faculty of Medicine, Universitas Airlangga, Dr Soetomo Teaching Hospital, Prof Dr. Moestopo No.47, 60131 Surabaya, East Java, Indonesia
| | - L Astari
- 1 Dermatology and Venereology Department, Faculty of Medicine, Universitas Airlangga, Dr Soetomo Teaching Hospital, Prof Dr. Moestopo No.47, 60131 Surabaya, East Java, Indonesia
| | - S Sawitri
- 1 Dermatology and Venereology Department, Faculty of Medicine, Universitas Airlangga, Dr Soetomo Teaching Hospital, Prof Dr. Moestopo No.47, 60131 Surabaya, East Java, Indonesia
| | - A N Hidayati
- 1 Dermatology and Venereology Department, Faculty of Medicine, Universitas Airlangga, Dr Soetomo Teaching Hospital, Prof Dr. Moestopo No.47, 60131 Surabaya, East Java, Indonesia
| | - D M Indramaya
- 1 Dermatology and Venereology Department, Faculty of Medicine, Universitas Airlangga, Dr Soetomo Teaching Hospital, Prof Dr. Moestopo No.47, 60131 Surabaya, East Java, Indonesia
| | - E R Kusumowidagdo
- 2 Clinical Pathology Department, Faculty of Medicine, Universitas Airlangga, Dr Soetomo Teaching Hospital, Surabaya, East Java, Indonesia
| | - I S Surono
- 3 Food Technology Department, Faculty of Engineering, Bina Nusantara University, Alam Sutera, Serpong, Tangerang, Indonesia
| |
Collapse
|
34
|
Bernocchi B, Carpentier R, Betbeder D. Nasal nanovaccines. Int J Pharm 2017; 530:128-138. [PMID: 28698066 DOI: 10.1016/j.ijpharm.2017.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023]
Abstract
Nasal administration of vaccines is convenient for the potential stimulation of mucosal and systemic immune protection. Moreover the easy accessibility of the intranasal route renders it optimal for pandemic vaccination. Nanoparticles have been identified as ideal delivery systems and adjuvants for vaccine application. Heterogeneous protocols have been used for animal studies. This complicates the understanding of the formulation influence on the immune response and the comparison of the different nanoparticles approaches developed. Moreover anatomical and immunological differences between rodents and humans provide an additional hurdle in the rational development of nasal nanovaccines. This review will give a comprehensive expertise of the state of the art in nasal nanovaccines in animals and humans focusing on the nanomaterial used.
Collapse
Affiliation(s)
- B Bernocchi
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France
| | - R Carpentier
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France.
| | - D Betbeder
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France; University of Artois, 62000 Arras, France
| |
Collapse
|
35
|
Abstract
ABSTRACT
The aim of this review is to provide a coherent framework for understanding dendritic cells (DCs). It has seven sections. The introduction provides an overview of the immune system and essential concepts, particularly for the nonspecialist reader. Next, the “History” section outlines the early evolution of ideas about DCs and highlights some sources of confusion that still exist today. The “Lineages” section then focuses on five different populations of DCs: two subsets of “classical” DCs, plasmacytoid DCs, monocyte-derived DCs, and Langerhans cells. It highlights some cellular and molecular specializations of each, and also notes other DC subsets that have been proposed. The following “Tissues” section discusses the distribution and behavior of different DC subsets within nonlymphoid and secondary lymphoid tissues that are connected by DC migration pathways between them. In the “Tolerance” section, the role of DCs in central and peripheral tolerance is considered, including their ability to drive the differentiation of different populations of regulatory T cells. In contrast, the “Immunity” section considers the roles of DCs in sensing of infection and tissue damage, the initiation of primary responses, the T-cell effector phase, and the induction of immunological memory. The concluding section provides some speculative ideas about the evolution of DCs. It also revisits earlier concepts of generation of diversity and clonal selection in terms of DCs driving the evolution of T-cell responses. Throughout, this review highlights certain areas of uncertainty and suggests some avenues for future investigation.
Collapse
|
36
|
The role of tight junctions in skin barrier function and dermal absorption. J Control Release 2016; 242:105-118. [DOI: 10.1016/j.jconrel.2016.08.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
|
37
|
Affiliation(s)
- A. O. Eifan
- Allergy and Clinical Immunology; Faculty of Medicine; National Heart and Lung Institute; Imperial College London; London UK
| | - S. R. Durham
- Allergy and Clinical Immunology; Faculty of Medicine; National Heart and Lung Institute; Imperial College London; London UK
| |
Collapse
|
38
|
Mao XL, Zhu F, Pan ZH, Wu GM, Zhu HY. Revisiting the structural basis and energetic landscape of susceptibility difference between HLA isotypes to allergic rhinitis. Comput Biol Chem 2016; 64:210-216. [PMID: 27433817 DOI: 10.1016/j.compbiolchem.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/08/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
The human leukocyte antigen class II (HLA II) molecules are implicated in the immunopathogenesis of allergic rhinitis (AR). The HLA II contains three allelic isotypes HLA-DR, -DQ, and -QP that exhibit considerably different susceptibility to AR. Here, we investigated the structural basis and energetic landscape of the susceptibility difference between the three HLA II isotypes to AR by combining computational analysis and experimental assay. Multiple sequence alignment revealed a low conservation among the three subtypes with sequence identity of ∼10% between them, suggesting that the peptide repertoires presented by HLA-DR, -DP and -DQ are not overlapped to each other, and they may be involved in different immune functions and dysfunctions. Structural analysis imparted that the antigenic peptides are rooted on the peptide-binding groove of HLA molecules and hold in a PPII-like helical conformation. Subsequently, the interaction behavior of 17 AR allergen-derived peptides with HLA-DR, -DP and -DQ was investigated using a statistics-based quantitative structure-activity relationship (QSAR) predictor. It was found a significant difference between the binding capabilities of these antigenic peptides to HLA-DR and to HLA-DP/-DQ; the former showed a generally higher affinity than the latter with p-value of 0.02 obtained from 2-tailed Student's t-test. The computational findings were then confirmed by HLA II-peptide stability assay, which demonstrated that the AR allergen-derived peptides have a high in vitro selectivity for HLA-DR over HLA-DP/-DQ. Thus, the HLA-DR isotype, rather than HLA-DP and -DQ, is expected to associate with the pathological process of AR.
Collapse
Affiliation(s)
- Xin-Li Mao
- Department of Otorhinolaryngology (E.N.T.), Taizhou Hospital of Zhejiang Provience, Linhai 317000, China
| | - Feng Zhu
- Department of Otorhinolaryngology (E.N.T.), Taizhou Hospital of Zhejiang Provience, Linhai 317000, China
| | - Zhao-Hu Pan
- Department of Otorhinolaryngology (E.N.T.), Taizhou Hospital of Zhejiang Provience, Linhai 317000, China
| | - Guo-Min Wu
- Department of Otorhinolaryngology (E.N.T.), Taizhou Hospital of Zhejiang Provience, Linhai 317000, China
| | - Hong-Yuan Zhu
- Department of Otorhinolaryngology (E.N.T.), Taizhou Hospital of Zhejiang Provience, Linhai 317000, China.
| |
Collapse
|
39
|
Papazian D, Würtzen PA, Hansen SWK. Polarized Airway Epithelial Models for Immunological Co-Culture Studies. Int Arch Allergy Immunol 2016; 170:1-21. [PMID: 27240620 DOI: 10.1159/000445833] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial cells line all cavities and surfaces throughout the body and play a substantial role in maintaining tissue homeostasis. Asthma and other atopic diseases are increasing worldwide and allergic disorders are hypothesized to be a consequence of a combination of dysregulation of the epithelial response towards environmental antigens and genetic susceptibility, resulting in inflammation and T cell-derived immune responses. In vivo animal models have long been used to study immune homeostasis of the airways but are limited by species restriction and lack of exposure to a natural environment of both potential allergens and microflora. Limitations of these models prompt a need to develop new human cell-based in vitro models. A variety of co-culture systems for modelling the respiratory epithelium exist and are available to the scientific community. The models have become increasingly sophisticated and specific care needs to be taken with regard to cell types, culture medium and culture models, depending on the aim of the study. Although great strides have been made, there is still a need for further optimization, and optimally also for standardization, in order for in vitro co-culture models to become powerful tools in the discovery of key molecules dictating immunity and/or tolerance, and for understanding the complex interplay that takes place between mucosa, airway epithelium and resident or infiltrating immune cells. This review focuses on current knowledge and the advantages and limitations of the different cell types and culture methods used in co-culture models of the human airways.
Collapse
Affiliation(s)
- Dick Papazian
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
40
|
Papazian D, Hansen S, Würtzen PA. Airway responses towards allergens - from the airway epithelium to T cells. Clin Exp Allergy 2016; 45:1268-87. [PMID: 25394747 DOI: 10.1111/cea.12451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The prevalence of allergic diseases such as allergic rhinitis is increasing, affecting up to 30% of the human population worldwide. Allergic sensitization arises from complex interactions between environmental exposures and genetic susceptibility, resulting in inflammatory T helper 2 (Th2) cell-derived immune responses towards environmental allergens. Emerging evidence now suggests that an epithelial dysfunction, coupled with inherent properties of environmental allergens, can be responsible for the inflammatory responses towards allergens. Several epithelial-derived cytokines, such as thymic stromal lymphopoietin (TSLP), IL-25 and IL-33, influence tissue-resident dendritic cells (DCs) as well as Th2 effector cells. Exposure to environmental allergens does not elicit Th2 inflammatory responses or any clinical symptoms in nonatopic individuals, and recent findings suggest that a nondamaged, healthy epithelium lowers the DCs' ability to induce inflammatory T-cell responses towards allergens. The purpose of this review was to summarize the current knowledge on which signals from the airway epithelium, from first contact with inhaled allergens all the way to the ensuing Th2-cell responses, influence the pathology of allergic diseases.
Collapse
Affiliation(s)
- D Papazian
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,ALK, Hørsholm, Denmark
| | - S Hansen
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
41
|
Abe A, Takano K, Kojima T, Nomura K, Kakuki T, Kaneko Y, Yamamoto M, Takahashi H, Himi T. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium. J Mol Histol 2016; 47:353-63. [PMID: 26956365 DOI: 10.1007/s10735-016-9667-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/03/2016] [Indexed: 02/07/2023]
Abstract
Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.
Collapse
Affiliation(s)
- Ayumi Abe
- Department of Otolaryngology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, 060-8543, Japan.
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuaki Nomura
- Department of Otolaryngology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, 060-8543, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yakuto Kaneko
- Department of Otolaryngology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, 060-8543, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Motohisa Yamamoto
- Department of the Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of the Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, 060-8543, Japan
| |
Collapse
|
42
|
Tugizov S. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease. Tissue Barriers 2016; 4:e1159276. [PMID: 27583187 DOI: 10.1080/21688370.2016.1159276] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/20/2022] Open
Abstract
Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Orofacial Science, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Steelant B, Farré R, Wawrzyniak P, Belmans J, Dekimpe E, Vanheel H, Van Gerven L, Kortekaas Krohn I, Bullens DMA, Ceuppens JL, Akdis CA, Boeckxstaens G, Seys SF, Hellings PW. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J Allergy Clin Immunol 2016; 137:1043-1053.e5. [PMID: 26846377 DOI: 10.1016/j.jaci.2015.10.050] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/28/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tight junction (TJ) defects have recently been associated with asthma and chronic rhinosinusitis. The expression, function, and regulation of nasal epithelial TJs remain unknown in patients with allergic rhinitis (AR). OBJECTIVE We investigated the expression, function, and regulation of TJs in the nasal epithelium of patients with house dust mite (HDM)-induced AR and in an HDM-induced murine model of allergic airway disease. METHODS Air-liquid interface cultures of primary nasal epithelial cells of control subjects and patients with HDM-induced AR were used for measuring transepithelial resistance and passage to fluorescein isothiocyanate-dextran 4 kDa (FD4). Ex vivo transtissue resistance and FD4 permeability of nasal mucosal explants were measured. TJ expression was evaluated by using real-time quantitative PCR and immunofluorescence. In addition, the effects of IL-4, IFN-γ, and fluticasone propionate (FP) on nasal epithelial cells were investigated in vitro. An HDM murine model was used to study the effects of allergic inflammation and FP treatment on transmucosal passage of FD4 in vivo. RESULTS A decreased resistance in vitro and ex vivo was found in patients with HDM-induced AR, with increased FD4 permeability and reduced occludin and zonula occludens-1 expression. AR symptoms correlated inversely with resistance in patients with HDM-induced AR. In vitro IL-4 decreased transepithelial resistance and increased FD4 permeability, whereas IFN-γ had no effect. FP prevented IL-4-induced barrier dysfunction in vitro. In an HDM murine model FP prevented the allergen-induced increased mucosal permeability. CONCLUSION We found impaired nasal epithelial barrier function in patients with HDM-induced AR, with lower occludin and zonula occludens-1 expression. IL-4 disrupted epithelial integrity in vitro, and FP restored barrier function. Better understanding of nasal barrier regulation might lead to a better understanding and treatment of AR.
Collapse
Affiliation(s)
- Brecht Steelant
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research in Gastro Intestinal Disorders, KU Leuven, Leuven, Belgium
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jochen Belmans
- Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Emily Dekimpe
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hanne Vanheel
- Translational Research in Gastro Intestinal Disorders, KU Leuven, Leuven, Belgium
| | - Laura Van Gerven
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Inge Kortekaas Krohn
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Dominique M A Bullens
- Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Jan L Ceuppens
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Guy Boeckxstaens
- Translational Research in Gastro Intestinal Disorders, KU Leuven, Leuven, Belgium
| | - Sven F Seys
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Peter W Hellings
- Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Otorhinolaryngology, University Hospitals Ghent, Ghent, Belgium; Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Suzuki H, Koizumi H, Ikezaki S, Tabata T, Ohkubo JI, Kitamura T, Hohchi N. Electrical Impedance and Expression of Tight Junction Components of the Nasal Turbinate and Polyp. ORL J Otorhinolaryngol Relat Spec 2015; 78:16-25. [PMID: 26633876 DOI: 10.1159/000442024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022]
Abstract
PURPOSE We investigated the electrical impedance and expression of tight junction components of the turbinate mucosa, nasal polyp, and normal skin. PROCEDURES The inferior turbinate and nasal polyp of patients with chronic rhinosinusitis and the postauricular skin of patients with otitis media were examined. Electrical impedance was measured in vivo using a tissue conductance meter. Expressions of claudin-1 and tricellulin were examined by fluorescence immunohistochemistry and quantitative RT-PCR. RESULTS Electrical impedance was higher in the skin than in the turbinate and polyp, but did not differ between the turbinate and polyp. Immunoreactivities for claudin-1 and tricellulin were seen in the epithelial/epidermal layer. Expression of claudin-1 was higher in the skin than in the turbinate and polyp. The polyp tended to show higher expression of claudin-1 but showed lower expression of tricellulin than the turbinate. The ratio of claudin-1 to tricellulin was highest in the skin and lowest in the turbinate. The correlation between expressions of the two tight junction components was strongly positive in the skin (r = 0.964) and negative (r = -0.527) in the turbinate and polyp. CONCLUSIONS These results suggest that the roles of claudin-1 and tricellulin in barrier function may be complementary, and may thereby maintain a constant level of permeability of the mucosal tissues.
Collapse
Affiliation(s)
| | - Hiroki Koizumi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Phenotype and function of nasal dendritic cells. Mucosal Immunol 2015; 8:1083-98. [PMID: 25669151 PMCID: PMC4532662 DOI: 10.1038/mi.2014.135] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/25/2014] [Indexed: 02/04/2023]
Abstract
Intranasal (i.n.) vaccination generates immunity across local, regional, and distant sites. However, nasal dendritic cells (DCs), pivotal for the induction of i.n. vaccine-induced immune responses, have not been studied in detail. Here, by using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of "classical" DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were Fms-related tyrosine 3 kinase ligand responsive and displayed unique phenotypic and functional characteristics, including the ability to present antigen, induce an allogeneic T-cell response, and migrate in response to lipopolysaccharide or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1(+) DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1(+) and BDCA-3(hi) DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic, and functional properties of nasal DCs, and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis.
Collapse
|
46
|
Papazian D, Wagtmann VR, Hansen S, Würtzen PA. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro. Clin Exp Immunol 2015; 181:207-18. [PMID: 25707463 PMCID: PMC4516436 DOI: 10.1111/cei.12611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 01/29/2023] Open
Abstract
Airway epithelial cells (AECs) form a polarized barrier along the respiratory tract. They are the first point of contact with airborne antigens and are able to instruct resident immune cells to mount appropriate immune responses by either soluble or contact-dependent mechanisms. We hypothesize that a healthy, polarized epithelial cell layer inhibits inflammatory responses towards allergens to uphold homeostasis. Using an in-vitro co-culture model of the airway epithelium, where a polarized cell layer of bronchial epithelial cells can interact with dendritic cells (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass and birch pollen. Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation significantly of Bet v 1-specific T cell lines as well as decrease interleukin (IL)-5 and IL-13 production, whereas inhibition of Phl p 5-specific T cells varied between different donors. Stimulating autologous CD4(+) T cells from allergic patients with AEC-imprinted DCs also inhibited proliferation significantly and decreased production of both T helper type 1 (Th1) and Th2 cytokines upon rechallenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had been exposed only to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T cell recall responses towards birch, grass and house dust mite allergens in vitro, suggesting that AECs-DC contact in vivo constitute a key element in mucosal homeostasis in relation to allergic sensitisation.
Collapse
Affiliation(s)
- D Papazian
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern DenmarkOdense
- ALK, Global ResearchHørsholm, Denmark
| | | | - S Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern DenmarkOdense
| | | |
Collapse
|
47
|
Kojima T, Kondoh M, Keira T, Takano KI, Kakuki T, Kaneko Y, Miyata R, Nomura K, Obata K, Kohno T, Konno T, Sawada N, Himi T. Claudin-binder C-CPE mutants enhance permeability of insulin across human nasal epithelial cells. Drug Deliv 2015; 23:2703-2710. [PMID: 26036653 DOI: 10.3109/10717544.2015.1050530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Intranasal insulin administration has therapeutic potential for Alzheimer's disease and in intranasal administration across the nasal mucosa, the paracellular pathway regulated by tight junctions is important. The C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) binds the tight junction protein claudin and disrupts the tight junctional barrier without a cytotoxic effect. The C-CPE mutant called C-CPE 194 binds only to claudin-4, whereas the C-CPE 194 mutant called C-CPE m19 binds not only to claudin-4 but also to claudin-1. METHODS In the present study, to investigate the effects of C-CPE mutants on the tight junctional functions of human nasal epithelial cells (HNECs) and on the permeability of human recombinant insulin across the cells, HNECs were treated with C-CPE 194 and C-CPE m19. RESULTS C-CPE 194 and C-CPE m19 disrupted the barrier and fence functions without changes in expression of claudin-1, -4, -7, and occludin or cytotoxicity, whereas they transiently increased the activity of ERK1/2 phosphorylation. The disruption of the barrier function caused by C-CPE 194 and C-CPE m19 was prevented by pretreatment with the MAPKK inhibitor U0126. Furthermore, C-CPE 194 and C-CPE m19 significantly enhanced the permeability of human recombinant insulin across HNECs and the permeability was also inhibited by U0126. CONCLUSION These findings suggest that C-CPE mutants 194 and m19 can regulate the permeability of insulin across HNECs via the MAPK pathway and may play a crucial role in therapy for the diseases such as Alzheimer's disease via the direct intranasal insulin administration.
Collapse
Affiliation(s)
- Takashi Kojima
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Masuo Kondoh
- b Laboratory of Bio-Functional Molecular Chemistry , Graduate School of Pharmaceutical Sciences, Osaka University , Suita , Japan
| | | | | | - Takuya Kakuki
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan.,c Department of Otolaryngology and
| | - Yakuto Kaneko
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan.,c Department of Otolaryngology and
| | | | | | | | - Takayuki Kohno
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Takumi Konno
- a Department of Cell Science , Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Norimasa Sawada
- d Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | | |
Collapse
|
48
|
Miyata R, Kakuki T, Nomura K, Ohkuni T, Ogasawara N, Takano KI, Konno T, Kohno T, Sawada N, Himi T, Kojima T. Poly(I:C) induced microRNA-146a regulates epithelial barrier and secretion of proinflammatory cytokines in human nasal epithelial cells. Eur J Pharmacol 2015; 761:375-82. [PMID: 25959385 DOI: 10.1016/j.ejphar.2015.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
Abstract
Human nasal epithelial cells (HNECs) are important in the tight junctional barrier and innate immune defense protecting against pathogens invading via Toll-like receptors (TLRs). MicroRNAs (miRNAs) regulate expression of tight junctions as direct or indirect targeting genes and maintain the barrier function. However, the roles of miRNAs in the epithelial barrier of HNECs via TLRs remain unknown. In the present study, to investigate the effects of miRNAs on the epithelial barrier of HNECs via TLRs, primary cultured HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs), were treated with the TLR3 ligand poly(I:C) and miRNA array analysis was performed. In the miRNA array of the cells treated with poly(I:C), upregulation of miR-187, -146a, -574, -4274, -4433, -4455 and -4750, and downregulation of miR-4785 by more than twofold compared to the control were observed. When control HNECs were treated with mimics and inhibitors of these miRNAs, an miR-146a mimic induced expression of tight junction proteins claudin-1, occludin and JAM-A together with an increase of the epithelial barrier function. The poly(I:C)-induced miR-146a was regulated via the distinct TLR3-mediated signal pathways PI3K, JNK and NF-κB. Furthermore, the miR-146a mimic prevented downregulation of claudin-1 and JAM-A and the secretion of proinflammatory cytokines IL-8 and TNF-α induced by poly(I:C) by targeting TRAF6. These findings indicate that, in HNECs, miRNA-146a plays crucial roles in maintenance of the tight junction barrier and innate immune defense protecting against invading pathogens.
Collapse
Affiliation(s)
- Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kazuaki Nomura
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Tsuyoshi Ohkuni
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| |
Collapse
|
49
|
Abstract
PURPOSE The nasal mucosa is the first site to encounter pathogens, and it forms continuous barriers to various stimuli. This barrier function is very important in the innate defense mechanism. Additionally, inflammation of the nasal sinus is known to be a hypoxic condition. Here, we studied the effect of hypoxia on barrier function in normal human nasal epithelial (NHNE) cells. MATERIALS AND METHODS The expression levels of various junction complex proteins were assessed in hypoxia-stimulated NHNE cells and human nasal mucosal tissues. We performed real-time polymerase chain reaction analysis, western blotting, and immunofluorescence assays to examine differences in the mRNA and protein expression of ZO-1, a tight junction protein, and E-cadherin in NHNE cells. Moreover, we evaluated the trans-epithelial resistance (TER) of NHNE cells under hypoxic conditions to check for changes in permeability. The expression of ZO-1 and E-cadherin was measured in human nasal mucosa samples by western blotting. RESULTS Hypoxia time-dependently decreased the expression of ZO-1 and E-cadherin at the gene and protein levels. In addition, hypoxia decreased the TER of NHNE cells, which indicates increased permeability. Human nasal mucosa samples, which are supposed to be hypoxic, showed significantly decreased levels of ZO-1 and E-cadherin expression compared with control. CONCLUSION Our results demonstrate that hypoxia altered the expression of junction complex molecules and increased epithelial permeability in human nasal epithelia. This suggests that hypoxia causes barrier dysfunction. Furthermore, it may be associated with innate immune dysfunction after encountering pathogens.
Collapse
Affiliation(s)
- Hyun Jin Min
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.; The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Hoon Kim
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.; Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.; The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.; Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.; The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
50
|
Brandner JM, Zorn-Kruppa M, Yoshida T, Moll I, Beck LA, De Benedetto A. Epidermal tight junctions in health and disease. Tissue Barriers 2015; 3:e974451. [PMID: 25838981 DOI: 10.4161/21688370.2014.974451] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/04/2014] [Indexed: 01/21/2023] Open
Abstract
The skin, the largest organ of the body, is an essential barrier that under homeostatic conditions efficiently protects and/or minimizes damage from both environmental (e.g. microorganisms, physical trauma, ultraviolet radiation) and endogenous (e.g., cancers, inflammation) factors. This formidable barrier function resides mainly in the epidermis, a dynamic, highly-stratified epithelium. The epidermis has 2 major barrier structures: stratum corneum, the outmost layer and tight junctions, intercellular junctions that seal adjacent keratinocytes in the stratum granulosum, found below the stratum corneum. In recent years there have been significant advances in our understanding of tight junction function, composition and regulation. Herein we review what is known about tight junctions in healthy skin and keratinocyte culture systems and highlight the dynamic crosstalk observed between tight junctions and the cutaneous immune system. Finally we discuss the preliminary observations suggesting that tight junction function or protein expression may be relevant for the pathogenesis of a number of common cutaneous inflammatory and neoplastic conditions.
Collapse
Key Words
- AD, atopic dermatitis
- AMP, antimicrobial peptides
- Cldn, claudin
- DC, dendritic cells
- FLG, filaggrin
- JAM, junctional adhesion molecule
- LC, Langerhans cells
- MM, malignant melanoma
- PRR, pattern recognition receptor
- PS, psoriasis
- SCC, squamous cell carcinoma; SC, stratum corneum
- SG, stratum granulosum
- SNP, single nucleotide polymorphism
- TER, TransEpithelial Electrical Resistance
- TJ, tight junction
- TLR, Toll-like receptor
- Th, T helper
- ZO-1, zonula occludens 1
- claudins
- skin barrier
- skin immune system
- skin innate barrier
- tight junction
Collapse
Affiliation(s)
- J M Brandner
- Department of Dermatology and Venereology; University Hospital Hamburg-Eppendorf ; Hamburg, Germany
| | - M Zorn-Kruppa
- Department of Dermatology and Venereology; University Hospital Hamburg-Eppendorf ; Hamburg, Germany
| | - T Yoshida
- Department of Dermatology; University of Rochester Medical Center ; Rochester, NY USA
| | - I Moll
- Department of Dermatology and Venereology; University Hospital Hamburg-Eppendorf ; Hamburg, Germany
| | - L A Beck
- Department of Dermatology; University of Rochester Medical Center ; Rochester, NY USA
| | - A De Benedetto
- Department of Dermatology; University of Rochester Medical Center ; Rochester, NY USA
| |
Collapse
|